
Visual Comput (2006) 22: 332–345
DOI 10.1007/s00371-006-0009-3 O R I G I N A L A R T I C L E

Hyung Seok Kim
Chris Joslin
Thomas Di Giacomo
Stephane Garchery
Nadia Magnenat-Thalmann

Device-based decision-making for
adaptation of three-dimensional content

Published online: 20 April 2006
© Springer-Verlag 2006

H.S. Kim∗(�) · C. Joslin∗∗ ·
T. Di Giacomo · S. Garchery ·
N. Magnenat-Thalmann
MIRALab – University of Geneva,
Switzerland
hyung.kim@acm.org;
{Giacomo, Garchery,
Thalmann}@miralab.unige.ch;
chris_joslin@carleton.ca

Abstract The goal of this research
was the creation of an adaptation
mechanism for the delivery of three-
dimensional content. The adaptation
of content, for various network
and terminal capabilities – as well
as for different user preferences,
is a key feature that needs to be
investigated. Current state-of-the
art research of the adaptation shows
promising results for specific tasks
and limited types of content, but
is still not well-suited for massive
heterogeneous environments. In
this research, we present a method

for transmitting adapted three-
dimensional content to multiple target
devices. This paper presents some
theoretical and practical methods
for adapting three-dimensional
content, which includes shapes and
animation. We also discuss practical
details of the integration of our
methods into MPEG-21 and MPEG-4
architectures.

Keywords Multi-resolution model ·
Virtual human animation · Content
adaption · Benchmarking · MPEG-21

1 Introduction

1.1 Targeting a context

Three-dimensional (3D) representation is one of the cor-
nerstones of computer graphics and multi-media content.
Advances in this domain, coupled with the highly fuelled
progression of 3D graphics cards has pushed the com-
plexity of these representations into a whole new arena
whereby a single real-time model can consist of more than
a million polygons. Huge architectural buildings, every-
day objects, even human beings themselves can be repre-
sented using 3D graphics in such detail that it is difficult
to distinguish between real and virtual images.

Concurrently, and much towards the other end of the
scale, many devices (personal digital assistants (PDAs),
mobile phones, laptops, etc.) are now “3D-enabled”; capa-
ble of enhancing a user’s experience and providing much

∗ Presently at Konkuk University, Korea
∗∗ Presently at Carleton University, Canada

more depth to the presented information. In many cases,
these devices access the same content from the same ser-
vice provider (for example: providing virtual maps/guides,
multi-user games, etc.) and it is this broadness of content
and the heterogeneity of devices (in terms of performance,
capability, network connection, etc.) that is the main con-
cern in a continuously expanding market. It is also the
concern of the user to obtain the best quality for their de-
vice, i.e., a general expectation of any device of higher
performance is that overall the quality of the experience
will be better.

1.2 Media adaptation

Media adaptation offers a solution to these current indus-
try woes and whilst most of the more common examples
are in the area of video and audio, the popularization of
games and virtual environments shows that there is also
an emerging arena for 3D graphics. Whilst there are many
considerations for 3D graphics as a whole, being a very
broad domain, we focus our attention in this paper mainly
on the adaptation of graphical representation (with an

333

emphasis on virtual humans), and introducing animation
adaptation. In addition, whilst the research area of multi-
resolution models [22] is one that has been significantly
explored, we introduce it into the domain of MPEG-21
digital item adaptation in order to consider the constraints
imposed by multiple targets, and the adaptation from a sin-
gle media item.

Our main research goal was to devise a method for
multi-resolution representation/adaptation to transfer and
render a virtual human (face and body) on heterogeneous
target devices with the following considerations:

• Range of complexity – As the model will not be tar-
geted specifically for a particular network or device,
we needed to define a generic method. In essence, this
means the ability to represent a virtual human from its
lowest possible representation towards its most com-
plex form; this is in opposition to creating a range of
models and selecting the most appropriate one.

• Device capability – We defined a generic method for
assessing the capability of the device to enable the
closest approximation. As the target device is not spec-
ified, it should be assumed that this assessment should
also be heterogeneous.

• Network capacity – Based on an assessment of the
network condition, we used a generic method for adap-
tation that allows for both a specific bandwidth and
maintains a certain level of quality of service.

• Interoperability – It is obviously necessary that whilst
the server needs to be aware of an adaptation of the
content towards a specific device (as it is perform-
ing the task), client awareness should not be required.
Hence, regardless of whether content is adapted or
not, it should be usable on the target device without
any specific indicators. The reasons are many, but the
main one is that the decoding process should not re-
quire additional information as this would create (a)
a huge dependency and (b) updates to an already de-
fined schema; in addition it is also not necessary as
long as the process is thoroughly considered.

• Animatable models – The models themselves are not
just representations, they must be also animated, which
means that we needed to consider ramifications at the
joint (body) and control point level (face) of simplifi-
cation.

• Compact data form – Adaptation for a specific termi-
nal should not severely impact network performance
and vice versa (e.g. adapting towards a specific ter-
minal should not increase the data transferred on the
network). In addition, the data should be represented in
compressed form wherever possible.

1.3 MPEG-21 digital item adaptation
The Motion Picture Experts Group’s (MPEG), Section 21,
Part 7 on digital item adaptation (DIA) (collectively
known as MPEG-21 DIA) provides a tidy solution to the

aforementioned constraints. The term digital item was
coined to cover basically all media types, and include
essentially the media (video, audio, 2D/3D graphics, de-
scriptions, etc.) and other associated items (e.g. licenses,
play lists, etc.). Adaptation can be performed on any or all
of these digital items depending on the method employed.
The standard [32] specifically focusing on DIA contains
references to methods for adaptation (described in Sect. 3)
and context; although both areas are highly generic, en-
abling implementation of the standard without restriction
to specific practices. Context, in this case, is used to de-
fine how the resulting digital should end up on the user’s
terminal and covers an entire range of definitions. A brief
summary of these definitions is given below.

• Network – contains the definitions specifying the net-
work, including maximum capacity, and current usage.

• Terminal – this defines the user’s terminal itself; def-
initions range from the resolution of the terminal’s
screen to its storage capacity.

• User constraints – these define the user’s personal im-
pairments, for example if they are visually impaired,
this can be taken into account in the adaptation of con-
tent.

• User preferences – used to define the user’s actual
preferences.

• Mobility – used to define the terminal’s actual pos-
ition, the location, possibly the local language spoken

Some or all of the contextual information is sent to
the server in order to facilitate the adaptation process. The
interpretation of these contextual elements is not standard-
ized, only their definition. In this paper, we touch upon
only a few of these elements, specifically the definition of
terminal capability, and network capacity. Here we focus
on how these contextual elements relate to the adapta-
tion of graphical elements (both representation and anima-
tion) with an emphasis on virtual humans. We focus on
both adaptations for facial and body animation, extend-
ing current state-of-the-art work by taking into account
the geometry and a more general context, which includes
terminal capabilities. In Sect. 2, we present related work
on mesh and animation adaptation (with only simple con-
text). Sect. 3 discusses the issues involving heterogeneous
targets and Sect. 4 presents the experimental results with
MPEG schemes. Section 5 concludes the paper.

2 Related work

2.1 Geometry representation

The real-time rendering of complex objects and multi-
resolution approaches have been widely investigated and
applied. Starting from mesh simplification approaches
applied for the complex mesh obtained from the laser
scanner [12, 27], mesh simplification methods are applied

334

to real-time rendering by reducing rendering complexity
while preserving as much visual detail as possible. For
the simplification process, the main issues have been fo-
cused on identifying and measuring features. Tradition-
ally, object level features have been investigated, which
include vertex distance [25], curvatures [35], geometric
measurement [9], texture distance [10], and distance in
image space [31].

After the simplification, the model is represented in
a hierarchical way to be processed in real-time [22]. A dis-
crete multi-resolution structure has been broadly adopted
in application due to its simplicity and efficiency. In
addition to the discrete structure, there have also been
other hierarchical structures including ones which based
on parametric surface representations [16] and vertex-tree
based representations [26].

Previous structures have focused on issues of the run-
time adaptation of geometry. Although most of methods
have strong points in efficiently managing complexities
in real-time, some improvement is required for use in
heterogeneous networked environments. There have been
a few approaches to adapt multi-resolution techniques for
the transmission of complex shapes including progres-
sive meshes (PM) [8, 17, 25]. Those approaches provide
relatively good results but need relatively high cost recon-
struction on the client side, which places some limitation
on using low-end devices such as PDA’s or mobile phones.
Also, when the issue comes to the binary encoded stream,
some methods require more investigation to make it pos-
sible to adapt the contents in the binary state while pre-
serving the rendering quality.

2.2 Animation representation

In a similar manner to geometry simplification, motions
can be simplified in a visually lossless way under cer-
tain circumstances and, therefore, methods to control the
trade-off of animation realism versus processing and stor-
age requirements are being investigated by researchers.

In motion control, with regards to the selection of mo-
tion complexity over realism, it is of paramount impor-
tance to overview the basics of human visual perception,
especially human motion perception, in the case of ani-
mation. Adelson [1] discusses some major issues such as
apparent motions, spatial-temporal receptive fields, and
short and long range perception mechanisms. Distler et
al. [15] study the estimations of speed that the brain is pro-
viding using specific perceptual cues, and report that both
temporal-frequency and distance play a significant role in
generating velocity consistency and estimation. Directly
related to skeleton and human-like motions, experiments
by Kourtzi et al. [30] suggest that human movement per-
ception is easily recognized and based on intrinsic biome-
chanical constraints.

In computer animation, as mentioned by Berka [6], the
accuracy of motions that are "too" fast, "too" far away, or

"too" numerous in a virtual scene can be reduced without
impacting their efficiency. Hence, because of its process-
ing requirements, physically-based animation can highly
gain from LoD animation systems, for instance as pro-
posed by Carlson et al. [7] with a combination of three
different animation systems, ranging from pure kinemat-
ics to dynamics, or methods proposed by Hutchinson et
al. [28] that adopt a rough mass-spring network while lo-
cally refining it when the spring-angles constraints are
enforced. With the same general idea, Debunne et al. [11]
adapt a finite-element mesh where forces are applied for
higher control on the deformations in relevant regions.
Regarding non-physically-based animation methods, the
inherent hierarchies of articulated bodies are very appro-
priate for animation control using LoD methods. Di Gia-
como et al. [13] apply two animation methods with levels
of depth in the hierarchy of animated branches of trees,
while for human-like structures, Granieri et al. [21] in-
vestigate LoD for animation by decreasing the sampling
frequency of motions and the number of degrees of free-
doms per joints, i.e. the number of dimensions in which
they can move. In more recent work, Giang et al. [20] dis-
cuss integration of LoD with LoA, and Joslin et al. use
visual experiments to cluster animations for the actual ob-
server to animation distances. Moreover, Di Giacomo et
al. [14] propose to control the number of joints with a level
of articulations and regions of interest, while Ahn et al. [3]
preprocess joint postures in clusters to limit computations
due to transformations at run-time.

3 Adaptation overview

3.1 Introduction

Adaptation within the MPEG framework is a relatively
new topic and as such only a few generic methods have
been proposed [5], mainly dealing with audio/video me-
dia; whilst 3D graphics has received little attention. Here
we present our research on the development of an adapta-
tion schema using both MPEG-4 and MPEG-21 schemas.
We focus on the global aspect of device capability in
networked environments. As a measurement of device ca-
pability, we place emphasis on utilizing a benchmarking
process and demonstrate a scheme now standardized in
MPEG 21 DIA.

3.2 Overall configuration

Whilst MPEG-21 DIA [32] is not only restricted to
a client/server architecture, it is currently the most com-
monly used for most applications; however some peer-to-
peer applications are emerging.

Even client-side only adaptations, whereby stored data
is directly adapted according to a specific context, are
also being explored on the basis of providing the more

335

Fig. 1. Basic architecture overview

contextually relevant information. The basis of adaptation
within MPEG-21 is quite complex on the outside due to
its generic approach and there are several elements that are
required in order to perform a complete adaptation (illus-
trated in Fig. 1). These are as follows:

• Content digital item (CDI) – The original encoded
format of a CDI is required (although it can be stored in
other elements, it is simpler if it is treated separately).
This DI should be the highest quality version and con-
tain all elements required. The adapted CDI (ADCI) is
the actual content passed from server to client.

• Generic bitstream description (gBSD) – The gBSD
file, introduced by Amielh et al. [4, 5], as it is com-
monly known, is essentially the mapping of each of
the “important” elements within the encoded file. It can
be generated in many ways, but the simplest is dur-
ing the encoding of the original DI. It is basically an
XML representation marking lengths, offsets and other
information that is required for adaptation.

• XML stylesheet (XSLT) – The XML stylesheet is ba-
sically the method for the adaptation. This stylesheet
relates the gBSD to the actual values or preferences
given by the user or the terminal. It contains processes
for the verification of a gBSD file against the required
adaptation process, as well as the adaptation process it-
self. This is generally an execution routine and must be
handcrafted for a particular task or set of tasks.

• Context digital item (XDI) – The XDI contains the
formatted information from the client (and can also
contain information from the server) on the target de-
vice, the user preferences and is basically the input
control parameters for adaptation.

The adaptation process, shown in Fig. 2, is basically
passing information through the adaptation engine, where
the adapted file (ACDI) is constructed from elements that
have been edited (mainly in the header) and elements
that have passed a specific criterion, but generally have
remained unchanged. For example, and as illustrated in
Fig. 3 from a syntactic perspective, if the adaptation pro-

Fig. 2. Overall adaptation process

Fig. 3. Adaptation at bit stream level

cess indicates that frames 5 to 20 should be removed,
the header should indicate this change (to maintain con-
sistency – so that the decoder does not crash or become
unstable). Frames 1 to 4 and 21+ should pass through the
adaptation process without change, but frames 5 to 20 will
be dropped and not passed onto the adapted file. Whilst the
header might also be adapted, in general most of it will be
retained as it contains the information outlining the format
of the rest of the packet (although this will depend on the
encoding format, layers, and wrappers, etc.).

3.3 Representation of content

As the gBSD is used to define the bit-stream layout on
a high level it must basically represent a decoder in XML
format. This does not mean that it will decode the bit-
stream, but the structure of the bit-stream is important
and the adaptation methods must be inline with the lowest
level defined in the schema. For example, if the adap-
tation needs to skip frames, and as MPEG codecs are
byte aligned (per frame), it is practical in this case to set
a marker at the beginning of each frame; this means that

336

a frame can be dropped without the need to understand the
majority of the payload (this is possibly with the excep-
tion of updating the frames-skipped section of the header
– although this can be avoided). However, as will be seen
in the following sections, the schema is based on a much
lower level in order to provide more flexibility.

4 Content preparation

4.1 Multi-resolution model generation

For a multi-resolution model, we adopt and extend the
concept of clustering representation [14]. In this section,
the idea of clustering is illustrated along with its exten-
sion to the compact representation of vertex properties and
animation parameters.

The premise involves clustering all the data so that
a specific complexity can be obtained by simply choos-
ing a set of clusters. From the complex mesh Mn(Vn, Fn)
where Vn is a set of vertices and Fn is a set of faces, it
is sequentially simplified to Mn−1, . . ., M1, M0. A multi-
resolution model of this simplification sequence has, or at
least is able to generate, a set of vertices V and faces M,
where union is denoted as ‘+’ and intersection is denoted
as ‘−’:

V =
n∑

i=0

Vi, M =
n∑

i=0

Mi , (1)

V and M can be partitioned into sets of clusters. The first
type is a set of vertices and faces that are removed from
a mesh of the level i to make a mesh of the level i −1,
denoted by C(i). The other type is a set of vertices and
faces that are newly generated by simplification, denoted
by N(i). Hence a level i mesh is as follows:

Mi = M0 + (

i∑

j=1

C(j)−
i∑

j=1

N(j)) . (2)

There are many simplification operators, including
decimation, region merging, and subdivision [22]; here we
used half edge-collapsing operators [25] and quadric error
metrics (QEM) [19]. The error metric is slightly modi-
fied to adopt the animation parameters. Each vertex has
a measurement of levels of animation. For example, a ver-
tex that is close to the joint in body animation or a vertex
that has large facial deformation parameters need to be
preserved during the simplification process. At one ex-
treme, it is desired to preserve control points of animation
as much as possible. This level of deformation is multi-
plied by the QEM of each vertex, such that vertices with
a high deformation parameter are well-preserved through
simplification.

Fig. 4. Illustration of edge-collapsing

By an edge-collapsing operator, an edge (vr, vs) is col-
lapsed to the vertex vs . In the example (Fig. 4), faces
f1, f2 are removed from the mesh, and faces f3, f4 are
modified into f ′

3, f ′
4.

The clusters are defined as:

C(i) = { f1, f2, f3, f4}
N(i) = { f ′

3, f ′
4} .

To evaluate Eq. 2 requires setting the union and inter-
section, which are still complex. Using the properties of
the simplification ensures N(i) to be a subset of unions
of M0, C(1), . . ., C(i −1). Using this property, the cluster
C(i) is sub-clustered into a set of C(i, j), which belongs to
N(j) where j > i and C(i, i), which does not belong to any
N(j). This is same for M0, where M0 = C(0). Thus, the
level i mesh is represented as Eq. 3, which requires simple
set selections.

Mi =
i∑

k=0

(C(k, k)+
n∑

j=i+1

C(k, j)) . (3)

The last process is the concatenation of clusters into
a small number of blocks to reduce the number of selec-
tion or removal operations during the adaptation process.
Processing vertices is rather straightforward because the
edge-collapsing operator (vi, vs) ensures that every C(i)
has a single vertex vi as C(i, i). By ordering vertices of
C(i, i) by the order of i , the adaptation process of vertex
data for level i is a single selection of a continuous block
of data, v0, v1, . . ., vi . For the indexed face set, each C(i)
is ordered by C(i, j) in the ascending order of j . Thus, an
adaptation to level i , consists of at most 3i +1 selections
or at most 2n removals of concatenated blocks.

So far, we have described the process using only the
vertex positions and face information. In the mesh, there
are other properties that have to be taken into account,
such as normal, color, and texture coordinates. Because
these properties inheritably belong to vertices, a similar
process to vertex positions is applied. Exceptional cases

337

are 1) two or more vertices using the same value for
a property and 2) a single vertex having more than two
values. In both cases, there is a unique mapping from
a vertex and face pair to a value of properties. The cluster
C(i) has properties that have mapping from (vi, f j), where
vi ∈ C(i). If a property p belongs to more than one ver-
tex, such as (vi, f1) → p and (vj, f2) → p, p is assigned
to the cluster of C(j), where j < i . By ordering this, p re-
mains active as long as there is one vertex that has p as
its property. Therefore, we have a valid set of clusters for
each level i .

Each cluster has a set of vertices and vertex proper-
ties such as vertex normal, colors, and texture coordinates.
Along with vertex information, the cluster has a set of in-
dexed faces, normal faces, color faces and texture faces.
Also each cluster can consist of sub-segments with their
own material and texture. Each level is selected by choos-
ing blocks of clusters.

4.2 Animation data construction

Following the adaptation of the mesh, animation data is
applied to the adapted geometry. For the facial animation
we use an MPEG-4 compliant facial animation system
with facial animation parameters (FAP) driving our fa-
cial animation engine. These parameters provide informa-
tion about the displacement of facial definition parameters
(FDP) represented as feature points on the face. Each FAP
is used to animate one FDP in one direction. MPEG-4 de-
fines 66 FAP values in order to reproduce a wide range
of facial expressions. Each FAP is expressed in terms
of facial proportions called facial animation parameters
units (FAPU), i.e. the distance between eyes. With this ap-
proach, in terms of animation, MPEG-4 is able to provide
a set of displacement parameters without relation to a spe-
cific face model.

The FAP stream does not provide any information for
the displacement of neighboring vertices; therefore, for
each FAP, we use a method that defines each displacement,

Fig. 5. Example of face definition tables

i.e. which vertices are influenced and in which direction
according to FAP intensities. MPEG-4 provides a refer-
encing method called face definition tables, and is based
on a piece-wise linear interpolation in order to animate the
face model. These tables (also referred to as facial ani-
mation tables or FAT) provide information about which
vertices should be translated or rotated for each FAP dis-
placement. For a translation or rotation a face definition
transform node contains information on which part of the
scene-graph is under influence. In order to define which
vertices are influenced by FAP shape deformation, we use
the face definition mesh structure to determine which ver-
tices are animated according to the current FAP. In our
method, we use a single interval boundary between con-
secutive frames, however we use different multiple inter-
val boundaries in order to represent different amplitudes
of deformation according to FAP intensity. This deforma-
tion information is used during the computation of model
deformation in order to produce expressions according to
a set of FAP values (see Fig. 5 for further details of the
structure of the face definition tables)

The use of face definition tables is optional, and the
providing definition information for each FAP could be
achieved by a designer defining each influence manually;
however areas such as the lips (shown in Fig. 6) make this
work almost impossible due to the close proximity of 21
FAP values in a very small region. In addition, this kind of
manual work would have to be performed for each model
and at each level of detail.

Instead, we use another technique that utilizes geomet-
ric deformation algorithms to compute FAP influences.
This technique allows an automatic computation of in-
fluenced vertices according to FDP only, i.e. the position
of each feature control point. With algorithms developed
based on this technique, in a few seconds, the facial ani-
mation engine is able to animate a face model with only
this basic information (FDP). The huge advantage of using
this kind of approach, is that for different levels of de-
tail, we can simply recalculate the influence information

338

Fig. 6. Animation parameters used in the lip area

by using the same FDP for the same model. Although
the influence computation should be done only one time
by model and complexity level, due to the computational
complexity, this method is not suitable for devices with
a low performance processing unit. Instead, the best solu-
tion, which can be applied to a wider range of platforms,
is to automatically export piece-wise linear interpolation
information from a geometric deformation engine and to
use it during animation. From the high-level resolution
model, we automatically construct the facial animation
table, which describes influences of FAP points and infor-
mation for the interpolation. As the vertices of the model

Fig. 7. Adaptation of facial animation

were ordered by FDP and influence, we can easily extract
the corresponding FAT information from a high-level FAT
table for each model; therefore, only the corresponding
part of the global FAT table is transmitted to the client.
Figure 7 illustrates the adaptation process for the facial
animation.

5 MPEG-21 adaptation

5.1 Overview

Whilst MPEG-21 is based on the principle of adaptation
from non-appointed peers, general usage is geared towards
the concept of a server/client architecture, whereby con-
tent is adapted on the server side and streamed to a client.

In this research, not only the geometry but also body
and facial animation contents are being adapted for dif-
ferent contexts (Fig. 8). For the adaptation, we focus on
the entire context of adaptation instead of a particular con-
text of network capacity or performance of a rendering
hardware. As previously described, there are many differ-
ent target contexts to which the mesh and animation can
be adapted; the main consideration is to make sure that
they are adapted to satisfy all contexts. As an overview,
the network, the device capability, and the user’s prefer-
ences/restrictions are the main considerations. In the con-
text of the network, we are able to use bandwidth measure-
ments and figures in order to determine the available cap-
acity. The user’s preferences generally consist of choosing
the LoD explicitly (if the application allows). The termi-
nal’s capability is the most complex, and is dependent on
many factors; in this case we use a benchmarking device.

5.2 Adaptation through benchmarking

In order to solve one of the key considerations of DIA (i.e.
to concisely describe a terminal’s computational power),
we introduced the concept of benchmarking for both the
digital item, and the terminal into the schema. This con-
cept applies not only to graphics, but is generic enough to
be used for video and audio media types as well. As part
of our initial investigation, we use a linear approximation
that is attributed to any digital item, i.e. regardless of the
ratio it is applied in a linear fashion with no compensa-
tion for extremes or alternative scales. In essence, and in
terms of graphics, we use the following equations in order
to approximate the adaptation ratio:

Mr = FR/FD . (4)

• Media ratio (Mr) ∼ is the ratio between the maximum
value for the media indicator on the reference machine
(FR) and the desired media reference on the user’s ter-
minal (FD). In the case of graphics and video, this
will normally be the frame rate (it is in our test case).
For example, if FR is 50 frames per second (fps), and

339

Fig. 8. Adaptation process overview

the desired rate is 25 fps, then the media ratio would
be 2.0; assuming the benchmark ratio is above 1.0, no
adaptation would be required.

Dr = BR/BT . (5)

• Device benchmark ratio (Dr) ∼ is the ratio between
the maximum benchmark value (BR) obtained from
the reference machine and the same benchmark (BT)
obtained for the user’s terminal. Similar conditions
should exist for the benchmarking process on the ref-
erence machine, and the execution of testing using the
media indicator.

RA = Mr × Dr ×CR . (6)

• Adaptation ratio (RA) ∼ provides the linear adapta-
tion value used to adapt the digital content. It consists
of the product of the media ratio (MR), the device
benchmark ratio (DR) and the computation ratio (CR).
CR is the ratio of computation space given up for pro-
cessing this media; if the terminal is dedicated to pro-
cessing this media CR can be set to 1.0.

The computation ratio is used mainly because the
benchmarking process and consequential media indicator
(in our case frames per second) on the reference machine
are performed using 100% of the CPU (or CR = 1.0) and
the user may desire less than 100% usage on their terminal
for decoding and playing that specific digital item. Eq. 6
is used for each individual digital item (and in most cases,
decoding and rendering are computed separately, CR is
then adjusted accordingly).

Using a conglomeration of Eqs. 4, 5 and 6, we are able
to obtain a suitable adaptation ratio that can be used to
adapt the media towards a specific device (described in
Sect. 3.2). For all cases where RA is less than 1.0 adapta-
tion is required, for all other cases the mesh and animation
remain unchanged.

Our method is very effective because it permits adap-
tation without the need to (a) comprehend the various fac-
tors within the computer (e.g. CPU type, frequency, etc.,
which places several arbitrary assumptions on the hard-
ware architecture) and (b) reduces the process to a simple
linear approximation.

Benchmarking assumes the presence of a capable ren-
dering engine, for example whilst the decoders for MPEG-
4 graphics may be present; a 3D rendering engine may not
– for example: if the user’s terminal is a mobile phone.
Therefore, in this case transmoding (converting media
from one mode to another) is a possible alternative. This is
especially so with 3D graphics where quite a wide range
of obvious transmoding options are available (3D to 2D
Graphics, 3D to video, etc.). Therefore, as part of our in-
vestigation we are currently in the process of researching
such alternatives; these are explained in more detail in
Sect. 7.

5.3 Benchmarking devices

The benchmarking scheme for device benchmarking is
illustrated in Fig. 9. Here, the terminal device commu-
nicates with its counterpart in the media server to setup
connections. Within this framework, the benchmark is ex-
ecuted only once offline (during the initial set-up) and only

340

Fig. 9. Demonstration of both user upload of benchmark, and user download of benchmark from reference server

the results are transmitted once the device is connected.
It is assumed that every terminal has its own benchmark
result when it connects to a network (and ultimately a me-
dia server). If the terminal contains no context stating its
benchmark, the process system is able to collect one for it,
as follows.

In general all benchmarks for a device need to be exe-
cuted during a suitable period of time; this is usually when
the user is not specifically using the device and can ex-
pect the benchmark to severely degrade the performance
of other processes on their device; i.e. during an instal-
lation period. However, as benchmarks consume all the
computational power of the device, and as it can be ap-
preciated that the more benchmarks that are executed the
better, plus taking into account the understanding of users
in general, it is expected that a terminal may connect to
a server having possibly only executed a small number of
the possible benchmarks. Therefore, the user is unlikely
to have downloaded the latest benchmarks as part of the
course.

In this case, we assume that at least a base benchmark
has been executed during installation; whilst this does not
give a clear indication of the performance of the device,
it is capable of providing a limited understanding of the
user’s terminal and is only used as a last resort. In order
to tackle the problem of benchmarking requirements, we
introduce the concept of a reference server in order to pro-
vide preprocessed benchmarks for specific devices. The
reference server model is used as follows (and illustrated
in Fig. 9).

• Device benchmarking ∼ a user, who has executed
one or more of the standard benchmarks, is asked if
they would like to upload these results to the reference
server. Upon agreement, the benchmark result and de-
vice related information is uploaded to the server.

• Benchmarking weighting ∼ as with any benchmark
result, and due to the possible variables in execu-

tion (including device variables, additional processes,
and user intervention, etc.), a simple weighting is pro-
vided to the benchmark being uploaded in order that
a weighted average can be obtained. Currently we are
using a simple Bayesian estimate [24]

• Device benchmark reference ∼ a user, who has not
executed a benchmark for their terminal, requests all
the relevant benchmarks for their device from the ref-
erence server, the reference server returns all available
benchmarks to the terminal, which can then be sent to
the media server to enable the adaptation to continue.
Should a device’s benchmark still not be available, the
base benchmark will then be used as a last resort.

The use of a reference server is not desirable, however
it serves as a function for those user’s whose patience for
benchmarking, terminal calibration and device testing is
limited.

5.4 Adaptation through network capacity

The adaptation of the mesh and animation stream in terms
of the network capacity is directly governed by the avail-
able bandwidth CB, the encoded stream size FS (as the
media is generally adapted after it has been encoded), and
the download time TW in seconds that a user is prepared to
wait or that a provider believes reasonable; exemplified in
Eq. 7.

CB

Fs
× Tw = RA . (7)

RA provides the ratio of the original file to the adapted file,
and as the main elements contributing to this size (assum-
ing that the encoding process is well-balanced) is the mesh
size, the size of the mesh is reduced. Values for FS, CB,
and even TW are easily obtained and, therefore, the value
for RA is also easily determined.

341

5.5 Additional considerations

For facial animation, after adaptation, the model uses the
corresponding facial animation table. During animation,
a real-time deformation engine compiles each FAT accord-
ing to the current set of FAP, and computes deformation
of the mesh by merging each FAT. This involves small
computational cost for each frame by simplifying the FAT
generation process as a simple selection of sub-sets. This
technique works well on powerful platforms, but is also
appropriate for platforms with a lower processing capabil-
ity, such as a PDA device.

6 Experimental results

Table 1 shows the benchmark results for different tar-
get devices. As a basis for graphics we used the View-
Perf benchmark from SPEC [36] and compared the values
with the performance of an actual application, called
VHD++ [34] with virtual constructions and character an-
imation. The benchmark result of each ViewPerf test set is
averaged using a geometric sum [36].

Fig. 10 clearly illustrates that the averaged bench-
mark result approximates to the actual performance of
the real application (with the exception, although within
acceptable limits, of application test # 2, on machine

Table 1. Benchmark value and application performance

3dsmax-02 drv-09 dx-08 light-06 proe-02 ugs-03 Geometric sum App. 1 App. 2

1 17.05 68.31 83.48 26.98 15.79 19.75 30.58 37.0 40.0
2 13.41 46.50 59.07 14.47 12.19 17.39 21.99 30.7 33.2
3 7.80 14.93 39.38 12.46 4.29 6.31 10.75 16.20 25.4
4 6.76 31.78 35.52 10.38 7.95 5.70 12.37 15.3 14.9
5 0.36 0.92 1.43 0.75 0.47 0.23 0.58 0.4 0.6
6 4.53 16.42 23.04 6.51 4.47 4.77 7.87 14.2 17.3

Fig. 10. Benchmark and application per-
formance results

4). By utilizing different benchmark results for differ-
ent data sets and applications, we can approximate the
performance more closely. For this case, application #
2 could utilize a subset of benchmark such as light-
06 and 3dsmax-02, which will describe its performance
more closely. In order to verify proposed method, we ap-
plied a set of human body models with both body and
face animation. Multi-resolution models were generated
based on the benchmark for that device and the result-
ing size values are tabulated in Table 2 and illustrated
in Fig. 11.

The progressive mesh approach is known as a method
of near optimal storage usage for multi-resolution models.
The discrete mesh is a representation of a set of discrete
levels of details, which is still quite common in most of
real-world applications because of its simplicity in adapta-
tion.

The numbers are the size of the VRML and BIFS files,
respectively. Since the PM cannot currently be encoded
in the BIFS format, only the approximated size for the
VRML file is noted. As a result of the adaptation, the high-
est details have a number of polygons of 71 K and 7 K for
each model, whilst the lowest details have 1K and 552
polygons each (Fig. 12). The models are constructed to
have five different levels. The body model has 12 oper-
ations of adaptation for each segment, which has vertex
normal and texture coordinates as properties.

342

Table 2. Model data size

No. of polygons Original model Proposed method Progressive mesh Discrete mesh

Body 71 K 12.7 M / 4.5 M 17.5 M / 6.5 M ∼ 13 M 51.6 M / 12.0 M
Face 7 K 0.8 M / 0.3 M 1.0 M / 0.5 M ∼ 0.9 M 3.9 M / 1.6 M

Fig. 11. Example models

This number of operations is quite small when com-
pared to operations for a PM, which requires at least
n/2 operations, where n is number of vertices (28 K
for the body model). Furthermore, the method uses
a simple selection, whilst PM requires relatively com-
plex substitutions. The proposed method is located in-
between of these approaches, and is flexible and sim-
ple enough to allow adaptation with relatively small
file size. Although the proposed method has larger data
to the PM approach, it is encodable to standard codec
and is able to be transmittable via standard MPEG
streams. It also utilizes a simpler adaptation mechanism,
which is very similar to the simplest discrete level selec-
tion.

Fig. 12. Examples of adapted meshes (top from left: body models with 71 K, 45 K, 30 K, 15 K and 5 K polygons) (bottom from left: face
models with 7 K, 5 K, 3 K, 2 K and 0.5 K polygons)

7 Current and future research

The context within MPEG-21 digital item adaptation is
very generic, and in many respects does not even need to
apply to MPEG encoding/representation schemes; there-
fore our current research is aimed at determining if there
are better approximations for the benchmarked result and
the polygon mesh adaptation, possibly based on a loga-
rithmic schema. We are also looking at linking the results
more closely with other sets of terminal descriptors, such
as display capabilities (e.g. defining the screen resolution,
etc.), and memory capacity. A straightforward continua-
tion of such an adaptation would be to handle other media
types for the lowest levels, i.e. when the device is not
capable of 3D rendering, to deliver a media that it can
manage. We are investigating automatic conversion of 3D
animation to animated 2D vector graphics, for example,
illustrated in Fig. 13, since many mobile phones support
such formats.

The difficulties in the 3D-to-2D transmoding are to
maintain intrinsic 3D properties, such as depth percep-
tion and lighting in the 2D representation, and to keep the
size of generated data small enough for practical use. We
are also concerned with the dynamic adaptation of both
representation and animation in harmony with each other.
This mainly involves transmitting a representation based
on the level of articulation (LoA) used, which greatly
reduces the overall polygon count; whilst at the same
time maintaining the possibility for a dynamic increase
in LoA. Last, we are currently researching methods for

343

Fig. 13. Overview of a possible 3D-to-2D architecture for MPEG facial animation

adapting multi-resolution textures suited for similar appli-
cations.

8 Conclusion

In this paper we have presented a method to format 3D
representation data that can then be encoded and adapted
using a generic schema within the MPEG-21 framework;
essentially the representation is produced in such a way
that it requires no additional information on the client’s
side and can be rendered immediately. In addition, the
representation used is suitable for clients who have low
computational power and it provides significant advan-

tages over progressive mesh techniques of devices such as
PDAs. We have also introduced a benchmarking method
that permits a linear approximation to be used for the
adaptation process of the mesh representation, reducing
the overall polygon density to match the capabilities of
the device. Whilst the method presented only approxi-
mates the adaptation of a representation’s polygon dens-
ity to a specific value, this approximation is well within
acceptable limits and it is not intended, nor could it be
hoped, to be more precise.

Acknowledgement The research presented was funded through the
European Project DANAE by the Swiss Federal Office for Edu-
cation and Science (OFES). The authors would also like to thank
Lionel Egger for his valuable test models and consultation.

References
1. Adelson, E.: Mechanisms for motion

perception. Optics & Photonics News 2(8),
24–30 (1991)

2. Aggarwal, A., Regunatha, S., Rose, K.:
Compander domain approach to scalable
AAC. Proceedings 110-th Audio
Engineering Society Convention (2001)

3. Ahn, J., Wohn, K.: Motion Level-of-Detail:
A simplification method for crowd scene.
Proceedings Computer Animation and
Social Agents (CASA), pp. 129–137 (2004)

4. Amielh, M., Devillers, S.: Multimedia
content adaptation with XML. Proceedings
International Conference on Multimedia
Modeling (MMM), pp. 127–145 (2001)

5. Amielh, M., Devillers, S.: Bitstream syntax
description language: application of
xml-schema to multimedia content
adaptation. Proceedings 11-th International
WWW Conference: CDROM (2002)

6. Berka, R.: Reduction of Computations in
physics-based animation using level of

detail. Spring Conference on Computer
Graphics, pp. 69–76. Comenius University
(1997)

7. Carlson, D., Hodgins, J.: Simulation levels
of detail for real-time animation. Proc.
Graphics Interface, pp. 1–8. ACM (1997)

8. Chen, B., Nishita, T.: Multiresolution
streaming mesh with shape preserving and
QoS-like controlling. Proceedings 3D Web
Technology, pp. 35–42. ACM (2002)

9. Cohen, J., Varshney, A., Manocha, D.,
Turk, G., Weber, H., Agarwal P., Brooks,
F., Wright, W.: Simplification envelopes.
Proceedings ACM SIGGRAPH, pp.
119–128 (1996)

10. Cohen, J., Olano, M., Manocha, D.:
Appearance preserving simplification.
Proceedings ACM SIGGRAPH, pp.
115–112 (1998)

11. Debunne, G., Desburn, M., Cani, M., Barr,
A.: Dynamic real-time deformations using
space and time adaptive sampling.

Proceedings ACM SIGGRAPH, pp. 31–36
(2001)

12. DeHaemer, M., Zyda, M.: Simplification of
objects rendered by polygonal
approximations. Comput. Graphics 15(2),
175–184 (1991)

13. Di Giacomo, T., Capo, S., Faure, F.: An
interactive forest. Proceedings Eurographics
Workshop on Computer Animation and
Simulation, pp. 65–74 (2001)

14. Di Giacomo, T., Joslin, C., Garchery, S.,
Magnenat-Thalmann, N.: Adaptation of
virtual human animation and representation
for MPEG. Comput. Graphics 28(4), 65–74
(2004)

15. Distler, H., Gegenfurtner, K., VanVeen, H.,
Hawken, M.: Velocity constancy in a virtual
reality environment. Perception 29(12),
1423–1435 (2000)

16. Eck, M., DeRose, T., Duchamp, T., Hoppe,
H., Lounsbery, M., Stuetzle, W.:
Multiresolution analysis of arbitrary

344

meshes. Proceedings ACM SIGGRAPH,
pp. 173–182 (1995)

17. Fogel, E., Cohen-Or, D., Ironi, D., Zvi, T.:
A web architecture for progressive delivery
of 3d content. Proceedings 3D Web
Technology, pp. 35–41. ACM (2001)

18. Funkhouser, T., Sequin, C.: Adaptive
display algorithms for interactive frame
rates during visualization of complex
virtual environments. Proceedings ACM
SIGGRAPH, pp. 247–254
(1993)

19. Garland, M., Heckbert, P.: Simplifying
surfaces with color and texture using
quadric error metrics. Proc. IEEE
Visualization, pp. 263–270 (1998)

20. Giang, T., Mooney, R., Peters, C.,
O’Sullivan, C.: ALOHA: adaptive level of
detail for human animation towards a new
framework. Proceedings Eurographics, pp.
71–77 (2000)

21. Granieri, J., Crabtree, J., Badler, N.:
Production and playback of human figure
motion for visual simulation. ACM Trans.
on Modeling and Computer Simulation
5(3), 222–241 (1995)

22. Heckbert, P., Garland, M.: Multiresolution
modeling for fast rendering. Proceedings
Graphics Interface, pp. 43–50
(1994)

23. Heckbert, P., Rossignac, J., Hoppe, H.,
Schroeder, W., Soucy, M., Varsney, A.:

Multiresolution surface modeling course.
ACM SIGGRAPH, Course 25
(1997)

24. Hoeting, J., Madigan, D., Raftery, A.,
Volinsky, C.: Bayesian model averaging:
a tutorial. Statist. Sci. 14(4), 382–417
(1999)

25. Hoppe, H.: Progressive meshes.
Proceedings ACM SIGGRAPH, pp. 99–108
(1996)

26. Hoppe, H.: View-dependent refinement of
progressive meshes. Proceedings ACM
SIGGRAPH, pp. 189–198 (1997)

27. Hoppe, H., DeRose, T., Duchamp, T.,
McDonald, J., Stuetzle, W.: Mesh
optimization. Proceedings ACM
SIGGRAPH, pp. 19–26 (1993)

28. Hutchinson, D., Preston, M., Hewitt, T.:
Adaptive refinement for mass/spring
simulations. Proc. EUROGRAPHICS
Workshop on Computer Animation and
Simulation, pp. 31–45 (1996)

29. Joslin, C., Magnenat-Thalmann, N.:
MPEG-4 animation clustering for
networked virtual environments. IEEE
Conference on Multimedia and Expo
(ICME): CDROM (2004)

30. Kourtzi, Z., Shiffrar, M.: Dynamic
representations of human body movement.
Perception 28(1), 49–62 (1999)

31. Lindstrom, P., Turk, G.: Image-driven mesh
optimization. ACM Trans. on Graph. 19(3),
204–241 (2000)

32. Multimedia Framework (MPEG-21) Part 7:
Digital Item Adaptation; ISO/IEC JTC
1/SC 29/WG 11/FDIS 21000-7:2004

33. Ohshima, T., Yamamoto, H., Tamura, H.:
Gaze-directed adaptive rendering for
interacting with virtual space. Proceedings
Virtual Reality Annual International
Symposium (VRAIS), pp. 103–110. IEEE
Computer Society (1996)

34. Ponder, M., Papagiannakis, G., Molet, T.,
Magnenat-Thalmann, N., Thalmann, D.:
VHD++ development framework: towards
extendible, component based vr/ar
simulation engine featuring advanced
virtual character technologies. Proceedings
Computer Graphics International (CGI), pp.
96–104. IEEE Computer Society (2003)

35. Soucy, M., Laurendeau, D.: Multiresolution
surface modeling based on hierarchical
triangulation. Comput. Vision Image
Understand. 63(1), 1–14 (1996)

36. SPECViewPerf 7.1.1: http://www.spec.org/
gpc/opc.static/viewperf71info.html

345

PROF. HYUNGSEOK KIM was a senior re-
searcher at MIRALab, University of Geneva. He
received his PhD in Computer Science in Febru-
ary 2003 at VRLab, KAIST. He is currently an
Assistant Professor at Department of Internet
& Multimedia Engineering, Konkuk University,
Korea. His main research field is real-time inter-
action in virtual environments, more specifically
multi-resolution modeling of shape and texture
and multi-modal interaction mechanisms. He
has actively participated in several European
Projects focused on topics of shape modeling,
multi-modal interaction and evoking believable
experiences in the virtual environment.

PROF. CHRIS JOSLIN is currently an Assistant
Professor at the School of Information Technol-
ogy, at Carleton University, Canada. He holds
Master’s degrees in Engineering (University of
Bath, United Kingdom), and Computer Science
(University of Geneva, Switzerland). He ob-
tained his PhD in Information Systems, under
the supervision of Professor Nadia Magnenat-
Thalmann, also from the University of Geneva.
He is the author of several journal papers,
book chapters, and conference papers in subjects
ranging from collaborative virtual environments,
spatial audio models, to media adaptation. He
is currently a member of the Standards Coun-
cil Canada (SCC), representing the Canadian
National Body in the standardisation of Still
(SC29WG1) and Dynamic (SC29WG11, more

commonly known as MPEG) media, mainly fo-
cusing on research in the area of MPEG-4 (me-
dia compression) and MPEG-21 (media control).
His current research involves immersive collab-
orative environments (unrestricted collaborative
spaces, virtual reality devices, and visualisation
techniques), dynamic media adaptation (dynamic
sessions, scalable media, dynamic contexts, and
session mobility issues), and interactive media
(in-car interfaces, context-based emergency ser-
vices information displays, and head-mounted
displays).

THOMAS DI GIACOMO obtained his Master’s
thesis in September 2001 at the University
of Grenoble (iMAGIS, INRIA/INPG/CNRS) on
Computer Graphics. Since March 2002, he has
been working as a research assistant and PhD
candidate at MIRALab. His main interests in-
volve cloth animation, realtime and level of
details for animation, and physically-based ani-
mation.

DR. STEPHANE GARCHERY is a computer sci-
entist who studied at the University of Grenoble
and Lyon, France. He is working at the Univer-
sity of Geneva as a senior research assistant in
MIRALab, participating in research on facial an-
imation for real time applications. One of his
main tasks is focused on developing an MPEG-
4 facial animation engine, applications and tools
to automatic facial data construction. He has

developed different kinds of facial animation en-
gines based on MPEG-4 facial animation param-
eters for different platforms (stand-alone, web
applet and mobile devices), and different tools
for fast design in an interactive way.

PROF. NADIA MAGNENAT-THALMANN has pi-
oneered research into virtual humans over the
last 25 years. She obtained several Bachelor’s
and Master’s degrees in various disciplines (psy-
chology, biology and chemistry) and a PhD in
Quantum Physics from the University of Geneva.
From 1977 to 1989 she was a Professor at the
University of Montreal and led the research lab
MIRALab in Canada. She moved to the Uni-
versity of Geneva in 1989, where she founded
the Swiss MIRALab, an internationally interdis-
ciplinary lab composed of about 30 researchers.
She is author and coauthor of a very large num-
ber of research papers and books in the field of
modeling virtual humans, interaction with them
and in augmented life. She has received sev-
eral scientific and artistic awards for her work,
mainly on the Virtual Marylin and the film
Rendez-vous a Montreal. More recently, in 1997,
she was elected to the Swiss Academy of Tech-
nical Sciences, and was nominated as a Swiss
personality who has contributed to the advance
of science in the 150 years history on the CD-
ROM produced by the Swiss Confederation Par-
liament.

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (None)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (ISO Coated)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Perceptual
 /DetectBlends true
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /SyntheticBoldness 1.00
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 524288
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveEPSInfo true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 150
 /ColorImageDepth -1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 150
 /GrayImageDepth -1
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org?)
 /PDFXTrapped /False

 /Description <<
 /DEU <FEFF004a006f0062006f007000740069006f006e007300200066006f00720020004100630072006f006200610074002000440069007300740069006c006c0065007200200036002e000d00500072006f006400750063006500730020005000440046002000660069006c0065007300200077006800690063006800200061007200650020007500730065006400200066006f00720020006400690067006900740061006c0020007000720069006e00740069006e006700200061006e00640020006f006e006c0069006e0065002000750073006100670065002e000d0028006300290020003200300030003400200053007000720069006e006700650072002d005600650072006c0061006700200047006d0062004800200061006e006400200049006d007000720065007300730065006400200047006d00620048000d000d0054006800650020006c00610074006500730074002000760065007200730069006f006e002000630061006e00200062006500200064006f0077006e006c006f006100640065006400200061007400200068007400740070003a002f002f00700072006f00640075006300740069006f006e002e0073007000720069006e006700650072002e00640065002f007000640066002f000d0054006800650072006500200079006f0075002000630061006e00200061006c0073006f002000660069006e0064002000610020007300750069007400610062006c006500200045006e0066006f0063007500730020005000440046002000500072006f00660069006c006500200066006f0072002000500069007400530074006f0070002000500072006f00660065007300730069006f006e0061006c0020003600200061006e0064002000500069007400530074006f007000200053006500720076006500720020003300200066006f007200200070007200650066006c00690067006800740069006e006700200079006f007500720020005000440046002000660069006c006500730020006200650066006f007200650020006a006f00620020007300750062006d0069007300730069006f006e002e>
 /ENU <FEFF004a006f0062006f007000740069006f006e007300200066006f00720020004100630072006f006200610074002000440069007300740069006c006c0065007200200036002e000d00500072006f006400750063006500730020005000440046002000660069006c0065007300200077006800690063006800200061007200650020007500730065006400200066006f00720020006400690067006900740061006c0020007000720069006e00740069006e006700200061006e00640020006f006e006c0069006e0065002000750073006100670065002e000d0028006300290020003200300030003400200053007000720069006e00670065007200200061006e006400200049006d007000720065007300730065006400200047006d00620048>
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [2834.646 2834.646]
>> setpagedevice

