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Abstract A major source of drug attrition in pharmaco-

logical development is drug toxicity, which eventually

manifests itself in detrimental physiological effects. These

effects can be assessed in large sample cohorts, but gen-

erating rich sets of output variables that are necessary to

predict toxicity from lower drug dosages is problematic.

Currently the throughput of methods that enable multi-

parametric cellular readouts over many drugs and large

ranges of concentrations is limited. Since metabolism is at

the core of drug toxicity, we develop here a high-

throughput intracellular metabolomics platform for relative

measurement of 50–100 targeted metabolites by flow

injection-tandem mass spectrometry. Specifically we

focused on central metabolism of the yeast Saccharomyces

cerevisiae because potential cytotoxic effects of drugs can

be expected to affect this ubiquitous core network. By

machine learning based on intracellular metabolite

responses to 41 drugs that were administered at seven

concentrations over three orders of magnitude, we dem-

onstrate prediction of cytotoxicity in yeast from

intracellular metabolome patterns obtained at much lower

drug concentrations that exert no physiological toxicity.

Furthermore, the 13C-determined intracellular response of

metabolic fluxes to drug treatment demonstrates the func-

tional performance of the network to be rather robust, until

growth was compromised. Thus we provide evidence that

phenotypic robustness to drug challenges is achieved by a

flexible make-up of the metabolome.
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1 Introduction

Predicting cellular behavior at the molecular level is an

enormous challenge. One of the prerequisites for this

endeavor is knowledge of the interactions between and

responses to perturbations of the various molecules that

make up cells. While our ability to interrogate gene–gene,

protein–protein and protein–DNA interactions has greatly

improved, methods to unravel metabolite–protein interac-

tions or to quantify response to alterations in metabolite

levels—both natural and artificial—are much less devel-

oped. The so far most successful approach is based on

external supplementation of small molecules in so-called

chemical genomics, most powerfully applied in combination

with mutant libraries for systematic testing of condition-

specific genotype—phenotype associations (Hillenmeyer

et al. 2008; Kapitzky et al. 2010; Lehar et al. 2008; Perlstein

et al. 2007). While large numbers of combinatorial pertur-

bations can be tested in parallel, typically only growth is

quantified to identify functional interactions between added

compound and modified gene. Slightly larger numbers of
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output variables can be screened through cell-based assays as

exemplified by successful probing of four oxidative phos-

phorylation parameters (Wagner et al. 2008). Image-based

assays can further expand the scope by extracting either

individual optical features in the acquired images or more

complex phenotypic traits from feature patterns (Perlman

et al. 2004; Wagner and Clemons 2009; Young et al. 2008).

In general, an inverse relationship exists between the extent

of multiplexing and throughput of an assay (Feng et al.

2009). For primary screening of drug responses that requires

high-throughput, the current practice is therefore targeted

monitoring of up to a handful of cellular parameters or

image-based detection of high level, multifactorial pheno-

typic traits.

In particular for drug development, however, richer data

sets with tens to thousands of measured variables are nec-

essary to address the key problems of target identification,

mode of action, metabolic fate, biomarkers or toxicity. For

many of these questions, metabolism is at the core of the

matter because drug targets are often enzymes, enzymes

convert drugs, drugs have metabolic consequences that

might be exploitable as biomarkers, or because the drugs

themselves or their metabolic products exhibit toxic effects.

It is thus paramount to develop multi-variable assays that

monitor the functional output of metabolism, which should

be either at the level of fluxes or concentrations of metab-

olites (Coen et al. 2008; Ellis et al. 2007; Kaddurah-Daouk

et al. 2008; Sauer 2004; Turner and Hellerstein 2005). A

sufficiently high level of throughput is pivotal to exploit the

potential of small-molecule phenotypic profiling in drug

discovery and development (Wagner and Clemons 2009). In

contrast to the powerful multi-variable output of transcrip-

tomic or proteomic analyses that is simply neither feasible

nor affordable on thousands of samples (Feng et al. 2009),

mass spectrometry (MS)-based metabolomics (Zamboni and

Sauer 2009) or fluxomics (Zamboni and Sauer 2004) are, in

principle, capable of the required throughput. While flux-

based methods assess the integrated functional network

output of all molecular regulation and catalytic interactions

(Hellerstein 2003; Sauer 2006), metabolite-based methods

can sensitively reveal local responses of metabolism to

perturbations (Boer et al. 2010; Fendt et al. 2010a).

In pharmacological development, the two major sources

of drug attrition are efficacy and toxicity (Hopkins 2008),

where toxicity testing in the twenty-first century is con-

sidered to rely on high-throughput tests in cell lines and

dose–response modeling (Andersen and Krewski 2009;

Committee on Toxicity Testing and Assessment of Envi-

ronmental Agents 2007). One of the gaps between this

grand vision and the current practice is that almost all

functional screens are done at a single, physiologically

effective drug concentration and not over large dose ranges

(Perlman et al. 2004). Here we attempt to fill this gap by

developing a high throughput metabolomics method that

enables prediction of cytotoxic drug effects by a machine-

learning approach from a small number of assays at low

drug dosages. As a proof of concept, we focused on central

metabolism of the yeast Saccharomyces cerevisiae because

potential cytotoxic effects of drugs can be expected to

directly or indirectly affect this ubiquitous core network.

2 Materials and methods

2.1 Strains, chemicals, and media

Reagents (Supplementary Table 1) were purchased from

Sigma Aldrich and stored at -20�C until use. Each com-

pound was dissolved in dimethyl sulfoxide (DMSO), with

the exception of the water-dissolved drugs ara-CMP, caf-

feine, phenformin, doxorubicin, hydroxyurea, 2-deoxyglu-

cose, oxythiamin, malonate and sodium iodoacetate. All

experiments were performed with the S. cerevisiae strain

FY4 MATa. Cultures were initially propagated in YPD plates

and then grown in defined minimal medium (Verduyn et al.

1992) with 1% (w/v) glucose as the sole carbon source. The

medium was buffered with 10 mM KH-phthalate (pH 5.0).

2.2 Drug treatment

To determine appropriate drug concentrations, a dilution

series of each compound was made with either water or

DMSO for five dilution steps, where the starting concen-

trations were chosen based on literature data. A 100 ll (for

water-solved drugs) or 5 ll for (for DMSO-solved drugs)

aliquot of each dose or control (e.g. water or DMSO) was

distributed to a 96 deep-well plate (Kühner AG, Switzer-

land) in triplicate in 1.2 ml of minimal medium. From an

overnight preculture, cells were added to each of the 96

wells to a final OD600 of 0.05. Plates were then incubated at

30�C on a rotary shaker at 300 rpm with 5 cm amplitude.

The exponential growth phase of each culture was moni-

tored by measuring the optical density at 600 nm (OD600)

in a spectrophotometer (Molecular Devices, USA), and the

maximal specific growth rate was determined by log-linear

regression of OD600 versus time, with specific growth rate

(lmax) as the regression coefficient. Based on these data,

we chose seven concentrations for each drug that cover

four orders of magnitude.

2.3 Cultivation and metabolome sampling for shake

flasks

Yeast cultivations were performed in duplicate 500 ml-

baffled shake flask (250 rpm), at 30�C in minimal medium.

Each flask contained 100 ml of minimal medium. From

434 S. Heux et al.

123



biological triplicate experiments, 1 ml aliquots of the mid-

exponential growth phase at an OD600 of unity were rapidly

withdrawn by pipetting, and quenched in 4 ml -40�C pre-

cooled 60% (v/v) methanol with 10 mM ammonium acetate

at pH 7.5. Biomass was separated from the quenching solu-

tion by rapid centrifugation at 10,000 rpm for 1 min at

-20�C, and metabolites were extracted immediately by

adding 1 ml 80�C 75% (v/v) ethanol containing 10 mM

ammonium acetate at pH 7.5. The mixture was incubated for

3 min at 80�C and then immediately chilled in an ice bath

for 3 min. Cell debris was separated by centrifugation at

10,000 rpm for 10 min at 4�C. The supernatant was dried at

30�C and 0.12 mbar using a Christ RVC2-33 concentrator

vacuum system connected to Christ Alpha 2-4 LD plus freeze

dryer (both from Kühner AG, Switzerland). After evapora-

tion of the solvent, samples were stored at -80�C.

2.4 Cultivation and metabolome sampling for filter

plates

To enable large scale metabolome analysis, batch growth

experiments were carried out in 96-well plates with PES

0.45 lm filter on the bottom (Interchim, France). Wells

were filled with 1.2 ml minimal medium, using four rep-

licate wells per condition and 12 for the control. Inocula-

tion was done with from overnight precultures to a final

starting OD600 of 0.05. Filter plates were incubated at 30�C

using an orbital shaker with 5 cm amplitude at 300 rpm. To

ensure appropriate mixing, one 4 mm diameter glass bead

(Sigma-Aldrich, Switzerland) was added to each deep-well.

Aliquots were withdrawn during the mid-exponential phase

defined as an OD600 between 0.5 and 1.5). Supernatant was

removed by vacuum-filtration through the well bottom

within 30 s. The filter plate with retained cell pellets was

then quickly frozen with liquid nitrogen. Thus, quenching

was achieved within 50 s, and the results were consistent

for most of the tested metabolite levels in control shake

flask experiments with 15 s quenching (Supplementary

Table 3). Metabolites were extracted from frozen pellets by

adding 0.5 ml of extraction solvent (75% (v/v) ethanol,

10 mM ammonium acetate at pH 7.4) at -20�C to each

well, followed by incubation in a water bath at 80�C for

3 min. The liquid extracts were then collected into a

96-well collection plates by vacuum-filtration through the

well bottom The pellets were washed once with 0.5 ml of

extraction solvent and the resulting extracts transferred in

the same collection plate to yield ca. 1 ml total extract.

These were dried and stored as described above.

2.5 High-throughput metabolomics

The flow injection analysis was performed using an Agilent

1100 Series HPLC System coupled to an Applied

Biosystems/MDS SCIEX 4000 QTRAP instrument equip-

ped with the TurboV electrospray interface. The samples

from the evaporated plate were resuspended in 80 ll dis-

tilled water and 5 ll were transferred into a 96-well PCR

plate (ABgene, UK) and then placed at 4�C in the auto-

sampler. One microliter sample was injected in 75% (v/v)

methanol, 5 mM ammonium carbonate at pH 9 with a flow

rate of 0.1 ml/min. Spectra were collected in negative

mode and in multiple reaction monitoring. A total of 68

transitions were acquired with 30 ms dwell time, and total

cycle time of 2.3 s. The routine throughput was of about 60

injections per hour, and was primarily set by the time

necessary for cleaning of the injector and flushing of the

ionization chamber to reduce carryover. The electrospray

source was operated at 4.5 kV and 650�C. Compound-

specific settings were the same as in reference (Buscher

et al. 2009). Data were recorded and analyzed with Analyst

Software Version 1.4.2. For purposes of validation, extracts

of yeast were prepared from 96-well filter plates as

described. To assess linearity, we prepared a dilution series

with such extracts and applied linear regression to the

integrated peak areas for 68 compounds. To estimate intra-

and inter-day MS reproducibility, two different extracts

from yeast cells grown in the same filter plate were split in

two and stored at -80�C. The first fractions were analyzed

four times on Day 1 and the remaining fractions were

analyzed four times on Day 2. To approximate both inter-

and intra- cultivation and sampling reproducibility, three

different extracts from yeast cells grown in the same filter

plate plus three different extracts from yeast grown in three

different filter plates on three different days were all ana-

lyzed by flow injection-MS on the same day. For com-

parison, signals were normalized by dividing the peak area

obtained for each metabolite with the OD600 of the culture.

2.6 Metabolomics data processing

For each sample, integrated metabolite areas were nor-

malized with the corresponding OD at the time point of

sampling and averaged over all replicates (n = 4 for

drugged cells, n = 12 for controls). To ensure quality,

metabolite concentrations for which either less than three

replicas were measured or the relative error was larger than

35%, were removed from the design matrix and indicated

as ‘‘missing’’. The data was sorted by increasing drug

concentration. Missing values were imputed linearly with

the average of their closest neighbors with lower and

higher concentration if both neighbors are measured.

Metabolites which still comprised missing values were

removed from the corresponding drug experiment. All

metabolite areas were first normalized with the average

area measured for the same metabolite in the (un-drugged)

control and second by log2 transformation resulting in fold
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changes. Finally, metabolites were removed, which showed

erratic behavior (i.e. single concentration spikes with a fold

change of more than 0.6.).

For every profile of growth rates given by one drug at

increasing concentration, we determined the maximum

non-toxic concentration, which is the highest drug dose

which does not affect the growth rate. This maximum non-

toxic concentration is defined as the point xi in the growth

rate profile for which xiþ1 � avg xiþ1; xi; xi�1f gð Þj j[ 0:02.

2.7 Toxicity prediction

To potentially predict the occurrence of drug toxicity from

metabolome measurements from the minimal number of

sub-toxic concentrations, we attempted to train a general

classifier for all drugs from the raw MS data. For each

drug, we considered only drug concentrations lower or

equal to the maximum non-toxic concentration, since pre-

dicting toxicity at a concentration at which toxicity is

detectable at macroscopic scale is trivial. The design

matrix X for the classifier consists of metabolite concen-

tration frames. A frame is defined as triplet of three

consecutive drug concentrations, for each of which 68

non-filtered metabolite fold-changes were available and

concatenated to form a single feature vector of length 204.

These frames are overlapping, hence resulting in five

frames for a drug, for which seven concentrations were

measured and which showed no growth rate effect. For

toxic drugs all doses above the maximum non-toxic con-

centration were neglected, and thus fewer frames could be

extracted. The target variable Y of the model is dependent

on the growth rate profile of the drug. The frames were

labeled based on the future onset of a growth rate effect of

the drug, e.g. a frame consisting of concentrations two,

three and four was labeled as ‘‘toxic’’ if the maximum non-

toxic concentration was five or six. In the case of non-toxic

drugs all five frames were labeled as ‘‘non-toxic’’.

One of the key challenges in this setting is the large

number of missing values due to the rigorous quality control

procedure. To overcome this problem we facilitated a

k-nearest neighbor (kNN) classifier which operates only on

pairwise distances instead of using the whole design matrix

at once (Hastie et al. 2009). The Euclidean distance was

used to determine neighbors in the 204-dimensional feature

space and k was set to 3. To accommodate the fact that only

one-third of all frames are flagged as toxic and the impor-

tance of high sensitivity in toxicity classification, a test

sample was classified as ‘‘toxic’’ if one or more of its three

nearest neighbors was ‘‘toxic’’. Prediction performance is

measured with class balanced error rate. The main difficulty

in learning a kNN classifier is feature selection, which aims

at finding a subset of metabolites that yield the best per-

formance in terms of toxicity prediction. The underlying

hypothesis is that not all metabolite measurements are

indicative for future toxicity and therefore contaminate the

distance measure. In addition, since MS detection suffers

from an intrinsic tradeoff between number of metabolites

and precision, feature selection enables to prioritize MS

detection and thus favorably affects data quality. To this end

we implemented a forward–backward selection procedure,

which optimizes the balanced error rate by adding and

removing features until convergence (Hastie et al. 2009).

The resulting subset is then used to predict the toxicity of

the left out test samples. The learning procedure yields a

toxicity model with a training error of 9%.

We validated the classifier with two cross validation

experiments. The first one was a leave one out cross vali-

dation on drug level. Hence all frames of a drug were left

out of training and subsequently were predicted by the

learned kNN model. This was repeated for each drug

resulting in a prediction error of 24% (Supplementary

Fig. 6). The aim of the second validation experiment was

to ensure that the whole training and selection procedure is

not over fitting., To this end 100 permutation tests were

conducted for leave-one-drug-out cross validation. At each

run the target variable Y was randomly permuted and the

complete training and testing procedure was repeated with

these permuted labels. The resulting average balanced error

rate of 51% demonstrates that the learning procedure is not

over fitting (Supplementary Fig. 6).

2.8 13C metabolic flux analysis

Duplicate labeling experiments were carried out in 96 deep-

well plate (Kühner AG, Switzerland) in 1.2 ml of minimal

medium on 10 g/l glucose as a mixture of 80% (w/w) nat-

urally and 20% (w/w) [U-13C] labeled glucose (13C C 99%,

Cambridge Isotope Laboratories, USA). Each of the 41

compounds was administered at two concentrations as

described in the main text. Cells from overnight cultures

were harvested by centrifugation and washed using sugar

free minimal medium to remove residual, unlabeled carbon

source. Cultures were inoculated to an OD600 of 0.05 and

harvested during mid-exponential growth (OD600 0.5–1.2)

by centrifugation. Residual medium was removed by

washing the pellet three times with water and cells were

stored at -20�C. Samples for gas chromatography–MS

analysis were prepared as described previously (Blank et al.

2005) on a 6890N instrument with a 5973 Inert XL MS

system (Agilent Technologies). Flux ratios were determined

from the mass isotopologue distribution of the protein-

bound amino acids with the software FiatFlux (Zamboni

et al. 2005) using the analytical equations developed by

Fischer and Sauer (2003). The mass isotopologue distribu-

tion was corrected for the amount of unlabelled biomass and

stable natural isotopes (Fischer and Sauer 2003).
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3 Results and discussions

3.1 Physiological test of drug cytotoxicity in yeast

To demonstrate characterization and prediction of drug-

induced toxicity at the functional level of metabolism, we

assembled a set of 41 heterogeneous drugs (Supplementary

Table 1). They were chosen to include (i) diverse mecha-

nisms of toxic or therapeutic action in metabolic diseases

or against fungal invasion; (ii) structurally diverse mole-

cules with common targets; (iii) a wide range of metabolic

targets; and (iv) some non-metabolic targets including

signaling networks, transporters, DNA replication and cell

division. Of the 34 drugs with known targets in yeast

metabolism, ten are inhibitors of enzymes in central and

amino acid metabolism. For each compound, we performed

quantitative miniscale yeast growth experiments to assess

its dose-dependent toxicity, defined here as a decrease in

the specific growth rate. Based on this initial physiological

characterization, we chose the concentration causing a 50%

reduction in growth rate as the highest dosage for our

experiments. Starting from this drug-specific maximum

concentration, we used seven sequentially lower drug

concentrations that cover a range of four orders of mag-

nitude (Supplementary Table 2). We thereby achieved

at least four sub-toxic concentrations for all drugs (Fig. 1;

Supplementary Fig. 1 for details). For 21 com-

pounds, notably titration up to the maximum solubility

did not cause any detectable growth rate effect at any

concentrations.

Fig. 1 Yeast growth rate response to increasing drug concentrations.

For each drug, eight drug concentrations were chosen to uniformly

span over four orders of magnitude and such that the highest dosage

(#8) corresponds to the IC50 for yeast. Drugs were grouped by the

onset of growth inhibition. Growth rates of one representative drug

are shown (indicated by an asterisk). Vertical red lines indicate the

highest non-toxic concentration. For absolute drug concentrations

please consult Supplementary Table 2
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3.2 Assessing drug toxicity by 13C metabolic flux

analysis

Assuming that drugs are toxic because they inhibit essen-

tial pathways or perturb the overall energy and redox bal-

ance, we hypothesized that these effects could be reflected

in changes of the intracellular reaction rates, triggered

either passively by enzyme inhibition or actively by the

cell to maintain homeostasis. Hence, we experimentally

determined in vivo pathway activity by 13C-metabolic flux

analysis (Sauer 2006; Zamboni et al. 2009) at two drug

concentrations; i.e. the highest, often toxic concentration

and the third lowest, always non-toxic concentration in the

dilution series (Supplementary Table 2). The experiment

consisted of growing yeast cultures on 13C-labeled glucose

and computing seven independent ratios of converging

intracellular pathways from the 13C-pattern recorded in

proteinogenic amino acids by MS (Fischer and Sauer 2003;

Sauer 2006; Zamboni et al. 2009). These ratios of con-

verging fluxes provide a precise overview on carbon fluxes

around key nodes within central metabolism. At the highest

dosage, only nine drugs elicited minor flux changes that

were probably an indirect consequence of altered physiol-

ogy because the flux changes were rather similar

(Supplementary Fig. 2). More important, virtually no flux

effect could be detected at the sub-toxic drug concentra-

tions. Thus, metabolism is either impressively resilient to

chemical perturbations or the employed flux method is not

sufficiently sensitive to detect shifts that might occur in

peripheral pathways. In either case, we concluded that such

flux analysis is not pertinent for toxicity assessment.

3.3 Development of a high-throughput metabolomics

method

As an alternative to flux analysis, we set out to investigate

the metabolome response to drug treatment. In particular

we wanted to exploit the recently demonstrated local sen-

sitivity of metabolite concentrations to perturbations of

enzyme activity, in particular when fluxes are invariant as

can be expected when growth remains unaffected (Fendt

et al. 2010a). To enable analysis of large sample cohorts in

reasonable time, we established a high-throughput meta-

bolomics platform for relative measurement of 50–100

metabolites in thousands of samples. The resulting work-

flow is depicted in Fig. 2a. Briefly, cultivation was per-

formed in 96-well filter plates that enable comparable

growth rates to shake flasks, and rapid quenching within

a b
Fig. 2 High-throughput

metabolomics workflow.

a Analytical workflow. Yeast

cells were grown in 96-well

plates with filter bottom. For

rapid quenching of metabolic

activity, the medium was

removed by suction and cell

pellets on the filter were rapidly

frozen in liquid nitrogen.

Metabolites were extracted with

buffered hot ethanol, and

measured after flow injection on

a triple quadrupole mass

spectrometer at a rate of 1

sample/min. A total of 55 out of

68 targeted metabolites

exhibited sufficient linearity and

reproducibility for relative

quantification. b Data

processing workflow. An

exemplary subset of six

metabolite profiles is shown for

a given drug. Raw data were

first smoothed (red line) and

noisy curves were filtered out.

The earliest point of deflection

from the control concentration

(vertical green line) is detected

as described in Sect. 2, and used

to classify the profile (compare

Fig. 1)
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50 s of biochemical activity was achieved by vacuum-fil-

tering before solvent treatment. Intracellular metabolites

were subsequently extracted using a standard procedure

adapted to fit the here employed filter-based cell harvest,

with a global recovery vs. standard protocol of typically

above 75% (Supplementary Table 3). In total, about

10 min are required to process a plate with 96 cultures.

Cell extracts were analyzed by flow injection-tandem

MS at a routine throughput of at least 1,200 samples/day.

Mass spectrometer acquisition was initially devised to

target 68 metabolites, corresponding to most intermediates

of glycolysis, pentose-phosphate pathway, and the TCA

cycle, as well as representatives of amino acids, nucleo-

tides, polysaccharides, vitamins, and lipid precursors

(Supplementary Table 4). From the original list of 68

intermediates, 13 failed quality control because of insuffi-

cient signal-to-noise, linearity, or reproducibility. For all of

the 55 remaining metabolites, the mass spectrometer

response was linear to the amount with R2 [ 0.90, and

R2 [ 0.95 for more than 40 metabolites (Supplementary

Table 5).

Before attempting a large screen, we tested all relevant

reproducibility parameters. Intra-day and inter-day repeat-

ability were found to have average relative standard devi-

ations of 14% and 17%, respectively (Supplementary

Fig. 3). Similarly, sample-to-sample variability exhibited

an average relative standard deviation of 19% within the

same plate and 24% between plates, indicating that bio-

logical variability is larger than the technical precision.

Further, noise and robustness were tested with yeast cells

grown in the presence of compounds generally regarded to

be inactive on yeast metabolism. As expected, most tested

compounds did not affect the measurable metabolome. The

only exception was xylose that cannot be utilized by yeast

(Sonderegger and Sauer 2003), but surprisingly produced a

specific metabolome pattern in its catabolic route (Sup-

plementary Figs. 4, 5).

3.4 Assessing drug cytotoxicity by high-throughput

metabolomics

To diagnose the effect of drugs on metabolism, we recor-

ded metabolome profiles with our high-throughput plat-

form from more than 1,500 samples, comprising 41 drugs

at seven concentrations from four biological replicates plus

controls. For each sample, 55 metabolites were measured,

yielding more than 100,000 data points in total. To qualify

drug effects, we generated dose–response curves that

describe the relationship between metabolite changes and

drug concentrations (Fig. 2b). Noisy signals and erratic

profiles were neglected. For a one glance general overview

of this large and multidimensional dataset, we condensed

each metabolite-dose curve into a single value using an

algorithm that identifies the lowest concentration at which

a metabolite concentration deviates from its reference state

in untreated cells. Thereby we can distinguish metabolites

that are generally constant from those that exhibit a drug-

dependent trend. In particular, we were interested in

identifying metabolites that respond already to sub-toxic

drug concentration. Specifically, changes were defined as

early if occurring within the three lowest concentrations

tested, which correspond to doses lower than one tenth of

the toxic concentrations that decrease growth rate (Fig. 2a).

In sharp contrast to the flux data, the high-throughput

metabolome data revealed at least one early change at sub-

toxic dosage in 90% of the cases (i.e. 37 out of 41 drugs,

Fig. 3). At least one late (i.e. at higher drug dosage) change

was observed for 29 compounds, 17 of which also exhib-

ited a growth defect. On average more than five early

changes and two late changes were observed per drug

before growth was affected, but there were striking dif-

ferences between drugs. Specifically, 15 drugs exhibited

less than five metabolite changes at sub-toxic dosages (cfr.

Group A in Fig. 3), 14 drugs showed five to ten changes

(cfr. Group B), and 12 drugs were characterized by more

than ten changes (cfr. Group C). In the latter group, caf-

feine and suramin were two outliers with particularly

widespread changes. While caffeine is known to inhibit

proteins involved in the regulation of a wide variety of

biological process (Reinke et al. 2006), suramin targets the

DNA recombination machinery and thus affects genomic

stability (Porcu and Chiarugi 2005; Schuetz et al. 2007).

Group A with the fewest changes consists mostly of drugs

from the therapeutic groups I, II and III that failed to

impact growth even at the highest dosage. These drugs

either lack a relevant target in yeast, are not transported, or

elicited changes that are not detectable by screening

responses in primary metabolism. For instance, fenofibrate

binds to the peroxisome proliferator activated receptor

alpha (Supplementary Table 1) that does not exist in yeast.

Nimodipine and nifedipine target ion transporters that are

likely to escape our screen because ions were not moni-

tored. The highly diverse-changes group C, in contrast,

consists mostly of drugs that inhibit central, amino acids

and nucleotide metabolism and, in turn, growth. Finally,

drugs in the group B belong to various therapeutic groups

(III, IV, V, VI and VII).

One key goal of such screening methods is drug target

identification. For few drugs such primary target identifi-

cation was in principle possible because the target was

close to a detected metabolite. A good example is the

pyruvate dehydrogenase inhibitor oxythiamine, whose

supplementation caused only four metabolite responses,

two of which were substrate and product of the reaction,

pyruvate and acetyl-CoA. Another example is sulfometu-

ron-methyl that inhibits the valine biosynthesis enzyme
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acetolactate synthase (Supplementary Table 1) and led to

decreased concentration of the pathways product valine.

The coverage of the presently employed metabolomics

method, however, was not ideally suited to identify pri-

mary drug targets outside of primary metabolism.

3.5 Early cytotoxicity prediction from metabolome

profiles

Surprisingly, several metabolite shifts were reproducibly

detected at drug levels well below the highest non-toxic

concentration (cfr. green squares in Fig. 3). These early

changes in metabolites were not necessarily in the imme-

diate vicinity of the known target. For example, sugar

levels often increase upon drug insult (cfr. hexoses, pen-

toses, and disaccharides in Fig. 3), indicating a mobiliza-

tion or a production of storage carbohydrates upon a

general stress (Wiemken 1990). The existence of conserved

early changes in metabolome profiles in response to non-

toxic drug treatment potentially enables to predict toxicity

before it is physiologically manifested in the growth rate.

For this purpose, we resorted to machine learning to

train a classifier. Specifically, we attempted to predict

cytotoxicity from the trajectories of metabolites measured

at three consequent sub-toxic drug concentrations. Tech-

nically, toxicity is defined as a drop in the growth rate,

which results in a kink in the growth rate profile. Impor-

tantly, we set out to use raw data and only removed single

data points that were not reproducible, thus bypassing the

filtering procedure (Fig. 2b) that requires the measurement

of full drug-response profiles. To cope with gaps in the data

set, we trained a 3-nearest neighbor classifier operating

at pair-wise distances, and applied a forward–back-

ward selection procedure to filter uninformative features.

The training procedure identified ornithine, glutamate,

citrulline, a-ketoglutarate, and fructose-bis-phosphate as

the most informative metabolites for toxicity prediction on

all drugs. The classifier performed well on the training

dataset (Fig. 4). In general, the classifier successfully pre-

dicts drug toxicity (i.e. reduced growth rate) from rather

low sub-effective concentrations of most tested drugs.

Sporadically, misclassifications occur in gemfibrozile,

iodoacetate, bumetamide, caffeine, fenpropimorph, and

orlistat. Only in the case of suramin, the classifier consis-

tently fails to correctly interpret the metabolome profiles

because the metabolites vary strongly despite the absence

of a detectable growth defect. It is possible, however, that

toxic effects indeed occur at the next higher, not tested

concentration. We validated the classifier with two cross

validation experiments, and performed permutations tests

to check for overfitting (Supplementary Fig. 6). Based on

these tests we conclude that a balanced error rate of 24% is

a well-justified estimate of the generalization error of the

proposed classification model. Furthermore, the cross val-

idation experiments showed only a marginal higher sensi-

tivity than specificity for cytotoxicity (Supplementary

Table 6).

4 Concluding remarks

Overall, we conclude that independent of the drug class,

the specific mechanism of action, or the absolute drug

concentration, the classifier correctly predicts growth

defects that occur at higher dosage from metabolome tra-

jectories in three quarters of the cases. This also suggests

the existence of metabolome pattern that are characteristic

of a stress response at lower drug concentrations that pre-

cede physiological cytotoxicity. These results demonstrate

that the composition of the metabolic network in terms of

its metabolite concentrations is very sensitive to drug

treatment, while the functional network output in terms of

metabolic fluxes is rather robust, until growth is compro-

mised. This robustness of the fluxome response is consis-

tent with findings using genetic perturbations (Fendt et al.

2010b; Fischer and Sauer 2005). The sensitive metabolome

response, in contrast, renders metabolomics a very prom-

ising methodology for biomarker and toxicity screening.

As demonstrated here with more than thousand samples

analyzed per day on one instrument, metabolomics eclipses

flux and other omics methods by at least one order of

magnitude in terms of throughput and cost. The presented

yeast cytotoxicity data cannot be directly translated to

humans, as illustrated by the apparent absence of growth

and metabolome effects of troglitazone—yet the drug was

removed from the market for high incidents of liver dam-

age. Reasons include the absence of many drug targets in

yeast (Supplementary Table 1) and the fact that many of

Fig. 3 Metabolite profile effect map in response to drug treatment.

The color code indicates at which drug concentration a metabolite

response was detectable (according to the procedure shown in

Fig. 2b), where green and red specify responses that occur at very

low/medium and red at higher drug concentrations (see the bottom
inset for definition). Increasing and decreasing metabolite concentra-

tions are indicated by plus and minus, respectively. Black squares
indicate metabolites that changed with or after growth decreases, gray
squares indicate unaltered metabolites, and white squares highlight

noisy metabolites that were filtered out. The precise drug dosage at

which the physiological growth effect occurs is given in parentheses
behind the drug names. The letter below the drug names indicates the

number of metabolite changes that were induced by the drug; i.e.

A 0–4, B 5–10 and C more than 10 metabolites. Drugs are classified

according to their therapeutic area: group I: anti-hypercholesterolemia

agents; group II: anti-diabetes agents; group III: anti-hypertension

agents; group IV: anti-obesity agents; group V: antifungal; group VI:

anti-cancers agents; group VII: inhibitors of the central carbohydrates

metabolism; group VIII: stimulant

b
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the mammalian drug-metabolizing enzymes are not present

in yeast. The presented approach to rapidly detect or

anticipate cytotoxic side effects, however, is generally

applicable beyond microbes also to higher cells. Obvi-

ously, human cytotoxicity should be investigated in human

cell lines to which the sample processing workflow can be

adapted. More importantly, the prediction power can be

significantly increased by using high-resolution mass

spectrometers to resolve hundreds of metabolites, possibly

in a dynamic fashion.
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