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Abstract Projections of indicators of forest ecosys-

tem goods and services (EGS) based on process-based

landscape models are critical for adapting forest

management to climate change. However, the scarcity

of fine-grained, spatially explicit forest data means

that initializing these models is both a challenge and a

source of uncertainty. To test how different initializa-

tion approaches influence the simulation of forest

dynamics and EGS indicators we initialized the forest

landscape model LandClim with fine resolution

empirical data, coarse empirical data, and simula-

tion-derived data, and evaluated the results at three

spatial scales (stand, management area and land-

scape). Simulations were performed for a spruce

(Picea abies) dominated landscape in the Black

Forest, Germany, under current climate and a climate

change scenario. We found that long-term

([150 years) projections are robust to initialization

uncertainty. In contrast, shorter-term projections are

sensitive to initialization uncertainty, with sensitivity

increasing when EGS are assessed at smaller spatial

scales, and when the EGS indicators depend on the

spatial distribution of individual species. EGS dynam-

ics are strongly influenced by interactions between the

density, species composition, and age structure of

initialized forests and simulated forest management. If

EGS dynamics are strongly influenced by climate

change, such as when climate change induces mortal-

ity in drought-sensitive species, some of the initiali-

zation uncertainty can be masked. We advocate for

initializing landscape models with fine-grained data in

applications that focus on spatial management prob-

lems in heterogeneous landscapes, and stress that the

scale of analysis must be in accordance with the

accuracy that is warranted by the initialization data.

Keywords Climate change � Forest inventory �
Landscape model � Model initialization �
Simulation � Uncertainty

Introduction

Adapting forest management to future conditions

requires knowledge on the combined influences of

climate change and forest management on forest

dynamics and ecosystem goods and services (EGS;

Pretzsch et al. 2008; Heinimann 2010). To capture the

complex non-linear impacts of climate on forests, such
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projections are often made using dynamic, climate-

sensitive models (Bugmann 2001; Schumacher et al.

2004; Radeloff et al. 2006). Forest landscape models

aim to incorporate the impact of landscape-scale

disturbances (He and Mladenoff 1999; Schumacher

and Bugmann 2006), environmental heterogeneity

(Elkin et al. 2012), and spatially explicit processes

such as dispersal and landscape-level management

(Radeloff et al. 2006; Temperli et al. 2012), so as to

allow for a spatial evaluation of forest dynamics and

EGS provisioning. However, the advantages of accu-

rately representing environmental drivers and forest

dynamics within a spatially explicit framework are

often impaired by a lack of empirical data representing

current forest state. Spatially explicit forest data are

rarely available at a sufficient resolution and extent to

initialize the models directly. Thus, forest landscape

models are often initialized by simulating the current

forest state based on assumptions on past climate and

management. However, this type of initialization

potentially degrades the link between simulation

results and the real world, and may render projections

unreliable from a forest manager’s perspective

(Schumacher et al. 2006; Steenberg et al. 2011;

Sturtevant et al. 2012).

An alternative initialization approach that is more

empirically grounded, and therefore more data inten-

sive, is to represent initial forest conditions using a

combination of empirical forest inventory data and

geographically explicit forest planning maps. With

this procedure information on the spatial distribution

of forest types, or individual stands, can be comple-

mented by tree species- and size class-specific stem

numbers from forest inventory plots. While the use of

spatially explicit empirical forest data has the potential

to improve the realism of forest simulations, initial-

izing dynamic models with this type of data may

introduce separate challenges.

First, model assumptions regarding variables such

as species composition, maximum tree biomass or stem

numbers may be inconsistent with empirically derived

initialization data. As a result, unrealistic abrupt shifts

in response variables may result at the beginning of the

simulation. In contrast, model assumptions will by

definition conform to simulated initialization data that

are derived from the same process model.

Second, empirical initialization data will always

include measurement and sampling errors, which will

contribute to uncertainty. In addition, extrapolating a

comprehensive set of tree-level variables from limited

empirical data will often have to be based on weakly

substantiated assumptions. These uncertainties add to

the parameterization and process uncertainties inher-

ent to forest landscape models, with potentially large

implications for the simulation results (Elkin et al.

2012). For example, uncertainty regarding the spatial

distribution of tree species can influence projections of

local abundance of target species, which can be very

important when evaluating harvest and conservation

goals (Fahrig 2003; Liang et al. 2011). Similarly,

uncertainties regarding the initial size distribution of

trees will influence simulated stand development and

regeneration dynamics, which in turn will determine

how forest stands respond to climate change (Buma

and Wessman 2012). Therefore, care must be taken to

ensure that uncertainty in the empirical data does not

introduce a large bias in the simulation results.

The importance of these challenges will likely

depend on the spatial and temporal scales at which

forest property and EGS indicators are analyzed.

While they may be decisive if analyses target small

spatial scales and short timeframes, they may be

negligible if results are analyzed at the landscape scale

only (Xu et al. 2004). In addition, the influence of

external drivers such as climate change may diminish

the importance of these challenges, because it has the

potential to cause large shifts in forest development

trajectories that are independent of the initialized state

(Temperli et al. 2012). However, it is unclear to what

degree and over what timeframe climate change may

dampen these initialization uncertainties.

Addressing these challenges is important to deter-

mine the robustness of forest projections, specifically

when such projections are used to evaluate the

resistance or resilience of forests in response to

climate change and management decisions (Cordon-

nier et al. 2008; Kennedy and Wimberly 2009).

Previous studies have assessed the sensitivity of forest

model projections to uncertainty from scaling up plot

data to the landscape scale (Miehle et al. 2006; Liang

et al. 2011), from downscaling forest inventory data

set (Xu et al. 2004; 2005) and from the formulation of

tree-level processes (Deutschman et al. 1999; Elkin

et al. 2012). These studies have generally found that

the importance of such uncertainties is largest when

the process-resolution of the model is small, and the

spatial and ecological scale of projections is fine

grained. However, we are unaware of any study that
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explicitly assessed the consequences of uncertainty in

the initialization data for projections of EGS indica-

tors, although this has been identified as a major

limitation for forest landscape model applications

(Shifley et al. 2008).

Here, we address this deficiency by assessing the

effect of model initialization on forest projections by

initializing a forest landscape simulation model

(LandClim) with three representations of the current

forest: fine- and coarse-grain empirical data, and

simulated data. Starting from these three initialization

states we projected forest development under current

climate and a climate change scenario. We assessed

the effect of the different initialization approaches on a

range of EGS indicators, of which we analyzed the

development through time and at three spatial scales

(stand, management area and landscape). By doing so,

we were able to quantify the sensitivity of the EGS

indicators to the initialization data and climate change.

Specifically, we addressed the following questions:

How sensitive are projections of forest EGS indicators

to model initialization? Does model sensitivity change

depending on the ecosystem characteristic considered,

the scale at which forest responses are analyzed, and

the time horizon of the projections? Does climate

change dampen model initialization uncertainty? How

do interactions between climate change and forest

initialization state develop through time and influence

projections of EGS indicators?

Methods

Study landscape

We simulated a 2 9 10 km landscape at the western

edge of the Northern Black Forest, Germany (48�400N,

8�130 E). Elevation ranges from 250 to 1,050 m above

sea level (a.s.l.) and climate is oceanic (Fig. 1;

Table 1). At low elevations (\500 m a.s.l.), soil water

holding capacity (Henne et al. 2011) is higher

([15 cm) than at higher elevations ([500 m a.s.l.;

6–15 cm; data provided by Forstliche Versuchsanstalt

Baden-Württemberg). The potential natural vegetation

would be a mixed European beech (Fagus silvatica L.)

forest, with oaks (Quercus spp.) increasing in propor-

tion towards lower elevations and silver fir (Abies alba

Mill.) and Norway spruce (Picea abies (L.) Karst)

Fig. 1 Map of study area. Stand map and elevation (a); spatial

allocation of uneven-aged mixed forest management regimes

that favor varying dominant species (b); spatial distribution of

dominant species (c) and biomass (d) represented by three

initialization data sets (fine empirical, coarse empirical and

simulated)
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towards higher elevations (Müller et al. 1992). How-

ever, historic forest management that promoted Nor-

way spruce has resulted in mixed Norway spruce/silver

fir forests at lower elevations, with intermixed Euro-

pean beech and Douglas-fir (Pseudotsuga menziesii

(Mirbel) Franco var. menziesii) mostly on dry sites. At

higher elevations forests are a mosaic of mostly

Norway spruce dominated stands of different age

classes (map of forest stands provided by Forstliche

Versuchsanstalt FVA Baden-Württemberg, Fig. 1a).

LandClim model

In LandClim forest landscape dynamics are modeled

stochastically as a function of climate and soil

properties on a grid of 25 9 25 m cells. Within each

cell a simplified forest gap model (Bugmann 2001) is

used to simulate regeneration, growth and mortality of

tree cohorts of the same species and size. Disturbance

sub-models representing fire, wind, bark beetles and

forest management are implemented at the landscape

scale (Schumacher et al. 2004, 2006; Temperli et al.

2012). Simulated forests and forest processes have

been proven to be consistent with empirical data in

various applications (Schumacher et al. 2006; Colom-

baroli et al. 2010; Henne et al. 2011; Elkin et al. 2012;

Temperli et al. 2012).

Initialization data

We used three different data sets to initialize LandClim

(Fig. 1c, d, Table S1 in the supplementary material).

The first is a simulated data set as is commonly used in

forest landscape simulation applications (Schumacher

et al. 2006; Steenberg et al. 2011; Sturtevant et al.

2012). We generated this data set by simulating the

past management regimes (even-aged Norway spruce

management at higher elevations and uneven-aged

mixed forest management at lower elevations) under

current climate into a pseudo-equilibrium (Temperli

et al. 2012). While this approach approximates current

species composition and stand structure reasonably

well, the spatial distribution of the development stages

(e.g., young, medium and mature stands) represents a

single stochastic realization of the landscape at a

single point in time, and therefore does not exactly

correspond with the spatial pattern of the dbh distri-

butions of the real forests.

Second, we initialized LandClim using coarse-

grain empirical forest data from the second German

National Forest Inventory (NFI; BMELV 2006) that

were sampled in Baden-Württemberg on a 2 9 2 km

grid between 2001 and 2002. Sample trees were

determined using the angle-count method. We used

the dbh class- and species-specific stem number

estimates from the sampling points located in the

district of Rastatt (740 km2), in which our case study is

located. These data were aggregated to represent 18

stand development types that are defined by current

species composition, site properties and stand age. For

each stand development type specific treatments and

harvest thresholds are recommended by the state’s

forestry administration (MLR 1999). The forest man-

agement plan of our study landscape featured the same

stand classification, such that stem number estimates

for each stand could be allocated to specific stand

development types, tree species and 4 cm diameter

classes.

The third initialization data set was based on the

fine-grained forest enterprise inventory (Betriebsin-

ventur, BI, cf. Nothdurft et al. 2012) of Baden-

Württemberg that was conducted over the last

15 years by private and municipal forest enterprises

on 200 9 200 m or finer grids. The BI used the same

sampling protocol as the NFI with the exception that

Table 1 Current climate and a regional circulation model realization for the IPPC AR4 A1B emission scenario at 828 m a.s.l. in the

Black Forest study landscape

Temperature (�C) Precipitation (mm)

Climate scenario Annual Summer

(Apr–Sept)

Winter

(Oct–Mar)

Annual Summer

(Apr–Sept)

Winter

(Oct–Mar)

Current climate (1950–2000) 7.1 12.4 1.8 1,086 573 513

HCCPR (2081–2100) 11.7 17.3 6.1 1,042 473 569

The climate change scenario data are based on the HadRM3Q0/HadCM3Q0 model (Collins et al. 2006) by the Hadley Center for

Climate Prediction and Research (HCCPR)
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plot size was fixed. Even though the resolution of the

BI was high, it was not sufficient to derive species-

specific diameter distributions for individual stands

(which ranged in size from\0.1 to 41 ha) directly by

resampling from the plots located in our study

landscape. We therefore used the BI plots available

in whole Baden-Württemberg which included spa-

tially explicit information on forest state regarding

total volume, stand age, presence of understory and

tree species’ shares. As these descriptors of forest state

were available for both the BI plots and each

individual stand in our case study landscape we were

able to estimate species-specific diameter distributions

for each stand using the following procedure: First, we

fitted left-truncated Weibull functions to the diameter

distribution of each plot, thus yielding plot-specific

shape and scale estimates. We then stratified the plots

to stand development types, for each of which we built

regression models that explained the Weibull param-

eters using the forest state descriptors described above.

Using these statistical models we predicted stand- and

species-specific diameter frequencies. This procedure

allowed us to obtain species-specific diameter distri-

butions that reflected stand-specific forest properties

yielding the best available spatially explicit single

stand estimates of the current forest states in this

region.

Based on the stand-, species- and diameter class-

specific stem number estimates from both the coarse

and fine empirical data set we populated individual

LandClim cells with tree cohorts, as follows. First, we

obtained the stand-specific biomass stock by aggre-

gating diameter and species frequencies after convert-

ing the midpoints of the 4 cm dbh classes to biomass

using LandClim’s allometric functions (Schumacher

et al. 2004). Second, we sampled with replacement

from the stand-specific species and diameter distribu-

tions until the biomass sum of the drawn trees reached

the stand-specific biomass stock. This sampling pro-

cedure was replicated resulting in 15 independent

stochastic realizations of landscape-scale initialization

data sets that are based on the same diameter

distributions at the stand level but differ in terms of

the cell-specific allocation of trees.

Climate data

Monthly temperature and precipitation data were

available from meteorological stations (1950–2000)

and were used to simulate current climatic conditions.

Future climate scenarios were based on Regional

Climate Model data using the IPCC AR4 A1B

emission scenario (2001–2100). The A1B realization

results in an end-of-century increase of 4.6 �C

(Table 1), and represents an intermediate to strong

climate change scenario (IPCC 2007). Climate data

were interpolated to a 1 ha-grained elevation model

(SRTM-3) using the procedures described in Thornton

et al. (1997) by the Research Unit Landscape

Dynamics of the Swiss Federal Institute for Forest,

Snow and Landscape Research (WSL). We extended

the climate time series to the year 2500 by assuming

climate to stabilize after 2100 and by resampling the

years 2080–2100, a commonly used approximation

(Xu et al. 2009; Temperli et al. 2012) that serves to

evaluate the relaxation time of the model, not to make

predictions about future landscape states.

Forest management and simulation experiments

We simulated forest management as recommended by

the local forestry administration (MLR 1999). Man-

agement regimes were spatially allocated according

the mapped stand development types (Fig. 1b, MLR

1999, FVA). The study area included four manage-

ment areas, where conversion management regimes

are based on uneven-aged forestry that aim to develop

climate change- and disturbance-resilient forest struc-

ture while promoting timber production and biodiver-

sity objectives. These four management regimes differ

in the dominant species they promote: mixed beech-

conifer, Norway spruce, silver fir and Douglas-fir,

respectively. A fifth extensive management regime

aims at promoting natural forest succession and

is applied for stands originating from coppice

management, usually on sites with poor soils (see

supplemental Table S2 for details on the LandClim

implementation of these management regimes).

Fifteen replicates of each of the three initialization

and two climate scenario combinations were simu-

lated. Each replicate was started using an individual

stochastic realization of the initialization data.

Indices of ecosystem goods and services

Based on LandClim outputs we calculated indicators

representing forest state and the capacity of forests to

provide ecosystem goods services at three spatial
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scales: stand, management area and the entire land-

scape. We assessed the development of forest state by

considering species-specific biomass.

Tree species diversity was assessed using Shannon

entropy (H, Eq. 1) at the stand, management area and

landscape scale.

H ¼ �
Xs

i¼1
pi � ln pið Þ ð1Þ

where S is the number of species and pi is the stem

number proportion per tree species. Species diversity

measured by Shannon entropy has been used numerous

times to assess the ecological value of forests (Lasch

et al. 2002; Seidl et al. 2007); it accounts for the number

of species and their relative abundance, both key

factors determining resilience (Elmqvist et al. 2003).

Second, we calculated beta diversity as a measure

for the spatial heterogeneity of the study landscape.

Heterogeneous landscapes support high numbers of

habitats and thus more species (Brin et al. 2009; Paillet

et al. 2010; Hernández-Stefanoni et al. 2011). Fol-

lowing Jost (2007) we calculated beta diversity (Hb) as

the difference between gamma diversity (Hc), i.e.

Shannon diversity of the whole landscape, and alpha

diversity (Ha), i.e. mean Shannon diversity across the

individual cells (Eq. 2).

Hb ¼ Hc � Ha ð2Þ

Third, we measured the diversity of tree diameters

as an index of stand structural diversity using Shannon

entropy (Eq. 1) with S representing the number of

4 cm bins of tree diameters at breast height (dbh) and

pi the proportion of stems per dbh bin. This index

accounts for the importance of stand structural diver-

sity in the habitat requirements of a wide range of

keystone species (McElhinny et al. 2005).

For timber production, we used the summarized

harvested and thinned biomass, which includes leaves

and branches.

Impact of the initialization data at different spatial

scales

We assessed the sensitivity of the development of

forest and EGS indicators by calculating differences

between the three differently initialized simulations.

To quantify the difference between species composi-

tions we used Euclidian distance as a distance

measure. Hence, the Euclidian distance between two

species compositions is the root of the sum of the

squared differences between the biomass estimates of

individual tree species. We calculated differences at

10-year time steps. To evaluate whether the impact of

the initialization data set is scale- and/or climate-

dependent we conducted this analysis at the stand,

management area and landscape scale by calculating

mean differences at the respective scale for simula-

tions under current climate and under climate change.

Relative importance of initialization data

and climate change

To evaluate the relative importance of the initializa-

tion data versus climate change we quantified the

effect of initialization and climate change on EGS

indicators. We used the percent difference (h) between

the mean of 15 replicate EGS responses of reference

simulations (lR: simulations under current climate and

initialized with fine or coarse empirical data) and the

mean EGS response for each of the six simulation

treatments (lT: three initialization data sets by two

climate scenarios) as our effect measure. This analysis

considered EGS measurements at the landscape scale.

To evaluate the temporal development of the initial-

ization and climate change effect we calculated h for

each simulated decade i (Eq. 3).

hi ¼
lT;i � lR;i

lR;i

� 100 ð3Þ

where lR,i is the value from the reference simulation

and lTi is the value from corresponding simulation

treatment during time period i.

Results

Development of species-specific biomass

No abrupt changes in biomass between initialization

and the first simulation decade were observed with any

of the three initialization data sets (Fig. 2). In all

simulations species biomass, predominantly Norway

spruce, increased and peaked after the first two to five

decades. At this time the number of trees that reached

the recommended harvesting thresholds (MLR 1999)

was large enough that harvesting prevented a further

biomass increase.
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Irrespective of the initialization data forest biomass

and species composition converged to the same

climate- and management-driven equilibrium in the

long term ([300 years). Thereby the decrease in

Norway spruce biomass and the increase of the

biomass and diversity of deciduous tree species under

current climate reflects the discrepancy between the

current species composition and the implemented

management targets (MLR 1999). The species com-

position simulated in the long term differs strongly

between climate scenarios, with more drought-

adapted tree species (mainly Douglas-fir) dominating

under climate change.

On a shorter time scale (\300 years) species

composition fluctuated due to interactions between

initialized stand structure and species composition on

the one hand and the implemented management

regimes on the other hand. Predominantly the biomass

development of Norway spruce was affected by these

interactions. Under current climate, and initialized

with fine empirical data, simulated Norway spruce

biomass increased until 2030 and then decreased

drastically until 2100. At 2100 Norway spruce

biomass increased again and settled at an equilibrium

of ca. 50 t/ha after 2200. Initialization with the coarse

empirical data resulted in less pronounced fluctuations

that were driven primarily by changes in silver fir. In

simulations initialized with simulated data, Norway

spruce biomass increased until reaching harvestable

sizes in ca. 2050 and then decreased steadily to

equilibrium, which was reached at about 2300.

Irrespective of the different initialization states

climate change had a large impact on projected species

composition. Norway spruce started to die back

Fig. 2 Development of

species biomass in

simulations initialized with

fine empirical, coarse

empirical and simulated data

(in rows), under current

climate and climate change

(in columns)
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towards to end of the 21st century, while Douglas-fir

and other more drought-adapted species such as silver

fir became increasingly dominant. In contrast to

initialization with empirical data, when experiments

were initialized with simulation data the consequence

was a large amount of Norway spruce biomass

persisting for another ca. 100 years after the initial

dieback between ca. 2060 and 2100.

Ecosystem goods and services

Differences in forest development due to initialization

resulted in different dynamics in EGS indicators. All

pairwise comparisons exhibited large differences in

EGS indicator response for ca. 30–100 years, after

which EGS indicators slowly converged. After

300 years differences in EGS indicators due to

initialization were very small (Fig. 3). The sensitivity

of EGS indicators to initialization differences was

generally larger when assessed at a smaller spatial

grain. Differences were larger between simulations

initialized with empirical and simulated data than

between simulations initialized with the two empirical

data sets, with the largest differences occurring

between simulations initialized with the fine empirical

and the simulated data. Total forest biomass and stand

structural diversity were relatively robust to initiali-

zation and climate scenarios. Species diversity and

beta diversity were intermediately sensitive to initial-

ization and relatively robust towards climate change,

while Norway spruce biomass was highly sensitive to

both initialization and climate change. Timber pro-

duction was intermediately sensitive to both initiali-

zation and climate. Comparisons between climate

change scenarios (Fig. 3 vs. 4) revealed that under

climate change the initialization differences were

smaller in amplitude and decreased sooner than under

current climate.

Relative importance of initialization and climate

change

The effect of the initialization data on all EGS indices

decreased over time, as measured by the relative

differences between differently initialized simula-

tions; and by ca. 300 years the differences were

eliminated. Relative to simulations under current

climate, EGS indicators under climate change

generally decreased with time (Fig. 5). This suggests

that the lagged effects of initialization are important

for a substantial amount of time, i.e. during the first ca.

150 years of projections of EGS indicators, whereas

climate change becomes more influential in long-term

([150 years) projections of EGS indicators. The size

of both the initialization and the climate change effect

varied greatly between EGS indicators.

Norway spruce biomass was most sensitive to

initialization and climate change. The initialization

effect peaked in 2090 (177 % more Norway spruce

biomass) in the fine empirical and the simulated

initialization comparison. The initialization effects on

total biomass and Norway spruce biomass were

similar, with the differences in Norway spruce biomass

primarily driving the differences in total biomass.

The comparison of empirically initialized simula-

tions with those initialized by simulated data revealed

that species diversity and beta diversity are strongly

([-76 and [-88 %, respectively) affected by the

initialization method during the first 150 years of the

simulation.

The initialization method and climate change have

a relatively low impact on stand structural diversity.

The comparatively small effect of initialization during

the first 70 years ([-34 %) reflect differences in

when harvests were conducted: following simulated

harvests of large Norway spruce trees (also reflected

by a sharp drop in spruce biomass, Fig. 2), tree size

diversity was abruptly lower at the landscape scale.

The fluctuating initialization and climate change

effects on timber provision result from differences in

harvest timings between simulation runs.

Discussion

Sensitivity of forest properties

The empirically initialized simulations did not exhibit

strong fluctuations of species-specific biomass during

the first simulated decades, indicating that the initial-

ization data were compatible with the intrinsic

processes and assumptions that the model is based

upon. Forest inventory data and vegetation maps are

frequently used to initialize coarse-grained landscape

models that depict forest attributes as presence/

absence of vegetation types or species-age cohorts
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Fig. 3 Differences in ecosystem goods service indicators under

current climate (in rows: species composition [Euclidian

distance], Norway spruce biomass, species diversity, beta-

diversity, stand structural diversity, and timber production)

between simulations initialized with different initialization data

sets (in columns): fine empirical versus coarse empirical, fine

empirical versus simulated and coarse empirical versus simu-

lated data assessed at the stand, the management area and the

landscape scale
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(He and Mladenoff 1999; Chew et al. 2004). Our work

demonstrates that using fine-grained empirical initial-

ization data offers the potential for landscape models

such as LandClim (Schumacher et al. 2004) to produce

more realistic simulations that explicitly track species-

specific tree size and density distributions.

The type of data that the model was initialized with

affected simulated dynamics in forest properties and

EGS indicators as a result of cascading interactions

between the initialized forest state and the manage-

ment regimes. The different spatial resolutions of the

coarse and fine forest inventory data, and the different

Fig. 4 Differences in ecosystem goods service indicators under climate change. See Fig. 3 caption for details
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approaches used to derive the initial species and tree

size distributions, resulted in differences in tree size

and species composition patterns among the

initialization data sets (supplemental Table S1). This

led to differences in harvest timing, which was based

on dbh thresholds, which ultimately resulted in

Fig. 5 Effect of initialization data and the effect of climate

change on forest state and ecosystem goods and service indices

(in rows; total biomass, Norway spruce biomass, species

diversity, beta diversity, stand structural diversity and timber

production). Effects were calculated each decade as the

percentage difference between a reference simulation and two

alternatives that included current climate but different initial-

ization data set versus climate change and the same initialization

data. In columns the effects for all three combinations of

initialization data sets are shown
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differences in simulated forest development. These

differences were most apparent in projections of forest

property and EGS indicators over the short-

(\30 years) to intermediate-term (\100 years), which

are the timeframes most relevant to management

decisions and policy making.

Norway spruce is the most abundant and heavily

managed species in the case study, such that differ-

ences in the initialized age structure of this species had

a large impact on projected forest dynamics. With the

fine empirical data many old and even-aged Norway

spruce stands were initially represented on the land-

scape (14 % of spruce trees [40 cm dbh), which

resulted in a large number of Norway spruce being

projected to reach the harvesting threshold ([60 cm

dbh) between 2040 and 2100. In contrast, when using

the coarse empirical and the simulated initialization

data set, the distribution of young and old stands was

much more even (4 and 3 % of spruce trees [40 cm

dbh, respectively, see supplemental Table S1). As a

result, spruce trees reached the harvesting threshold

over a longer time period and spruce harvest was more

continuous.

Sensitivity of ecosystem goods and services

Projections of EGS indicators from the three initial-

ization states diverged most in the medium term

(2030–2100) and converged to management- and

climate-driven equilibria in the long term. Note that

these equilibria reflect the future forest state as a

function of the implemented management and climate

scenarios and that a formal validation of such future

states is not possible. However, comparisons of

LandClim simulation results and paleoecological

records have shown that LandClim well approximates

forest states under various climatic conditions (Co-

lombaroli et al. 2010; Henne et al. 2011). The

differences in the sensitivity to initialization and

climate change between EGS indicators reflected the

degree to which EGS indicators take into account the

composition and spatial distribution of individual

species, such as Norway spruce, hence the low

sensitivity of total forest biomass and stand structural

diversity versus the high sensitivity of species and beta

diversity.

Simulated initialization data contained relatively

low inter- and intra-cell heterogeneity, which resulted

in low estimates of species diversity and beta diversity

compared to both empirical data sets (supplemental

Table S1). The homogeneity of the simulated initial-

ization data reflects the simplistic spatial allocation of

historic management regimes used to approximate the

current forest state (Temperli et al. 2012). Simulating

more nuanced historical management at a finer spatial

grain would have produced more heterogeneous forest

properties. However, comparable to the paucity of

fine-grained initialization data, fine-grained forest

maps and associated management records are often

difficult or impossible to obtain.

Species diversity and stand heterogeneity may have

been overestimated in the empirical data sets as a

result of the pooling of inventory data to derive the

stand development type- (coarse empirical data) and

stand-specific (fine empirical data) distributions of

species and diameter classes. This sensitivity of

species diversity has considerable implications, e.g.

for the application of landscape models to project

wildlife habitats and forest resilience (e.g., Kennedy

and Wimberly 2009). As species diversity and heter-

ogeneity are key components of these EGS, great care

is required in representing current forest states accu-

rately across spatial scales (Papaik et al. 2010).

Relative importance of climate change

Climate change may force a forest towards a new

equilibrium state (Bugmann 1997; Kirilenko and

Sedjo 2007; Hanewinkel et al. 2010; Ravenscroft

et al. 2010), such that the uncertainty due to initial-

ization may be partially masked. In our case study

region, the difference between current and future

forest state under climate change was much greater

than the divergence between the three initialization

types (Fig. 2). However, the importance of climate

change in our case study is contingent on the high

initial abundance of drought-sensitive Norway spruce

(Schlyter et al. 2006; Hanewinkel et al. 2010), the

dieback of which caused a relatively fast convergence

to the climate-driven equilibrium. The relative impor-

tance of climate change would likely have been

smaller if the initial forest state had been more

drought-resistant (Fischer et al. 2006).

Importance of spatial and temporal scale

Our finding that uncertainty in the spatial distribution

of forest properties has a larger impact on EGS
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projections at smaller spatial scales is in agreement

with earlier research by Xu et al. (2004, 2005) who

quantified cell- and landscape-scale uncertainty that

results from populating cells from a given forest

inventory data set.

Our longer-term projections were robust to initial-

ization, while those shorter than ca. 150 years were

sensitive. This shorter time horizon covers the rotation

lengths for most tree species, and this is the time scale

that is most relevant for the planning of adaptive forest

management (Briner et al. 2012; Temperli et al. 2012;

Yousefpour et al. 2012). We expect simulations that

include intensive management to promote a specific

species composition, such as conversion to more

drought-adapted species, to be less sensitive to

initialization than simulations of (near-) natural forest

dynamics.

Generating robust projections of forest properties

and EGS

Forward-looking forest simulations are conducted for

a variety of reasons, including evaluating the impact of

climate change on forest dynamics (Lasch et al. 2002;

Schumacher et al. 2006; Xu et al. 2009), testing

alternative management options (Bolte et al. 2009;

Temperli et al. 2012), and evaluating the risk of large-

scale disturbances (Uriarte et al. 2009; Seidl et al.

2011). The objective of a study, and the spatial and

temporal grain at which the output needs to be

evaluated, will strongly influence the type of initial-

ization data that are suitable.

Obtaining fine-grained spatially explicit forest data

is costly, but allows for the most accurate initialization

with respect to the spatial distribution of species

composition and stand structure. If available, such

data sets should be employed for projections of EGS

indicators that take into account fine-scale heteroge-

neity in species and tree size distributions, particularly

for case studies that are structured at fine spatial scales

due to past management activities or environmental

heterogeneity. Coarse forest data from National Forest

Inventories or vegetation maps have the advantages of

being widely available and publicly accessible. How-

ever, forest inventory data are usually collected on

coarse ([1 km) grids and vegetation maps do not

contain information on stand structure, such that these

data need to be further downscaled for many applica-

tions of dynamic landscape models. This downscaling

introduces uncertainty with respect to fine-scale forest

heterogeneity (Keane et al. 1999; Syphard et al. 2007;

Shifley et al. 2008). Such data may be appropriate for

the initialization of relatively homogeneous forest

landscapes, given that their characteristics can be

sufficiently captured.

Initialization with simulated data is the least data-

and labor-intensive alternative, and in the absence of

spatially explicit empirical data the only choice.

However, to approximate the initial forest, first the

external drivers of past forest dynamics (climate,

management and disturbance regimes) must be

known, and second written or mapped descriptions

of current forests need to be available to verify

simulated current forest states. While this approach is

convenient to approximate unmanaged forests with

model-derived potential natural vegetation (Waldron

et al. 2007), the reconstruction of highly structured

forest landscapes is afflicted with large uncertainties,

because past disturbances and management activities,

and their spatial distribution, are rarely documented

adequately (Sturtevant et al. 2012; Temperli et al.

2012).

Conclusions

While the impact of uncertainty in model parameter-

ization, landscape constraints, climate input and future

forest management on forest landscape projections has

been quantified previously (Cary et al. 2006; Schum-

acher and Bugmann 2006; Xu et al. 2009; Elkin et al.

2012; Temperli et al. 2012), this is the first study that

focuses on how initialization uncertainty influences

projections of a range of forest and EGS indicators

under climate change and across spatial and temporal

scales. Our results demonstrate that long-term, land-

scape scale projections of forest EGS indicators by

process-based landscape models are rather robust to

uncertainty in initialization data, particularly if strong

climate and/or management drivers are simulated over

the long term. In contrast, shorter-term (\150 years)

projections are sensitive to initialization uncertainty,

with sensitivity increasing when EGS are assessed at

smaller spatial scales and take into account the

composition and spatial distribution of tree species.

In the presence of such initialization uncertainties,

the assumptions and procedures to represent an initial

forest state need to be transparent such that projections
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of EGS indicators can be conceived in relation to the

initialized forest state, independent of its congruence

with real forest properties. In general, outputs of

process-based forest landscape models should not be

interpreted for specific locations; they are not and

cannot be forecasts of the fate of individual trees.

Instead, process-based forest landscape models are

most useful when they are used to reveal the mech-

anisms behind landscape-scale forest and EGS dynam-

ics in response to initial forest states, spatial and

temporal variation in environmental drivers, forest

management and disturbances.

However, initialization data that sufficiently reflect

the diversity and complexity of forest landscape

conditions will be crucial for applications of process-

based landscape models in case studies that are

structured at small spatial scales. This is even more

important when interactions between forest dynamics,

disturbances and management activities are evaluated

with respect to fine-scale EGS provision within the

100-year time frame for which climate change data are

available. Thus, initialization uncertainty needs to be

minimized to the point where accuracy in the initial-

ization data can be warranted at the scale of analysis.

Acknowledgments We thank Dirk Schmatz (WSL) for

providing downscaled climate scenario data. C. T. and J. Z.

were funded by MOTIVE, a project within the European

commission’s 7th framework program (Grant agreement no.

226544).

References

BMELV (2006) Survey instructions for the 2nd National Forest

Inventory. 2nd corrected translation, February 2006, of the

2nd corrected and revised reprint, May 2001. Available

from the Federal Ministry of Food, Agriculture 550 and

Consumer Protection, Berlin

Bolte A, Ammer C, Lof M, Madsen P, Nabuurs GJ, Schall P,

Spathelf P, Rock J (2009) Adaptive forest management in

central Europe: climate change impacts, strategies and

integrative concept. Scand J For Res 24:473–482

Brin A, Brustel H, Jactel H (2009) Species variables or envi-

ronmental variables as indicators of forest biodiversity: a

case study using saproxylic beetles in Maritime pine

plantations. Ann For Sci 66:306–306

Briner S, Elkin C, Huber R, Grêt-Regamey A (2012) Assessing

the impacts of economic and climate changes on land-use

in mountain regions: a spatial dynamic modeling approach.

Agric Ecosyst Environ 149:50–63

Bugmann H (1997) Sensitivity of forests in the European Alps to

future climatic change. Clim Res 8:35–44

Bugmann H (2001) A review of forest gap models. Clim Change

51:259–305

Buma B, Wessman CA (2012) Differential species responses to

compounded perturbations and implications for landscape

heterogeneity and resilience. For Ecol Manag 266:25–33

Cary G, Keane R, Gardner R, Lavorel S, Flannigan MD, Davies

ID, Li C, Lenihan JM, Rupp TS, Mouillot F (2006) Com-

parison of the sensitivity of landscape-fire-succession

models to variation in terrain, fuel pattern, climate and

weather. Landsc Ecol 21:121–137

Chew JD, Stalling C, Moeller K (2004) Integrating knowledge

for simulating vegetation change at landscape scales. West

J Appl Forestry 19:102–108

Collins M, Booth BBB, Harris GR, Murphy JM, Sexton DMH,

Webb MJ (2006) Towards quantifying uncertainty in

transient climate change. Clim Dyn 27:127–147

Colombaroli D, Henne PD, Kaltenrieder P, Gobet E, Tinner W

(2010) Species responses to fire, climate and human impact

at tree line in the Alps as evidenced by palaeo-environ-

mental records and a dynamic simulation model. J Ecol

98:1346–1357

Cordonnier T, Courbaud B, Berger F, Franc A (2008) Perma-

nence of resilience and protection efficiency in mountain

Norway spruce forest stands: a simulation study. For Ecol

Manag 256:347–354

Deutschman DH, Levin SA, Pacala SW (1999) Error propaga-

tion in a forest succession model: the role of fine-scale

heterogeneity in light. Ecology 80:1927–1943

Elkin C, Reineking B, Bigler C, Bugmann H (2012) Do small-

grain processes matter for landscape scale questions?

Sensitivity of a forest landscape model to the formulation

of tree growth rate. Landsc Ecol 27:697–711

Elmqvist T, Folke C, Nyström M, Peterson G, Bengtsson J,

Walker B, Norberg J (2003) Response diversity, ecosystem

change, and resilience. Front Ecol Environ 1:488–494

Fahrig L (2003) Effects of habitat fragmentation on biodiversity.

Annu Rev Ecol Evol Syst 34:487–515

Fischer J, Lindenmayer DB, Manning AD (2006) Biodiversity,

ecosystem function, and resilience: ten guiding principles

for commodity production landscapes. Front Ecol Environ

4:80–86

Hanewinkel M, Hummel S, Cullmann DA (2010) Modelling and

economic evaluation of forest biome shifts under climate

change in Southwest Germany. For Ecol Manage

259:710–719

He HS, Mladenoff DJ (1999) Spatially explicit and stochastic

simulation of forest-landscape fire disturbance and suc-

cession. Ecology 80:81–99

Heinimann HR (2010) A concept in adaptive ecosystem man-

agement—an engineering perspective. For Ecol Manag

259:848–856

Henne PD, Elkin CM, Reineking B, Bugmann H, Tinner T

(2011) Did soil development limit spruce (Picea abies)

expansion in the Central Alps during the Holocene? Test-

ing a palaeobotanical hypothesis with a dynamic landscape

model. J Biogeogr 38:933–949

Hernández-Stefanoni J, Dupuy J, Tun-Dzul F, May-Pat F (2011)

Influence of landscape structure and stand age on species

density and biomass of a tropical dry forest across spatial

scales. Landsc Ecol 26:355–370

1350 Landscape Ecol (2013) 28:1337–1352

123



IPCC (2007) Contribution of working group II to the fourth

assessment report of the intergovernmental panel on cli-

mate change. Climate change 2007: impacts, adaptation

and vulnerability. Cambridge University Press, Cambridge

Jost L (2007) Partitioning diversity into independent alpha and

beta components. Ecology 88:2427–2439

Keane RE, Morgan P, White JD (1999) Temporal patterns of

ecosystem processes on simulated landscapes in Glacier

National Park, Montana, USA. Landsc Ecol 14:311–329

Kennedy RSH, Wimberly MC (2009) Historical fire and vege-

tation dynamics in dry forests of the interior Pacific

Northwest, USA, and relationships to Northern Spotted

Owl (Strix occidentalis caurina) habitat conservation. For

Ecol Manage 258:554–566

Kirilenko AP, Sedjo RA (2007) Climate change impacts on

forestry. PNAS 104:19697–19702

Lasch P, Lindner M, Erhard M, Suckow F, Wenzel A (2002)

Regional impact assessment on forest structure and func-

tions under climate change—the Brandenburg case study.

For Ecol Manag 162:73–86

Liang Y, He H, Bu R, Hu YM, Shao GF (2011) Are plot data

effective for landscape prediction? A simulation study of

tree species response to climate warming under varying

environmental heterogeneity. Ann For Sci 68:899–909

McElhinny C, Gibbons P, Brack C, Bauhus J (2005) Forest and

woodland stand structural complexity: its definition and

measurement. For Ecol Manag 218:1–24

Miehle P, Livesley SJ, Li C, Arndt SK (2006) Quantifying

uncertainty from large-scale model predictions of forest

carbon dynamics. Glob Change Biol 12:1421–1434

MLR (1999) Richtlinie Landesweiter Waldentwicklungstypen.
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Seidl R, Rammer W, Jäger D, Currie WS, Lexer MJ (2007)

Assessing trade-offs between carbon sequestration and

timber production within a framework of multi-purpose

forestry in Austria. For Ecol Manag 248:64–79

Seidl R, Fernandes PM, Fonseca TF, Gillet F, Jönsson AM,
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