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Abstract Rounded Dovetail Connections (RDC) are a rel-
atively new wood-to-wood connection concept that, despite
the lack of design guidance in standards, has become pop-
ular in timber construction due to the widespread of mod-
ern milling machinery. Because of the anisotropic nature of
wood and the complex stress-strain state in RDC, the ques-
tion of their dimensioning is very complex. Experimental
and numerical investigations were carried out on full scale
RDC used to connect two timber members as joist to beam
connections subjected to quasi-static shear loading. The in-
fluence of two geometric parameters was investigated: the
dovetail height (varied between 109 and 189 mm) and the
flange angle (varied between 5 and 20°). Both, serviceability
and ultimate limit states were studied using analysis of vari-
ance. It was found that the joint capacity (i) depends on the
dovetail height, with an optimum of approximately 2/3 of
the beam height and (ii) can be considered almost indepen-
dent of the flange angle. The development and implemen-
tation of a numerical model for the design process of RDC
was examined and good agreement between experimental
and numerical load deformation curves validated the model,
thus making it suitable for developing a method to predict
RDC capacity. The paper proposes a probabilistic method
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to predict the capacity of RDC taking into account the scale
sensitivity of the material strength, which is modelled using
Weibull statistics, and considers not only the magnitude of
the stress fields, but also the volume over which these stress
peaks act. The proposed method has immediate actionable
application for the improvement of RDC design.

Tragverhalten von
Schwalbenschwanz-Zapfenanschlüssen: experimentelle
und numerische Untersuchungen

Zusammenfassung Schwalbenschwanz-Zapfenanschlüsse
(SSZ) sind eine zimmermannsmäßige Methode für die Ver-
bindung von Haupt- und Nebenträgern, die aufgrund der
modernen CNC-Verarbeitungstechnologie im Holzbau po-
pulär geworden ist. Wegen der Anisotropie von Holz und des
komplexen Spannungszustands in SSZ, ist die Frage ihrer
Bemessung sehr kompliziert. Im vorliegenden Beitrag wird
über experimentelle und numerische Untersuchungen zum
Tragverhalten von SSZ unter quasi-statischer Kurzzeitbelas-
tung berichtet. Der Einfluss von zwei geometrischen Para-
metern wurde untersucht: der Schwalbenschwanzzapfenhö-
he (im Bereich zwischen 109 und 189 mm) und des Flansch-
winkels (im Bereich zwischen 5 und 20°). Die Tragfähigkeit
hängt (i) von der Schwalbenschwanzzapfenhöhe ab, mit ei-
nem Optimum von ungefähr 2/3 der Balkenhöhe und (ii) ist
nahezu unabhängig vom Flanschwinkel. Ein numerisches
Modell für die Dimensionierung von SSZ wurde entwi-
ckelt und durch die gute Übereinstimmung zwischen den
experimentellen und numerischen Last-Verformungskurven
validiert. Das Modell bildet die Grundlage für eine neue
Methode zur Abschätzung der Tragfähigkeit von SSZ. Das
vorgeschlagene probabilistische Konzept berücksichtigt den
Größeneffekt in der Materialfestigkeit, modelliert unter Ver-
wendung der Weibull-Verteilung, und betrachtet nicht nur
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die Größe der Spannungen sondern auch das Volumen, in
dem diese auftreten. Die vorgeschlagene Methode hat un-
mittelbare Anwendung für die Verbesserung der Dimensio-
nierung von Schwalbenschwanz-Zapfenanschlüssen.

1 Introduction

Until the middle of the 20th century, carpentry wood-to-
wood connections were commonly used in construction,
with their design and manufacturing aspects based on the
experience of skilled wood workers. The Rounded Dove-
tail Connection (RDC), named after the rounded shape sim-
ilar to a dovetail (Fig. 1) is adapted to be produced with
a CNC-timber processor. RDC are increasingly being used
in timber construction, with the most common application
being the joist to beam connection (Fig. 2 left). A num-
ber of experimental studies on RDC provided valuable in-
sight (Kreuzinger and Spengler 1999; Hochstrate 2000;
Bobacz 2002; Tannert et al. 2007; Tannert and Lam 2007,
2009) revealing that failure under shear loading for joist to
beam connections was typically brittle, and occurred in the
elastic range of the load deformation curve.

The complex load transfer mechanism in an RDC is gov-
erned by its distinct geometry: dovetail height h1, flange an-
gle k, dovetail angle a, dovetail width b1, dovetail depth t ,
member height h, and member width b (Fig. 2 right). Al-
though RDC were shown to be able to undergo large ro-
tations before failing, the brittle nature of joist failure was
independent of loading for similar dovetail geometries (Tan-
nert et al. 2007). The structural performance can potentially

Fig. 1 RDC timber members
Abb. 1 Schwalbenschwanzzapfenanschluss

be improved by considering its geometrical features as de-
sign parameters to reduce concentration of stresses, if de-
tailed knowledge of the stress distribution within the con-
nection is available (Dietsch 2005). The influence of man-
ufacturing parameters including changing moisture content
was investigated by Anastas et al. (2008).

Although RDC represent an efficient method for connect-
ing two wooden members and are widely used in praxis,
no reliable strength prediction method was available and
general acceptance of RDC in the engineering community
was delayed. Werner (2002) provided a simplified design
method: he examined the load-deformation curves for RDC
under shear loading and recommended a deformation limit
of 1.5 mm and a design load Fadm(Joist) based on the allow-
able shear stress fs,adm and the effective dovetail area A1:

Fadm(Joist) = 2

3
· A1 · fS,adm. (1)

Although the approach seems straightforward, it does not
allow estimation of RDC capacity, it ignores the interac-
tion of stresses (Dietsch 2005) and neglects the observed
dependency of strength on stressed volume (Tannert and
Lam 2009). A German general building approval dealing
with RDC (DIBt 2007) gives guidance for the dimension-
ing of RDC produced from glulam and for a series of de-
fined boundary conditions with a method similar to that for
notched joints.

Failure modes of timber connections depend on mem-
ber and connection geometry as well as material type and
its associated failure modes. In tension and shear, tim-
ber essentially exhibits a linear elastic behaviour, and fail-
ure is marked by a brittle fracture. The constitutive be-
haviour of wood under multi-axial stress states has only been
rarely considered (Spengler 1986; Hemmer 1984) and rela-
tively little is known about the associated failure behaviour.
Eberhardsteiner (2002) measured the stress-strain behaviour
of clear spruce wood under multi-axial loading covering
the whole set of distinguishable stress states under plane
stress and observed interactions between tension and shear
strengths; these interactions were later micro-mechanically
explained by Grosse and Rautenstrauch (2004).

For material failure prediction, failure criteria based on
either continuum mechanics or fracture mechanics exist.

Fig. 2 RDC application (left) and geometric parameters (right)
Abb. 2 SSZ Anwendung (links) und geometrische Parameter (rechts)
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The fracture mechanics approach assumes a pre-existent
crack and the conditions for crack growth are usually de-
termined by comparing energy release rates with their crit-
ical values. The continuum mechanics approach considers
the nature and magnitude of stresses or strains, nowadays
usually determined using Finite Element Analysis (FEA)
and formerly by analytical formulae. Various failure crite-
ria for wood have been developed, and various in-depth re-
views were published, recently by Kasal and Leichti (2005).
A commonly applied criterion was proposed by Norris
(1962), see Eq. 2:
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where σX,σY ,σZ and τXY , τYZ, τZX are the normal and
shear stresses, respectively and fX,fY ,fZ,fXY ,fYZ,fZX

are the material strength parameters.
Although there has been significant further work on fail-

ure criteria development, a general and simple unified model
for timber is not yet available. Moreover, the existing crite-
ria do not include size effects in timber under multi-axial
stresses. One issue for the application of any criterion is
the inherent large variability of timber strength parameters,
especially if considering strength data (Kasal and Leichti
2005). This limitation must be addressed before failure cri-
teria can be reliably used to predict strength of timber con-
nections.

Material strength exhibits a size effect when strength de-
creases with increasing specimen size under the same test
conditions. Three main types of size effects may be distin-
guished (Bažant 2005): (i) a statistical size effect, due to
randomness of strength; (ii) an energetic size effect; and
(iii) fractality of fracture or micro-cracks. In materials ex-
hibiting statistical size effect, failure tends to initiate from
flaws, which are randomly distributed within the volume;
smaller specimens have a lower probability of including
such flaws. Size effects are important for the design of real
scale structures when the material properties are defined
from tests performed on small-scale specimens. For brittle
materials, size effects on strength are adequately explained
by probabilistic theories such as the Weibull strength theory
(Bažant 2005).

The Weibull statistical distribution, introduced by Wei-
bull (1939), has been extensively used in the characteriza-
tion of mechanical properties of brittle materials. The cor-
responding probability of survival of a volume subjected to
a non-uniform stress distribution, PS , is being calculated as

follows:

Ps = exp

[
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V
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m

)k
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]
(3)

where, σ is the stress acting over a volume V,m is the char-
acteristic stress or scale parameter, σ0 is the strength thresh-
old and k is the shape parameter that gives a measure of
the strength variability. The parameter m corresponds to the
mean stress acting on a particular volume, and has, assum-
ing the Weibull distribution, a probability of survival Ps =
0.368 (= e−1). The distribution parameters can be estimated
by e.g. the maximum likelihood method, least squares/rank
regression etc. A particular case of the Weibull distribution
is given by setting σ0 equal to zero, the resulting formula-
tion is called a 2-parameter (2P) Weibull distribution. For
the 2P distribution, one consequence of Eq. 3 is that for two
volumes V1 and V2 submitted to constant stresses σ1 and σ2

at failure, assuming equal probabilities of survival, the rela-
tionship given in Eq. 4 is obtained:

σ1

σ2
=

(
V2

V1

)1/k

. (4)

Equation 4 allows a direct implementation of size effects in
numerical procedures. Since the stresses acting in a speci-
men are usually multi-axial, the stress operator σ in Eq. 3
can be replaced by a failure criterion.

One of the first documented applications of Weibull the-
ory related to timber was the evaluation of bending strength:
Bohannan (1966) showed that the bending strength of wood
beams varied with depth and length. Barrett (1974) and Fos-
chi and Barrett (1976) applied Weibull theory to the deter-
mination of strength of Douglas fir in tension perpendicular
to grain and shear. Larsen and Riberholt (1981) and Colling
(1986) confirmed the size effect for shear and perpendicular
to grain strength for other timber species. It has been shown
(Barrett and Lau 1994) that for timber, k is correlated to the
coefficient of variation (CV) using Eq. 5:

k = CV −1.085. (5)

Progress has been made towards applications of size ef-
fect to a variety of loading conditions and materials, refine-
ments of the statistical basis, and implementation of the the-
ory’s predictions to design standards (Smith et al. 2003). But
there are still some fundamental questions towards its appli-
cability: using Weibull theory to analyze components with
stress concentrations, capacities can be considerably under-
predicted, possibly explained due to the fact that predictions
are usually made for one stress component at a time and
only for stress states that exhibit elastic-brittle characteris-
tics. There is no allowance for softening of stress peaks un-
der complex multi-axial stress states that accompany stress
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Table 1 Geometric parameters of RDC test series
Tab. 1 Geometrieparameter der RDC Testserien

Series No. of replicates b [mm] h [mm] lMain [mm] lJoist [mm] h1 [mm] b1 [mm] BC [mm] k [°] A1 [mm2]

G1-Con. 10 89 184 600 800 119 50 65 15 7146

G1-BC75 5 89 184 600 800 109 50 75 15 8715

G1-BC55 5 89 184 600 800 129 50 55 15 7917

G1-BC45 5 89 184 600 800 139 50 45 15 5683

G1-A20 5 89 184 600 800 119 50 65 20 6301

G1-A10 5 89 184 600 800 119 50 65 10 6722

G1-A05 5 89 184 600 800 119 50 65 5 7575

G2-A 8 89 184 600 950 109 50 75 20 6426

G2-B 14 124 274 600 1250 189 50 85 20 13924

G2-C 14 124 274 600 1250 189 70 85 10 15757

concentrations (Smith et al. 2003). Nevertheless, recogni-
tion of size effects is important when using conventional
strength-based failure criteria as shown by Clouston et al.
(1998) who implemented Weibull theory into the Tsai-Wu
failure criterion to assess size effects in Laminated Veneer
Lumber.

In summary, the prediction of RDC capacity is difficult
due to the anisotropic and brittle nature of timber, the com-
plex multi-axial stress distribution, and the uncertainties re-
garding the associated material strength. In this paper the
structural performance of RDC is investigated experimen-
tally and numerically. Based on the assumption of size ef-
fects, the research is extended with a probabilistic approach
to predict RDC capacity.

2 Experimental investigation

2.1 Specimen description

A total of eight experimental series consisting of a main
beam and a joist connected by RDC were tested at the Tim-
ber Engineering and Applied Mechanics Lab of the Univer-
sity of British Columbia (Tannert 2008). These were divided
into two groups of test series, G1 and G2; the difference be-
ing the test set up and instrumentation. In G1, three differ-
ent dovetail heights and three different flange angles were
compared to a control geometry. The geometry of the con-
trol series was chosen as: flange angle k = 15°and dovetail
height h1 = 119 mm, resulting in a connection back-cut BC
(h–h1) of 65 mm. The three levels of back-cut investigated
were 75 mm, 55 mm and 45 mm; the test series were labeled
BC75, BC55, and BC45, respectively. The three levels of
the flange angle k investigated were 20°,10° and 5°; the test
series were labeled A20, A10, and A05, respectively. The
remaining parameters were kept constant with b1 = 50 mm,
depth t = 28 mm, and dovetail angle a = 15°. In G2, t and

a were kept constant as 28 mm and 15°, respectively. The
geometric parameters are listed in Table 1.

2.2 Material

Kiln-dried Western hemlock (Tsuga heterophylla) was used
throughout the study. The moisture content (MC) and the
apparent density (ρ) of each specimen were determined. Re-
sistance based electrical measurements were used to deter-
mine MC; ρ was determined based on the tested specimen
weight and volume. The average and standard deviation of
MC were 12.6% and 1.6%, respectively. The average ρ was
495 kg/m3 with a standard deviation of 46 kg/m3. A total of
78 specimens were tested, 10 for the control series and 5 for
each of the other series in G1, 8 specimens for series A and
14 specimens each for series B and C in G2.

2.3 Methods

The RDC was applied to connect a joist to a main beam
(Fig. 3). Since it is the principal loading of RDC for their
practical application, shear loading was chosen. The main
beam was supported on two 100 × 100 × 10 mm3 steel
plates, two steel plates on the backside prevented horizon-

Fig. 3 Test set-up for RDC experiments: G1 (left) and G2 (right)
Abb. 3 Skizze des Versuchsaufbaus: G1 (links) und G2 (rechts)
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tal movement. The main beam was not fixed, thus allow-
ing for some rotation around its longitudinal axis. For the
test series in G1, the free end of the joist was supported
on a 100 × 100 × 10 mm3 steel plate on a spring support
with a stiffness of 1 kN/mm, thus simulating an approx. 4 m
long beam of the given section. For the test series in G2,
the free end of the joist was simply supported on a fixed
100 × 100 × 10 mm3 steel plate.

For the test series in G1, the load was applied at a dis-
tance of 350 mm from the connection and distributed onto
the joist with a steel plate with a diameter of 100 mm and
a thickness of 10 mm. In G2, the load was applied at a dis-
tance of 450 mm. The load was increased up to failure with a
constant rate of loading so that failure occurred after approx-
imately six minutes, in accordance with EN-26891 (1991).
For the series in G1, no preload was applied, for the series in
G2, a pre-load of 1 kN was applied to close any pre-existing
connection gaps.

2.4 Instrumentation and measurements

The applied load from the actuator, the force at the support
of the free end of the joist, and the vertical displacement
on both sides of the connection (as the relative displace-
ments between main beam and joist) were recorded. The
force transmitted by the connection was calculated as the
difference between the applied load and the load recorded at
the free end of the joist. The connection displacement was
calculated as the average between the displacements of the
two sides.

Two different limit loads were considered: firstly the load
that corresponds to a deformation limit which corresponds
to the serviceability limit state (FSLS), set herein to 3 mm
(based on the experience of the authors and in consulta-
tion with practitioners); secondly the capacity at rupture of
the joint (FULS), which corresponds to the definition of the
ultimate limit state. For RDC that failed before deforming
3 mm, the peak force applied represents FSLS. Besides FSLS

and FULS, the load at crack initiation (Fcrack) was deter-
mined for the test series in G2 based on measurements of the
displacement between upper and lower edges of the joist.

2.5 Experimental results

Within the range of geometric parameters, loading and sup-
port conditions investigated, failure was always brittle, oc-
curred in the elastic range, and initiated at the bottom of the
dovetail of the joist member (Fig. 4 left). Figure 5 shows
the connection load vs. relative vertical connection defor-
mation for all individual specimens of the control series.
After the initial slack caused by alignment issues, the load
increased linearly until first cracks (visually observed) de-
veloped. Further increases of load were associated with sta-
ble crack development and larger displacements until brittle

Fig. 4 Typical failure of RDC (left) and stresses computed by FEA
(right)
Abb. 4 Typisches Versagen von SSZ (links) und Spannungen aus nu-
merischem Modell (rechts)

Fig. 5 Model vs. experimental load deformation curves for control
series
Abb. 5 Modellierte und experimentelle Last-Verformungskurven der
Kontrolltestserie

failure occurred at capacity. The average of the individual
load deformation plots for all series of G1 is shown in Fig. 6.
The results exhibit a high variability among the specimens
in terms of initial stiffness and capacity. Some specimens
showed large initial alignment behaviour with the increasing
load after considerable deformations; in other specimens the
load started to increase at small deformation.

Table 2 summarizes the results of the recorded variables:
FSLS,FULS and Fcrack. The ratio between Fcrack and FULS

was on average 0.9 for series A and on average 0.8 for series
B and C. This coincided with the observation of cracking
sounds at a load level of approximately 0.9 of the capacity
for the test series of G1.

In order to check the validity of Eq. 1, the effective dove-
tail area, A1, was plotted against the experimentally ob-
served capacity, FULS, and the serviceability load, FSLS. Fig-
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Table 2 Capacity of RDC: predicted and experimental results (mean values and standard deviations), and p-values of statistical analysis
Tab. 2 Traglasten von RDC: Vorhersagen und experimentelle Ergebnisse (Mittelwerte und Standardabweichungen), und p-Werte der statistischen
Auswertung

Series FSLS [kN] FULS [kN] Fcrack [kN] FFEA [kN] � [%] p-value

G1-Con. 14.9 (2.7) 19.9 (5.6) 17.90 10% 0.29

G1-BC75 12.5 (2.9) 12.5 (2.9) 13.90 11% 0.33

G1-BC55 19.6 (5.3) 25.9 (11.9) 20.30 22% 0.34

G1-BC45 15.1 (5.9) 22.8 (4.5) 24.20 6% 0.53

G1-A20 16.3 (0.8) 16.3 (0.8) 15.00 8% 0.40

G1-A10 15.0 (6.9) 24.5 (9.1) 16.20 34% 0.10

G1-A05 6.6 (2.4) 19.0 (6.1) 17.90 6% 0.71

G2-A 12.9 (3.5) 17.3 (4.2) 15.7 (3.8) 15.50 2% 0.85

G2-B 20.1 (5.2) 42.7 (4.7) 31.3 (8.4) 31.70 1% 0.82

G2-C 21.0 (3.1) 42.1 (6.4) 32.2 (6.0) 33.80 5% 0.37

p-values h1 0.070 0.031

p-values a 0.001 0.226

Fig. 6 Model vs. experimental load deformation curves for test series
G1
Abb. 6 Modellierte und experimentelle Last-Verformungskurven der
Testserien G1

ure 7 clearly shows that the linear relationship given in Eq. 1
cannot be supported by the presented research.

Analysis of variance (ANOVA) was carried out to evalu-
ate the effect of the dovetail geometric parameters on FSLS

and FULS. Based on the number of observations, a p-value
is calculated and compared to the significance level, α, typi-
cally chosen as 0.05 or 0.1 (Montgomery and Runger 2003).
If the p-value is smaller than α, then the hypothesis of no
differences between means is rejected; this procedure (with
α = 0.1) was applied, p-values are displayed in Table 2. The
dovetail height has a statistically significant effect on FSLS

and FULS. Multiple comparison tests (Least Square Differ-
ences) were used to determine which test series exhibit sta-

Fig. 7 Failure loads of RDC vs. joint size
Abb. 7 Traglasten von SSZ in Abhängigkeit der SSZ-Größe

tistical differences. Series BC75 has a significantly lower
FULS than series BC55 and BC45, and a significantly lower
FSLS than BC55. The flange angle has a statistically signifi-
cant effect on FULS. Multiple comparison tests showed that
series A05 has a significantly lower FSLS than all other se-
ries.

3 Finite element analysis

3.1 Numerical modeling of timber

Timber is an anisotropic and inhomogeneous material, but
for numerical modeling in FEA it is often assumed to be
homogeneous. For small specimen obtained relatively far
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from the pith, the influence of the growth ring curvature is
frequently ignored so that properties can be regarded as or-
thotropic; for specimen with similar height and width, trans-
verse isotropy with identical properties in radial and tangen-
tial directions can be assumed. The radial and tangential di-
rections are referred to as perpendicular to grain (⊥), the
longitudinal direction is referred to as parallel to grain (‖).
Since brittle failure modes initiating within the elastic range
dictate the capacity of RDC, the material was regarded as
linear elastic and transverse isotropic, with the properties
set to: E‖ = EX = 12,000 N/mm2 (based on tests, Tannert
2008) and E⊥ = EY = EZ = 600 N/mm2, GXY = GYZ =
400 N/mm2, GYZ = 40 N/mm2, υXY = υXZ = 0.02, υYZ =
0.40 in accordance to literature (Barrett et al. 2001; Green
et al. 1999).

3.2 Numerical model for RDC

The software ANSYS®(v10) (Ansys 2006) was used in
the study applying 3D modelling and 20-node elements.
Weighting result accuracy against computing time, the
model was divided into different mesh zones, depending on
the stress gradients. The finest mesh (5 mm element length)
was used along the bottom of the dovetail where the high-
est stresses were expected. A coarser mesh was used for the
remaining parts, with element length varying between 8 and
26 mm. To model the contact between joist and main beam,
target and contact surface-to-surface elements were used.
Contact stiffness (FKP), penetration tolerance (FTOL), fric-
tion coefficient (μ), and the initial connection gap between
the connecting members affect result accuracy and conver-
gence. FKP and FTOL are parameters without unit that de-
scribe the relative contact stiffness and the allowable pen-
etration, respectively. Based on preliminary investigations
(Tannert 2008), FKP was set to 0.02, a value that allowed
convergence, and FTOL to 0.5, a value that allowed realistic
interpenetration of the surfaces.

Manufacturing tolerances significantly influence the per-
formance of RDC (Anastas et al. 2008). Initial gaps, caused
by geometry differences between the two connecting mem-
bers, have to be considered to model the initial align-
ment behaviour. Previous work (Tannert 2008) suggested
that good agreement between analytical and experimen-
tal load response curves can be achieved by modeling a
gap of 0.5 mm. The surface quality of the members plays
an important role in the behaviour of RDC as it dictates
the friction between them. The friction coefficient μ was
set to 0.35; similar to previous research (Bobacz 2002;
Dietsch 2005), and in the range of values reported in the
literature (McKenzie and Karpovich 1968).

3.3 Results of numerical modeling

FEA was used to compute the distribution of stresses in
the dovetail section of the joist. The tip of the dovetail is

Fig. 8 Tension perpendicular to grain stress peaks vs. distance to
dovetail tip
Abb. 8 Zugspannungen rechtwinklig zur Holzfaser in Abhängigkeit
vom Abstand zur SSZ

clearly identified as the location of highest stresses which
corresponds to the failure locus observed in the experiments
(Fig. 4). In the numerical model with elastic material prop-
erties, stress singularities are prone to develop at geomet-
rical discontinuities. Furthermore, the magnitude of stress
maxima at geometrical discontinuities depend on the cho-
sen mesh—they usually do not converge but increase with
mesh refinement. Figure 8 illustrates the occurrence of stress
peaks in tension perpendicular to grain stress in the joist
member at the bottom of the dovetail tip. The computed
curves of the relative connection deformation versus the ap-
plied load were compared to the experimental results, see
Fig. 5. The numerical model reflects accurately the experi-
mentally observed behaviour.

3.4 Model validation

The numerical model was validated by comparing results
to the experimentally obtained average load displacement
curves of all test series in G1 (Fig. 6). The load deforma-
tion curves were modeled using their material properties and
failure loads as model input. The elastic parameters were
adjusted according to the grain orientation ρ and MC (Ta-
ble 3). Adjustment for MC was done with data from liter-
ature (Green et al. 1999); adjustment for ρ was done using
previously determined regression data (Tannert 2008). The
specimens were modeled with different gaps according to
their load displacement response and good agreement be-
tween experimental and numerical results was obtained.

4 Probabilistic strength prediction

4.1 Strength prediction method

As RDC fail under a combination of stresses, it is necessary
to extend the concept of the statistical distribution of the ma-
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Table 3 Model parameters for
test series
Tab. 3 Modellparameter der
Testserien

Series ρ [kg/m3] MC [%] FULS [kN] EL [N/mm2] ER,T [N/mm2] gap [mm]

G1-BC75 420 12.4 12.5 11,000 605 0.25

G1-BC55 508 12.0 25.9 12,200 671 0.5

G1-BC45 530 12.6 22.8 13,000 715 1.5

G1-A05 506 11.8 16.3 11,500 632 3.0

G1-A10 532 12.6 24.5 13,000 715 2.0

G1-A20 473 14.0 19.0 12,800 704 0.4

terial strength under unilateral stresses (i.e. fT,‖fT,⊥fS,‖)
towards stresses acting conjunctively. For this purpose, the
Norris criterion (Eq. 2) was modified in such a way, that
only those stresses that cause brittle failure are considered.
A failure stress operator, φF , was defined:

φ2
F = min

⎧⎪⎪⎨
⎪⎪⎩

( σX
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fZ
)2,
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fZ
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fZfX
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fX
)2 + ( τZX

fZX
)2.

(6)

Idealizing the member under consideration as being consti-
tuted by n elements, which for practical reasons coincided
with the finite elements used in the FEA, its survival depends
on the simultaneous non-failure of all elements i ≤ n. As a
result, for a given applied load, F , the probability of survival
can be calculated by Eq. 7:

PS(F ) =
n∏

i=1

PS,i(F ) (7)

where PS,i(F ) is the probability of survival of the con-
stituent element i associated with the applied load F , which
can be calculated using Eq. 3. Consequently, if each ele-
ment i, with a volume Vi is subjected to a constant value
of the failure function φFi , the probability of survival of the
whole member is given by Eq. 8:

PS =
n∏

i=1

exp

[
− Vi

V0
·
(

φF,i

m

)k]

= exp
n∑

i=1

[
− Vi

V0
·
(

φF,i

m

)k]
. (8)

Equation 8 can be implemented in a post-processing routine
for FEA results (Vallée et al. 2009). To compare predictions
with mean values of experimental results, a standard prob-
ability of survival of PS = 0.5 has to be considered (Towse
et al. 1999); the corresponding value of FFEA thus is the pre-
dicted capacity. As the approach is probabilistic, determin-
istic failure predictions cannot be given.

4.2 Determination of material parameters

The brittle material strength properties required for Eq. 6
(i.e. fT,‖, fT ,⊥, fS,‖) were determined according to ASTM-
D143 (2002). A total of 480 individual tests were carried
out, 160 for each of the material properties. These test se-
ries were performed on samples exhibiting different stressed
volumes, as summarized in Table 4. The experimentally
determined mean values, x̄, and the shape parameters, k,
corresponding to each test series estimated using Eq. 5
are listed in Table 4. The results are within the range of
widely accepted values of softwood (Barrett and Lau 1994;
Barrett 1974; Foschi and Barrett 1976). To gather the cor-
responding statistical parameters for Eq. 3 (k and m), φF -
values corresponding to all specimens were used. As the
specimens used for the three different tests exhibited dif-
ferent sizes, the corresponding failure stresses could not
be used in one single series. To overcome this formal is-
sue, and according to the lemma resulting from Weibull
theory (Eq. 4), all experimentally gathered strengths were
first related to an arbitrary reference volume, set herein to
V0 = 30,000 mm3 (volume of tension perpendicular to grain
strength test specimen).

This procedure resulted in a homogeneous set of data,
allowing for a direct comparison of strength data resulting
from different test setup, more specifically specimen vol-
umes. Assuming the resulting data to be Weibull distributed,
logφF can be plotted against log (− log[1 − Pf,i]), with
Pf,i = (i − 0.3)/(n + 0.4), where i is the rank and n the
number of samples (Faucher and Tyson 1988), see Fig. 9.
Following rank regression on the linear form of the cumula-
tive distribution function the Weibull modulus was found to
equal k = 4.55, while m = 1.124.

4.3 Validation of strength prediction method using ASTM
tests

The probabilistic procedure was applied to predict the ca-
pacity of the specimens used in the ASTM tests. Only the
elements between the loaded areas are considered, as they
contain the locus of the failure initiation. Furthermore, the
stresses in the other elements are negligible. The compari-
son of the probabilistic strength prediction and the experi-
mental results is shown in Table 4. The probabilistic method
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Table 4 Material strength
parameters
Tab. 4 Materialkennwerte

fT,‖,ASTM fT,⊥,ASTM fS,‖,ASTM

Volume [mm3] 10,000 30,000 50,000

Average failure load Fexp [kN] 3.70 3.70 17.08

Strength x̄ [N/mm2] 77.4 2.92 7.80

Strength s [N/mm2] 23.4 0.82 1.52

k [–] 3.66 3.94 5.85

Strength for V0 [N/mm2] 60.2 3.06 8.77

FEA failure load FFEA [N/mm2] 3.53 3.61 14.63

�(Fexp − FFEA) [%] 4% 2% 14%

Table 5 Predicted RDC failure loads for varied geometric parameters
Tab. 5 Vorhergesagte RDC Traglasten für variierte Geometrieparameter

l b [mm] h [mm] k [mm] h1 [mm] b1 [mm] A1 [mm2] FFEA [kN] FFEA/A1 [–]

3,300 89 184 15 129 47 7,290 18.8 2.58

3,300 89 184 10 129 58 7,930 19.0 2.40

4,400 89 286 10 200 44 11,320 21.6 1.91

4,400 89 286 5 200 60 12,900 22.7 1.76

4,400 140 241 20 169 80 15,670 27.5 1.76

4,400 140 241 10 169 105 17,650 28.1 1.59

5,400 140 341 20 239 50 19,630 32.7 1.67

5,400 140 341 10 239 91 24,120 34.4 1.43

5,400 191 291 20 204 125 27,320 34.4 1.26

5,400 191 291 10 204 153 30,000 34.7 1.16

6,500 191 394 20 276 95 34,300 44.2 1.29

6,500 191 394 10 276 139 39,980 41.9 1.05

Fig. 9 Weibull parameter estimation plot for all experimental results
on small specimens
Abb. 9 Bestimmung der Weibull Parameter aus den Kleinversuchen

is in excellent agreement with the experiments for the ten-
sion parallel to grain and tension perpendicular to grain tests

(deviations 4% and 2%), while the deviation for the shear
parallel to grain tests is 14%.

4.4 Strength prediction for experimentally investigated
RDC

The probabilistic method was applied for the experimental
test series on RDC. Since failure occurred in the joist mem-
ber, only the joist was considered as being constituted by n

elements and Eq. 8 was applied to predict the failure load
of the RDC. Again, in order to compare predictions with
mean experimental values, a standard probability of survival
of PS = 0.5 was considered in the calculations.

The comparison of the probabilistic strength prediction
and the experimental results for RDC strength is shown in
Table 2. Excellent agreement was obtained for the tests se-
ries in G2, where the actual crack load was measured. For
the tests series of GI there is a trend that predicted failure
load (FFEA) is lower than experimental failure load (FEXP).
In addition to FEXP and FFEA, Table 2 also shows the devi-
ation between these two values and the results of t-tests for
the hypothesis: FEXP = FFEA. This hypothesis is rejected for
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those cases where the p-value is smaller than α = 0.10 (90%
significance level).

4.5 Strength prediction for further RDC configurations

A series of FEA computations was carried out varying the
member dimensions (l, b and h) and the dovetail geom-
etry (k,h1 and b1). Loading and support conditions were
kept constant. The predicted RDC failure loads (FFEA) and
the ratios between them and the effective dovetail area
(FFEA/A1) were computed (Table 5). The results point out
that A1 cannot linearly be used to predict RDC capacities
especially when other geometric parameters are varied.

5 Discussion

Experimental investigations showed that load deformation
response of RDC specimens under shear loading is linear
until reaching a load that leads to crack development. For
those test series where no preload was applied to close ini-
tial connection gaps, minor cutting inaccuracies led to differ-
ences in the initial alignment behaviour amongst the individ-
ual specimens. Furthermore the specimens show initial con-
nection slackness due to alignment issues resulting in high
variability of initial load deformation response. For those
test series, where a pre-load was applied, no initial load slip
was observed. ANOVA showed that the dovetail height h1

has a statistically significant effect on the performance of
RDC. The capacity increases with increasing h1 up to an ap-
parent optimum of approx. 2/3 the member height, and then
drops again. The flange angle has no statistically significant
effect on RDC capacity but because of the observed differ-
ences, an angle of 15° is recommended. For all investigated
test series, the effective dovetail area was plotted versus the
capacity; a non-linear relation was found.

Regarding FEA, the solution convergence is influenced
by how the contact is numerically handled and the results
accuracy depends strongly on the assigned material proper-
ties. Varying the material parameters over a realistic range
yielded good agreement between numerical and experimen-
tal load deformation curves. The model can be applied for
modeling the load-deformation behavior and for probabilis-
tic modeling using the variables as random input parameters.

In the numerical model with elastic material properties,
geometrical singularities are accompanied by stress singu-
larities and stress redistribution processes due to stable crack
growth cannot accurately be represented. The value of max-
imum stress is mesh-dependent; as a consequence, a crite-
rion based on maximum stress cannot be used to predict
strength of RDC. It was therefore hypothesized that besides
the stress magnitude, the stress distributions (stress gradi-
ents and volume subjected to high stresses) also influence

joint strength. The probabilistic strength prediction method
presented in this paper foots, firstly, on a mechanistic based
description of the material failure under multiple stresses,
and secondly on a companion statistical description of the
material strength. Regarding material failure, the adequacy
of the Norris criterion has been assessed.

The mechanical parameters needed to formulate the crite-
rion were determined according to ASTM-D143 (2002) on
samples exhibiting radically different shapes and volumes.
Therefore they had to be brought into a coherent volume, ex-
ploiting the assumption that size and strength are correlated
using Eq. 4. The validity of the chosen approach has been
verified on the strength determination of the small speci-
men, where the predictions for tension parallel to the grain
and tension perpendicular to the grain were very good (de-
viations of 2% and 4% respectively) while the prediction
for shear parallel to the grain was not as good (deviation of
14%). A possible explanation is the fact that no pure state
of shear stress is obtained in the experiments. Regarding
the statistical description of the material strength, the ex-
perimentally gathered data is adequately described by a 2P-
Weibull distribution, as shown in Fig. 9; slight deviations
from the linear fit do only appear at the lower end of the
probability density function (pdf), which are not relevant
for the further strength prediction method, since they would
lead to slightly underestimate the probability of failure at
low stresses.

The accuracy attained by the probabilistic method for the
test series in G1 was acceptable (on average around 14%).
In G2, the RDC force causing crack initiation—the load that
is predicted by the criterion—was measured. Here, the pre-
dictions (FFEA) were in excellent agreement to the experi-
mental results (FEXP), on average by 3%. The hypotheses:
FEXP = FFEA were accepted for all experimental test series.
This clearly validates the probabilistic strength prediction
method for the range of experimentally investigated geome-
tries. In contrast to the method presented herein, the alter-
native design procedure, represented by Eq. 1, does only
account for one geometrical input parameter, i.e. the dove-
tail area, and only for the shear strength as sole mechanical
input. Because the probabilistic method allows taking into
consideration all geometrical parameters, it is possible to in-
vestigate the influence of different configurations for struc-
tural optimization.

The accuracy of the strength prediction method presented
herein is strongly dependent on (i) the quality of the descrip-
tion of the failure criterion, and (ii) the ability of the statis-
tical distribution function to represent the material strength.
Regarding (i) an increase of accuracy can be expected by
using a less disparate set of tests to determine the material
strengths as suggested by ASTM-D143 (2002); using sam-
ples that are more comparable in their geometry and vol-
umes, for example a set of off-axis tension tests would al-
low formulating the failure criterion more straightforwardly.
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Regarding (ii), a different probability density function (pdf)
might be able to model correctly the lower-tail of the distri-
bution; but as the description of the pdf in this area would
only affect lowly stressed zones, thus not critical, its impact
on the accuracy would almost be negligible.

6 Conclusion

Experimental and numerical investigations have been car-
ried out to study the influence of geometric parameters
of rounded dovetail connections (RDC) and a probabilistic
method has been developed for the strength prediction of
RDC under quasi static shear loading. The following con-
clusions were drawn:

(i) failure mode under shear loading was brittle, occurred
in the elastic range of the load deformation response,
and initiated at the bottom of the dovetail of the joist;

(ii) RDC capacity increases with larger dovetail height, up
to an apparent optimum while changing the flange ra-
dius only slightly influences RDC performance;

(iii) based on the experimental results, the authors recom-
mend producing RDC with flange angles of 15° and
dovetail heights of 2/3 the member height;

(iv) for numerical models of RDC, the timber can be mod-
elled with linear elastic and transverse isotropic ma-
terial properties; the actual failure location was con-
firmed to be the highest stressed part of the model;

(v) the comparisons between the numerical and the experi-
mental results showed that the model is reliable in pre-
dicting the structural response, suggesting it could be
used to develop a numerical based method to predict
failure loads;

(vi) the modified Norris failure criterion including size ef-
fects was shown to be adequate to predict RDC capac-
ity.

The immediate application of the proposed method
is the study of parameter influences on the capacity
of RDC; it was shown that the strength increase for
larger specimens is not proportional to the dovetail
area, which at least questions common methods used
by practitioners. Consequently, these findings should
be taken into consideration when designing RDC.
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