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Abstract The Flexible Blocking Job Shop (FBJS) considered here is a job shop
scheduling problem characterized by the availability of alternative machines for each
operation and the absence of buffers. The latter implies that a job, after completing
an operation, has to remain on the machine until its next operation starts. Additional
features are sequence-dependent transfer and set-up times, the first for passing a job
from a machine to the next, the second for change-over on a machine from an op-
eration to the next. The objective is to assign machines and schedule the operations
in order to minimize the makespan. We give a problem formulation in a disjunc-
tive graph and develop a heuristic local search approach. A feasible neighborhood is
constructed, where typically a critical operation is moved (keeping or changing its
machine) together with some other operations whose moves are “implied”. For this
purpose, we develop the theoretical framework of job insertion with local flexibil-
ity, based on earlier work of Gröflin and Klinkert on insertion. A tabu search that
consistently generates feasible neighbor solutions is then proposed and tested on a
larger test set. Numerical results support the validity of our approach and establish
first benchmarks for the FBJS.
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1 Introduction

Job shop scheduling problems in practice often display features that are not addressed
in the “classical” Job Shop problem. Among such features are limited buffer capacity
between machines or even its absence, forcing a job to wait on a machine until the ma-
chine for the job’s next operation becomes free. This latter case is commonly referred
to as the Blocking Job Shop. Another feature is the option to choose the machine for
each operation from an (operation-dependent) set of machines. This flexibility results
in scheduling problems where not only a starting time, but also an assigned machine
has to be determined for each operation.

In this paper, we study a job shop problem possessing both features, which we
call the Flexible Blocking Job Shop or FBJS. Additional features of the FBJS will be
to allow for transfer steps passing a job from a machine to the next, and sequence-
dependent set-up times between two consecutive operations on a machine. Both fea-
tures are not included in (what one defines as) a classical Blocking Job Shop, but turn
out to be useful in practice. Indeed, a job, after completion of an operation on a ma-
chine has to be handed over to a transport processor or to the machine working on the
job’s next operation. Such steps have to be taken into account if transfer times are not
negligible. The option of set-up times is also valuable, for instance when processors
are mobile and have to execute an “idle” move between two consecutive operations.

A frequent objective in scheduling problems is to minimize the makespan, i.e. the
time by which all operations have been completed. Another, somewhat more general
objective is to minimize maximum lateness, i.e. the maximum delay (if any) by which
a job finishes after its due date. (Note that with all due dates equal to zero, the sec-
ond objective becomes the first.) We shall present a solution approach for the FBJS
with the more common makespan minimization objective. Maximum lateness would
require only minimal adaptations.

Literature related to the FBJS is mainly dedicated to the non-flexible Blocking Job
Shop. Indeed, we are not aware of previous literature on the blocking job shop with
flexibility. Blocking constraints together with flexibility have been addressed in the
simpler flow shop version of the job shop (Thornton and Hunsucker 2004).

The non-flexible Blocking Job Shop (BJS) has found increasing attention over
the last years. In Mascis and Pacciarelli (2000) and Mascis and Pacciarelli (2002)
several scheduling problems, among them the BJS, are formulated with the help of
alternative graphs and solved with dispatching heuristics. Klinkert (2001) studies the
scheduling of pallet moves in automated high-density warehouses, proposes a gen-
eralized disjunctive graph framework similar to the alternative graphs and devises a
local search heuristic with feasible neighborhood for a BJS with transfer and set-up
times. Meloni et al. (2004) develop a “rollout” metaheuristic which they apply among
other problems also to the BJS. Brizuela et al. (2001) propose a genetic algorithm for
the BJS. Brucker and Kampmeyer (2008) present tabu search algorithms for cyclic
scheduling in the BJS. Gröflin and Klinkert (2007) study a general insertion problem
with, among others, an application to job insertion in the BJS. They also present in
Gröflin and Klinkert (2009) a tabu search for the BJS with transfer and set-up times.
Job shop scheduling problems with limited buffer capacity (extending in a sense the
BJS where buffer capacity is zero) are studied in Brucker et al. (2006) and Heitmann
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(2007). Various ways in which buffers occur are analyzed and tabu search approaches
for the flow shop and job shop problems are proposed for specific buffer configura-
tions, including the BJS.

The paper is organized as follows. The next section describes formally the FBJS
and gives a problem formulation in a disjunctive graph which forms the basis for
the subsequent development. Additionally, it provides a mixed-integer linear pro-
gramming formulation. Section 3 is devoted to the design of a feasible neighborhood
of a given solution. A structural framework—the so-called job insertion with local
flexibility—is introduced first, building on previous work of the authors. Based on
this framework, feasible neighbors of a given solution are generated by moving an
operation of a job, together with implied moves of other operations of the job. Sec-
tion 4 is devoted to a tabu search which makes uses of the neighborhood derived in
the previous section. Computational results are presented in Sect. 5.

Graphs are needed for the formulation of the FBJS and the derivation of the neigh-
borhood. They will be directed and the following standard notation will be used. An
arc e = (v,w) has a tail (node v), and a head (node w), denoted by t (e) and h(e) re-
spectively. Also, given a graph G = (V ,E), for any N ⊆ V , γ (N) = {e ∈ E : t (e) and
h(e) ∈ N}, δ−(N) = {e ∈ E : t (e) /∈ N and h(e) ∈ N}, δ+(N) = {e ∈ E : t (e) ∈ N

and h(e) /∈ N} and δ(N) = δ−(N) ∪ δ+(N). These sets are defined in G, we abstain
however from a heavier notation, e.g. δ+

G(N) for δ+(N). It will be clear from the
context which underlying graph is meant. Finally, in a graph G = (V ,E,d) with arc
valuation d ∈ RE , a path or a cycle in G will be called positive if its length is positive.

2 The flexible blocking job shop

2.1 Formulation, notation and data

The FBJS can be described as follows. Let I be a set of operations i ∈ I and J ⊆ 2I

a set of jobs such that J forms a partition of I , i.e. a job J ∈ J is a set of operations
{i : i ∈ J } and any operation i ∈ I is in exactly one job J ∈ J . We assume that the
set of operations of a job is ordered in a sequence and denote sometimes {i : i ∈ J }
as the ordered set {J1, J2, . . . , J|J |}, Jr denoting the r-th operation of job J . Two
operations i, j of job J are consecutive if i = Jr and j = Jr+1 for some r, 1 ≤
r < |J |. Furthermore, let M be a set of machines. Each operation i ∈ I needs one
machine, say m, for its execution. This machine m is not fixed, and there is flexibility
in choosing it from some subset of alternative machines Mi ⊆ M .

An important process feature arises from the assumption that there are no buffers
between machines. Then a job J , after having its operation Jr executed on machine
m, might have to wait on m, thus blocking m, until the machine for its next operation
Jr+1 becomes available.

Specifically, consider operation j = Jr of job J and assume that j is processed on
m ∈ Mj , its job predecessor i = Jr−1 is processed on p ∈ Mi and its job successor
k = Jr+1 is processed on q ∈ Mk . Operation j can be viewed as consisting of the
following successive steps: (i) a take-over step where, after completion of i, the job is
taken over from machine p to machine m; (ii) a processing step, (iii) a possible wait-
ing time of the job on m; (iv) a hand-over step where, after completion of j , the job is
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handed over from machine m to machine q for its next operation k. The durations of
these steps—except (iii)—are input data. Let d(i,p; j,m), d(j,m) and d(j,m; k, q)

denote the duration of the take-over step, the processing step and the hand-over step
respectively. Due to blocking, the take-over step of operation j must occur simulta-
neously with the hand-over step of its predecessor operation i. The starting times of
the two steps, as well as their duration are therefore the same.

Two remarks on the discussed steps are in order. First, if j is the first operation of
a job, the take-over step might be called more appropriately a loading step of duration
d(ld; j,m), and similarly, if j is the last operation of a job, the hand-over step might
be called an unloading step of duration d(j,m;uld). Second, since no assumptions
are made for the subsets Mi , i ∈ I , if Mi ∩ Mj �= ∅ for two consecutive operations i

and j of some job J , J might stay on a machine m ∈ Mi ∩ Mj for both operations.
Duration d(i,m; j,m) might be zero, essentially combining both operations into a
single operation, or positive if some change-over time, e.g. if a tool change on m is
required.

We also allow for set-up times between two consecutive operations on a machine.
If two operations i and j with i ∈ J , j ∈ J ′ and J �= J ′, are executed on a machine m,
and j immediately follows i on m, then there is a set-up time of duration d(i,m; j,m)

occurring between the hand-over step of i and the take-over step of j . Initial and final
set-up times for the first and last operation of a job might also be present, of respective
duration d(σ ; j,m) and d(j,m; τ) (the choice of the symbols σ and τ will become
clear in the sequel).

A few standard assumptions are made. All durations are non-negative, process-
ing times d(j,m) are positive and set-up times satisfy the triangle inequality, i.e.
d(i,m; j,m) + d(j,m; k,m) ≥ d(i,m; k,m) for any operations i, j and k from
three distinct jobs on a common machine m; similarly, d(σ ; j,m) + d(j,m; k,m) ≥
d(σ ; k,m) and d(i,m; j,m) + d(j,m; τ) ≥ d(i,m; τ). Note that hand-over/take–
over times as well as set-up times can have value 0, allowing also for the case where
so-called swapping is permitted. (Swapping occurs when two jobs swap machines.)

The FBJS can be stated as follows. A schedule of the jobs is a specification for each
operation of its chosen machine and its starting time, fulfilling the process constraints
described above as well as the standard constraints that a machine can be occupied
by at most one operation at a time and no preemption is allowed. The objective is to
schedule the jobs so that the makespan is minimal.

2.2 A disjunctive graph formulation

Main features of the disjunctive graph will be the following. Each operation, for each
of its possible machines, is represented by a chain of three arcs for the take-over,
processing and hand-over steps. In a job, two consecutive operations i and j are
linked by a transfer arc and arcs synchronizing the hand-over of i with the take-over
of j . Finally, a pair of disjunctive arcs is present between any two operations on a
same machine, joining the last node of one operation to the first node of the other
operation.

Specifically, the disjunctive graph G = (V ,A,E, E , d) for the FBJS is constructed
as follows. To each operation i ∈ I and machine m ∈ Mi is associated a chain with
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Fig. 1 A job in the disjunctive
graph

node set Vim = {v1
im, v2

im, v3
im, v4

im} and arcs (v1
im, v2

im), (v2
im, v3

im), (v3
im, v4

im). Node
set V of G consists of the union of the Vim over all i ∈ I and m ∈ Mi , together with
two additional nodes σ and τ , representing fictive start and end operations of duration
0 to occur before, respectively after, all operations of I . Denote by If irst and I last

the subsets of all operations that are first and last operations of jobs, respectively.
The set A of conjunctive arcs of G consists of the following arcs, indicated with

their weights:

1. For each i ∈ I and m ∈ Mi , three arcs (v1
im, v2

im), (v2
im, v3

im), (v3
im, v4

im), with

respective weights: d(ld; i,m) if i ∈ If irst and 0 if i ∈ I − If irst ; d(i,m);
d(i,m;uld) if i ∈ I last and 0 if i ∈ I − I last . The three arcs are referred to as
take-over arc, processing arc and hand-over arc.

2. For any two consecutive operations i = Jr and j = Jr+1 of a job J and m ∈
Mi , m′ ∈ Mj , two pairs of synchronization arcs (v3

im, v1
jm′), (v1

jm′ , v3
im) and

(v4
im, v2

jm′), (v2
jm′, v4

im) of weight 0 joining the (starts and the ends of the) hand-

over step of i and take-over step of j , and a transfer arc (v3
im, v2

jm′) of weight
d(i,m; j,m′). Note that m = m′ is possible.

3. For each i ∈ If irst and m ∈ Mi , an initial set-up arc (σ, v1
im) of weight d(σ ; i,m)

and for each i ∈ I last and m ∈ Mi , a final set-up arc (v4
im, τ ) of weight d(i,m; τ).

The set E of disjunctive arcs is given as follows: for any two operations i and
j with i ∈ J , j ∈ J ′, J �= J ′ and Mi ∩ Mj �= ∅, and any m ∈ Mi ∩ Mj , there are
two disjunctive arcs (v4

im, v1
jm), (v4

jm, v1
im) with respective weights d(i,m; j,m),

d(j,m; i,m). The family E is the collection of all pairs of disjunctive arcs
((v4

im, v1
jm), (v4

jm, v1
im)), i ∈ J , j ∈ J ′, J �= J ′ and m ∈ Mi ∩ Mj . An element of

E , i.e. a pair of disjunctive arcs, will sometimes be denoted by D, and the two ele-
ments of D by e and e. Arc e will be said to be the mate of e and vice-versa.

We illustrate how a job is represented in the disjunctive graph and introduce a
small problem with four jobs that will be used in the sequel.

Figure 1 shows all conjunctive arcs incident to a job. The job has three operations,
say i = 1,2,3, and corresponding sets of alternative machines M1 = {m1}, M2 =
{m2,m4} and M3 = {m1,m4}. A pair of synchronization arcs is represented by an
(undirected) edge. Selected arc weights are also indicated.
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Fig. 2 Example with four jobs

An example with four jobs is sketched in Fig. 2, the job at the left being the
job described above. The figure depicts the associated disjunctive graph in which,
however, nodes σ and τ as well as all disjunctive arcs, except for one pair, denoted
by e and e, have been omitted for clarity. Also, specific numerical data will not be
needed for the subsequent use of the example, it will only be assumed that transfer
times are positive.

As in the classical job shop problem and its associated disjunctive graph, the FBJS
can be formulated as a combinatorial problem in disjunctive graph G.

Definition 1 A mode is a tuple μ = (μ1,μ2, . . . ,μ|I |) ∈ M = M1 ×M2 ×· · ·×M|I |,
assigning to each operation i ∈ I a machine μi ∈ Mi .

A mode μ selects a node-induced subgraph Gμ in G defined as follows. Con-
sider node subset V μ = ⋃

i∈I Viμi
∪ {σ, τ } and let Aμ = A ∩ γ (V μ), Eμ = E ∩

γ (V μ) and E μ = {D ∈ E : D ⊆ Eμ}. The resulting graph Gμ = (V μ,Aμ,Eμ, E μ,d)

is the disjunctive graph associated to mode μ. (We take the liberty of denoting the
restriction of d to Aμ ∪ Eμ again by d .)

Definition 2 For any mode μ ∈ M and set S ⊆ Eμ, (μ,S) is called a selection.
Selection (μ,S) is said to be positive cyclic if the graph (V μ,Aμ ∪ S,d) contains
a positive cycle, and positive acyclic otherwise. (μ,S) is said to be complete if S ∩
{e, e} �= ∅ for all {e, e} ∈ E μ , and to be feasible if it is positive acyclic and complete.

The FBJS can now be formulated as the following problem: “Among all feasible
selections (μ′, S′), μ′ ∈ M, S′ ⊆ Eμ′

, find a selection (μ,S) minimizing the length
of a longest path from σ to τ in subgraph (V μ,Aμ ∪ S,d)”.

2.3 A mixed-integer linear programming formulation

An alternative problem statement for the FBJS is given by the following mixed-
integer linear program. For each operation i, let x1

i and x2
i be the starting time and

ending time of its take-over step, and x3
i and x4

i the starting time and ending time of
its hand-over step. Also, for each i ∈ I and m ∈ Mi , let yim be a binary variable with
value 1 if machine m is chosen for i and value 0 otherwise. Define by P 1 the set of all
ordered pairs (i, j) of operations which are consecutive in a job (i preceding j ) and
by P 2 the set of all unordered pairs (i, j) of operations i and j belonging to distinct
jobs and having potentially a common machine, i.e. with Mi ∩ Mj �= ∅. The FBJS
can be formulated as follows.
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Minimize xτ

subject to

x1
i ≥ d(σ ; i,m) − H(1 − yim) ∀i ∈ If irst ,m ∈ Mi

x2
i − x1

i ≥ d(ld; i,m) − H(1 − yim) ∀i ∈ If irst ,m ∈ Mi

x2
i − x1

i ≥ 0 ∀i ∈ I − If irst

x3
i − x2

i ≥ d(i,m) − H(1 − yim) ∀i ∈ I , m ∈ Mi

x4
i − x3

i ≥ d(i,m;uld) − H(1 − yim) ∀i ∈ I last ,m ∈ Mi

x4
i − x3

i ≥ 0 ∀i ∈ I − I last

xτ − x4
i ≥ d(i,m; τ) − H(1 − yim) ∀i ∈ I last ,m ∈ Mi

x3
i = x1

j and x4
i = x2

j ∀(i, j) ∈ P 1

x2
j − x3

i ≥ d(i,m; j,m′) − H(2 − yim − yjm′) ∀(i, j) ∈ P 1,m ∈ Mi,m
′ ∈ Mj

x1
j − x4

i ≥ d(i,m; j,m) − H(3 − yim − yjm − zij ) ∀(i, j) ∈ P 2,m ∈ Mi ∩ Mj

x1
i − x4

j ≥ d(j,m; i,m) − H(2 − yim − yjm + zij ) ∀(i, j) ∈ P 2,m ∈ Mi ∩ Mj

∑

m∈Mi

yim = 1 ∀i ∈ I

yim ∈ {0,1} ∀i ∈ I,m ∈ Mi; zij ∈ {0,1} ∀(i, j) ∈ P 2

Herein, H denotes a large number. We examine briefly its role, the interpretation of
the constraints becoming then easy. Looking at the first set of constraints, the term
−H(1 − yim) ensures that for each i ∈ If irst , the constraint x1

i ≥ d(σ ; i,m) holds
precisely when machine m is chosen for i (i.e. yim = 1), while the inequalities for the
machines not chosen (for which yim = 0) are inactivated, i.e. hold trivially. The action
of −H(1 − yim) in the other sets of constraints is similar. The term −H(2 − yim −
yjm′) activates x2

j − x3
i ≥ d(i,m; j,m′) precisely when machine m is chosen for i

and m′ for j . Finally −H(3 − yim − yjm − zij ) activates the disjunctive precedence
constraint x1

j − x4
i ≥ d(i,m; j,m) exactly when machine m is chosen for both i and

j , and i is before j (i.e. zij = 1). Its “mate” constraint x1
i − x4

j ≥ d(j,m; i,m) is
activated if m is chosen for i and j , and i is after j (i.e. zij = 0). (Note that the
interpretation of the variables zij (i before or after j ) is only valid if i and j are on a
common machine.)

We conclude this section with a remark. Clearly, the above formulation could be
more compact since it includes constraints x3

i = x1
j and x4

i = x2
j for all (i, j) ∈ P 1.

We refrained from variable elimination for easy readability of the formulation and its
relation to the disjunctive graph.
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3 A feasible neighborhood

In view of the state of the art in the simpler non-flexible Blocking Job Shop (BJS),
solving the FBJS with exact methods appears only feasible for small problem sizes.
For this reason, the solution proposed in this paper is of heuristic nature, namely a
tabu search using a neighborhood concept based on the following idea.

Given a feasible solution, feasible neighbor solutions will be generated by re-
scheduling an operation either by moving it within the sequence on the machine it
was assigned to, or moving it to another machine and inserting it in the sequence
of operations on that machine. However, as is the case in the BJS, moves of other
operations might be necessary if feasibility is to be maintained. We first provide a
structural framework for deriving a feasible neighborhood, based on previous work
on the Blocking Job Shop (Gröflin and Klinkert 2009) and on a theoretical frame-
work for insertion in a variety of scheduling problems (Gröflin and Klinkert 2007).
The development of the next section can be seen as an application of this insertion
theory, specializing it (to job insertion in the blocking job shop), but also extending
it by allowing local flexibility. Definitions, e.g. of the insertion graph, and results are
adapted accordingly.

3.1 Job insertion with local flexibility

Given a feasible selection (μ,S) in the disjunctive graph G = (V ,A,E, E , d), let
i ∈ I be an arbitrary operation and let J be the job to which i belongs, i.e. i ∈ J . We
will consider the problem of (extracting and) reinserting job J , allowing operation
i to choose any machine m ∈ Mi and keeping the machine assignments of all other
operations of J . The disjunctive graph G′ = (V ′,A′,E′, E ′, d) for this scheduling
problem is obtained as follows. Delete from V node sets Vjm for all j �= i and m ∈
Mj − μj , obtaining V ′, then add to the set of conjunctive arcs all arcs of S not
incident to job J , obtaining A′, and delete all disjunctive edges not incident to J ,
obtaining E′. Formally,

V ′ = {σ, τ } ∪
( ⋃

j∈I−i

Vjμj

)

∪
( ⋃

m∈Mi

Vim

)

,

and, defining the subset of V ′ associated to job J and the part of S not incident to job
J by

V ′
J =

( ⋃

j∈J−i

Vjμj

)

∪
( ⋃

m∈Mi

Vim

)

,

R = S − δ(V ′
J ),

the sets of conjunctive arcs, disjunctive arcs and disjunctive pairs are

A′ = (A ∩ γ (V ′)) ∪ R,

E′ = (E ∩ γ (V ′)) ∩ δ(V ′
J ) and

E ′ = {(e, e) : e and e ∈ E′).
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Fig. 3 Job insertion with local
flexibility: insertion graph G′

G′ will be called the insertion graph of job J with local flexibility at i. We illustrate
its construction in the example. Identifying in Fig. 2 the four jobs from left to right by
J 1 to J 4, we choose i to be the third operation of job J 4, i.e. i = J 4

3 and J = J 4. We
assume the following selection (μ,S). Mode μ assigns respectively machines m1,
m2 and m4 to the operations J 1

1 , J 1
2 and J 1

3 of job J 1; m3 and m4 to J 2
1 and J 2

2 ;
m1 and m2 to J 3

1 and J 3
2 , and m1, m2 and m4 to J 4

1 , J 4
2 and J 4

3 . S is the selection
of disjunctive arcs corresponding to the permutation schedule with job order J 1, J 2,
J 3, J 4. Figure 3 shows graph G′. The node set V ′

J of job J is the set of shaded
nodes. The disjunctive arcs (set E′) are drawn in dotted lines. The three arcs in bold
lines represent R = S − δ(V ′

J ). Nodes σ and τ and arcs incident to them have been
omitted.

As previously in G, we can define in G′ selections which we call now insertions as
follows. For given m ∈ Mi , let Gm = (V m,Am,Em, E m,d) be the subgraph obtained
from G′ by deleting node sets Vim′ , m′ ∈ Mi − m, and denote by V m

J = V ′
J ∩ V m the

node set associated to J .

Definition 3 For any m ∈ Mi and T ⊆ Em, (m,T ) is called an insertion in G′. (m,T )

is positive cyclic if the graph (V m,Am ∪ T ,d) contains a positive cycle, and positive
acyclic otherwise. (m,T ) is complete if T ∩{e, e} �= ∅ for all {e, e} ∈ E m, and feasible
if it is positive acyclic and complete.

Clearly, for any m ∈ Mi and T ⊆ Em, (m,T ) is a positive acyclic (complete,
feasible) insertion if and only if (μ′, T ∪ R) is a positive acyclic (complete, feasible)
selection in G where μ′ is defined by μ′

i = m and μ′
j = μj for all j ∈ I − i.

In particular, for T S = S ∩ δ(V ′
J ), (μi, T

S) is the feasible insertion corresponding
to the given selection (μ,S). In order to construct a neighbor selection of (μ,S), we
will construct a neighbor insertion of (μi, T

S) in G′.
For this purpose, we need to establish a key property of G′, or more accurately,

of its subgraphs Gm, m ∈ Mi , and introduce the concept of closure. The following
partitions of E′, respectively Em, will be needed in the sequel. The first (bi)partition
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splits the disjunctive arcs into arcs entering and leaving J ,

E− = E′ ∩ δ−(V ′
J ), E+ = E′ ∩ δ+(V ′

J ).

The second partition of E′ into |J | + |Mi | − 1 sets is induced by the operations of J ,

Ej = E′ ∩ δ(Vjμj
), j ∈ J − i, Eim = E′ ∩ δ(Vim), m ∈ Mi .

For given m ∈ Mi , we show now that graph (V m,Am ∪ Em,d), has the so-called
short cycle property (Gröflin and Klinkert 2007). Let Z be (the arc set of) a positive
cycle in (V m, Am ∪ Em, d). Since (V m,Am,d) does not contain a positive cycle,
Z ∩ Em �= ∅. Since Em ⊆ δ(V m

J ) and δ(V m
J ) − Em is made up only of arcs of type

(σ, v) or (v, τ ) which cannot appear in any cycle, Z ∩ Em = Z ∩ δ(V m
J ). Finally,

|Z ∩ δ(V m
J )| = 2|Z ∩ δ+(V m

J )| = 2|Z ∩ δ−(V m
J )| = 2k for some k ≥ 1. k can be seen

as the number of times Z visits V m
J . The following property holds.

Lemma 1 For any positive cycle Z in (V m,Am ∪Em,d) visiting V m
J a number k ≥ 1

of times, there exists a positive cycle Z′ with Z′ ∩ Em ⊆ Z ∩ Em visiting V m
J exactly

once, i.e. Z′ ∩ Em = {e, f } for some e ∈ Z ∩ δ−(V m
J ), f ∈ Z ∩ δ+(V m

J ).

Proof Suppose |Z ∩ δ−(V m
J )| = k > 1. For any e ∈ δ−(V m

J ), e ∈ Ej for some j ∈
J − i or e ∈ Eim, i.e. e is incident to some operation j ∈ J . If j is the s-th operation Js

of job J , define the rank of e as r(e) = s. Obviously, distinct arcs e, e′ ∈ Z ∩ δ−(V m
J )

have distinct ranks. Choose from all e ∈ Z ∩ δ−(V m
J ) the arc, say e′ of highest rank.

Starting out from node h(e′) ∈ V m
J , traverse partially Z, leaving V m

J the first time
through arc f ∈ δ+(V m

J ), then entering V m
J the first time through arc e ∈ Z∩δ−(V m

J )

and stopping in node h(e). By definition of e′, r(e) < r(e′). Therefore there exists a
path PJ in (V m

J , γ (V m
J ), d) from h(e) to h(e′), passing through the processing arc of

operation Jr(e), hence PJ is a positive path. The traversed subpath in Z from h(e′) to
h(e) together with PJ is a closed walk of positive length entering V m

J through e and
leaving V m

J through f , hence it contains a positive cycle Z′ as stipulated. �

We define now the concept of closure in Gm, using for any T ⊆ Em, the short
notation Gm(T ) for graph (V m,Am ∪ T ,d). Given an insertion (m,T ), let

ϕ(T ) = T ∪ {e ∈ Em − T : Gm(T ∪ e) contains a positive cycle Z with Z � e},
and call T closed if ϕ(T ) = T . It is easy to see that if T and T ′ are closed, T ∩ T ′ is
closed, so that the following closure operator � is well-defined.

Definition 4 For any T ⊆ Em, the closure �(T ) of T in Gm is the smallest closed
set containing T .

Obviously, �(T ) can be computed by recursively applying ϕ, for instance by
defining ϕr(T ) = T for r = 0, and applying ϕr(T ) = ϕ(ϕr−1(T )) for r > 1. For
some r ≤ |Em|, ϕr+1(T ) = ϕr(T ), so that �(T ) = ϕr(T ). Note that ϕ(T ) = T ⇔
�(T ) = T . Also, for any T , T ′ ⊆ Em, T ⊆ T ′ ⇒ �(T ) ⊆ �(T ′).
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Fig. 4 Deriving �(e5) =
{e5, e3, e1} in Gm1

The closure �(T ) adds arcs to T that are “implied” by T , i.e. that must be chosen
by any feasible selection containing T , as expressed by the following proposition.

Proposition 1 If (m,T ′) is feasible and T ⊆ T ′, then �(T ) ⊆ T ′ and (m,�(T )) is
positive acyclic.

Proof Since (m,T ′) is complete, e ∈ Em − T ′ implies e ∈ T ′, and since (m,T ′) is
positive acyclic, Gm(T ′ ∪ e) = Gm(T ′) does not contain a positive cycle. Hence
ϕ(T ′) = T ′ = �(T ′), i.e. T ′ is closed. From �(T ) ⊆ �(T ′) = T ′ follows that
(m,�(T )) is positive acyclic. �

Continuing the example, we briefly illustrate how the closure �(e5) is derived in
Gm for m = m1, i.e. machine m1 is chosen for i, the third operation of J . Figure 4
depicts Gm1 . One easily identifies a positive cycle entering J in e5 and leaving J in
e3, hence e5 implies e3, hence e3 ∈ ϕ1(e5). In fact, no further arc is implied by e5,
i.e. ϕ1(e5) = {e5, e3}. Also, there is a positive cycle entering J in e3 and leaving J in
e1, hence e1 ∈ ϕ2(e5). One can check that no other arc is implied by e1, i.e. ϕ2(e5) =
{e5, e3, e1}, and that e1 does not imply any further arc, hence �(e5) = {e5, e3, e1}.

Besides closures, we will also need the notion of span in the sequel:

Definition 5 For any T ⊆ Em, the span of T in Gm is the set

[T ] = {e ∈ Em : {e, e} ∩ T �= ∅}.

3.2 Operation moves

Given a feasible selection (μ,S), neighbor selections can be generated with the fol-
lowing scheme. An operation i ∈ I , a machine m ∈ Mi and a disjunctive arc f /∈ S

with t (f ) ∈ Vim are chosen, and a corresponding feasible neighbor selection (μ′, Sf )

is constructed, which places i on machine m and enforces f ∈ Sf , i.e. places i be-
fore operation k such that h(f ) ∈ Vkm. Disjunctive arcs other than f might also be
enforced, in order to maintain feasibility. They will be determined by performing two
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successive closures in the insertion graph of the job J to which i belongs, hereby re-
inserting J in a neighbor position. Specifically, (μ′, Sf ) is derived as follows. Mode
μ′ is given by

μ′
j = μj for all j ∈ I − i,μ′

i = m. (1)

Sf is derived as follows. Let J be the job to which i belongs, G′ be the insertion graph
of J with local flexibility in i and Gm = (V m,Am,Em, E m,d) be the subgraph of G′
corresponding to the machine choice μ′

i = m for operation i. Then

Sf = Tf ∪ R (2)

where, as before, R = S − δ(V ′
J ) is the part of S not incident to J , and (m,Tf ) is a

feasible neighbor of the insertion (μi, T
S) corresponding to (μ,S), to be constructed

as follows.
Let T m = S ∩Em and Eim− = Eim ∩E−. Apply successively the following three

steps. (i) Take f and all arcs implied, i.e. form the closure �(f ) in Gm. (ii) Place
before i all other operations on machine m that have not already been sequenced with
respect to i in step (i), forming the closure �(Eim− − [�(f )]) in Gm. (iii) Keep T m

on the remaining part. Specifically:

Tf = P ∪ Q ∪ (T m − [P ∪ Q]) where (3)

P = �(f ), Q = �(Eim− − [P ]) (4)

Theorem 1 Insertion (m,Tf ) given by (3) and (4) is a feasible neighbor insertion of
(μi, T

S).

Proof We show that (m,Tf ) is a feasible insertion by proving that (i) its “compo-
nents” (m,P ), (m,Q) and (m,T m − [P ∪ Q]) are positive acyclic, (ii) (m,Tf ) is
complete and (iii) (m,Tf ) is positive acyclic.

(i) Clearly, (m,Em+) and (m,Em−) are feasible insertions where job J is placed
before, respectively after, all other jobs. By Proposition 1, f ∈ Em+ and Eim− −
[P ] ⊆ Em− imply that P = �(f ) ⊆ Em+ and Q = �(Eim− − [P ]) ⊆ Em−, hence
(m,P ) and (m,Q) are positive acyclic. Also (m,T m −[P ∪Q]) is obviously positive
acyclic.

(ii) To establish completeness of (m,Tf ), we verify that Tf ∩ {e, e} �= ∅ for all
pairs {e, e} ⊆ Em. By construction of P and Q, (P ∪ Q) ∩ {e, e} �= ∅ for all {e, e} ⊆
Eim. Also, for any {e, e} ⊆ Em − Eim for which (P ∪ Q) ∩ {e, e} = ∅, completeness
of (μi, T

S) implies that (T m − [P ∪ Q])) ∩ {e, e} �= ∅.
(iii) Since Em+ ∩ Em− = ∅, P and Q are disjoint. We show that also their spans

are disjoint:

[P ] ∩ [Q] = ∅. (5)

It is enough to prove [P ] ∩ Q = ∅. Assuming the contrary, there exists some set
N such that Eim− − [P ] ⊆ N ⊂ Q, [P ] ∩ N = ∅ and [P ] ∩ ϕ(N) �= ∅. Let e ∈
(ϕ(N) − N)) ∩ [P ]. Note that e ∈ ϕ(N) ⊆ Q ⊆ Em−, e ∈ [P ] and P ⊆ Em+ imply
e ∈ P ⊆ Em+. By definition of ϕ(N), there exists a positive cycle Z in Gm(N ∪ e)
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going through e. By Lemma 1, there is a short positive cycle Z′ in Gm(N ∪ e) with
{g,h} = Z′ ∩Em ⊆ Z∩Em for some g ∈ Em− and h ∈ Em+. Since (m,Q) is positive
acyclic (see (i)) and N ⊂ Q, any positive cycle in Gm(N ∪ e) and hence Z′, must
contain e. Therefore e = h, and g ∈ N with g �= e since e /∈ N , and g /∈ P since
g ∈ N and N ∩ [P ] = ∅.

Now, P is closed so that e ∈ P,g /∈ P , g �= e and Z′ is a positive cycle in Gm(e ∪
g) imply that g ∈ ϕ(P ) = P . But then g ∈ N ∩ [P ], a contradiction to N ∩ [P ] = ∅.

We show now that (m,Tf ) is positive acyclic. Suppose the contrary. By Lemma 1,
there exists a short positive cycle Z′ with {g,h} = Z′ ∩Em in Gm(Tf ) = Gm(P ∪Q∪
(T m − [P ∪ Q])). Suppose g ∈ P . If h = g, h ⊆ [P ]. If h �= g, since P is closed and
Z′ is a positive cycle in Gm(g ∪ h), h ∈ P, and hence h ⊆ [P ]. Similarly, if g ∈ Q,
h ⊆ [Q]. Hence {g,h} is contained in [P ] or [Q] or T m −[P ∪Q]. By (5), these three
cases are mutually exclusive, hence {g,h} ⊆ Tf implies {g,h} ⊆ P or {g,h} ⊆ Q or
{g,h} ⊆ T m − [P ∪ Q], a contradiction to (m,P ), (m,Q) and (m,T m − [P ∪ Q])
being positive acyclic. �

Corollary 1 If m = μi , i.e. operation i remains on its current machine and f ∈ S,
then (3) is equivalent to

Tf = P ∪ (T m − [P ]). (6)

Proof Let Tf be defined by (3) and T̂f = P ∪ (T m −[P ]). First, (m, T̂f ) is a feasible
insertion. This is easily shown using the arguments of the previous proof and noting
that completeness of (m, T̂f ) results from the fact that now, with m = μi , (m,T m) is
feasible and hence complete. Next, we show that

Q = �(Eim− − [P ]) ⊆ T m − [P ]. (7)

Let i1, . . . , il be the operations on machine m, ordered in that sequence by T m, i.e.
T m ∩ Eim consists of all disjunctive arcs g with t (g) ∈ Virm, h(g) ∈ Vism, 1 ≤ r <

s ≤ l. Since f ∈ T m with h(f ) ∈ Vim, i = iq for some q with 1 < q ≤ l, and for its
mate f , t (f ) ∈ Viqm and h(f ) ∈ Vipm for some p with 1 ≤ p < q ≤ l. Obviously,
any g ∈ Eim+ with t (g) ∈ Viqm and h(g) ∈ Vism for s ≥ p, s �= q , is contained in P ,
since i = iq being placed ahead of ip implies that i also precedes any operation is
with s ≥ p. Therefore g ∈ Eim+ −P implies t (g) ∈ Viqm and h(g) ∈ Vism for some s

with 1 ≤ s < p, hence g ∈ Eim− −[P ] implies t (g) ∈ Vism and h(g) ∈ Viqm for some
s with 1 ≤ s < p < q . But then g ∈ T m ∩ Eim, proving

Eim− − [P ] ⊆ T m − [P ]. (8)

Since (m,Tm) is feasible, by (8) and Proposition 1, Q = �(Eim− − [�(f )]) ⊆ T m

and by (5), Q ⊆ T m − [P ], proving (7).
From (7) follows P ∪ Q ⊆ P ∪ (T m − [P ]). Also T m − [P ∪ Q] ⊆ T m − [P ],

hence Tf = P ∪Q∪ (T m −[P ∪Q]) ⊆ P ∪ (T m −[P ]) = T̂f . But Tf ⊆ T̂f implies
Tf = T̂f since both (m,Tf ) and (m, T̂f ) are feasible insertions with same mode m

and therefore |Tf | = |T̂f |. �
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Fig. 5 Current and neighbor selections

By Corollary 1, the neighbor (m,Tf ) of insertion (m,T m) if operation i remains
on its current machine and f ∈ S, is obtained more simply by taking f together with
the arcs it implies, forming P = �(f ), and keeping T m on the remaining part. We
remark that we used neighbors of this type in previous work on the simpler non-
flexible Blocking Job Shop (Gröflin and Klinkert 2009).

We illustrate in the example the generation of a neighbor selection according to
(3)–(4). The current selection (μ, S) is depicted in Fig. 5, left, i.e. S = {a, b, c, e1,

e2, e3, e4, e8, e9} consists of the bold and dotted arcs. The part of S not incident to
job J is R = {a, b, c}. We choose the operation i to be moved as the third operation
of the job J at the right, so that the insertion graph is the graph previously given in
Fig. 3. In the current selection, operation i is on machine m4. The insertion (m,T m)

corresponding to (μ,S) is defined by m = m4 and T m4 = {e1, e2, e3, e4, e8, e9}.
We move now operation i to machine m = m1 and choose f = e6. According

to (3)–(4), we determine P = �(e6) = {e6, e4, e2}, Eim1− − [�(e6)] = {e5} and
Q = �(Eim1− −[�(e6)]) = {e5, e3, e1}, so that P ∪Q = {e6, e4, e2, e5, e3, e1}. Also,
T m1 = T m4 ∩ Em1 = {e1, e2, e3, e4}, hence T m1 − [P ∪ Q] = ∅. Therefore, Tf =
P ∪ Q and the neighbor selection is Sf = Tf ∪ R = {e6, e4, e2, e5, e3, e1, a, b, c}. It
is depicted at the right.

Two remarks are in order before concluding this section. First, in the move of op-
eration i on a machine m ∈ Mi , we introduce in Sf some disjunctive arc f /∈ S with
t (f ) ∈ Vim, h(f ) ∈ Vjm, placing i before some operation j on m. Obviously, a sim-
ilar construction of a neighbor selection Sg introducing now a disjunctive arc g /∈ S

with h(g) ∈ Vim, t (g) ∈ Vjm, can be derived in a straightforward manner, placing i

after operation j on m. Formulas (3)–(4) become

Tg = P ∪ Q ∪ (T m − [P ∪ Q]) where (9)

P = �(g), Q = �(Eim+ − [P ]) (10)

Second, consider the case where an operation i is moved to a machine m ∈ Mi −μi

on which there is no operation in the current selection. Since there is no f with
t (f ) ∈ Vim or g with h(g) ∈ Vim to select, this case is not accounted for by (3)–(4) or
(9)–(10). The corresponding neighbor selection (μ′, S∅) obtained from such a move
is obviously given by (1) and S∅ = T m ∪ R. In fact, (3)–(4) (or (9)–(10)) still apply
by simply setting f = ∅ (or g = ∅), justifying the notation S∅. Indeed, in this case
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Eim− = Eim+ = ∅ and �(f ) = �(g) = ∅, so that (3)–(4) or (9)–(10) yield S∅ =
T m ∪ R.

4 A tabu search

Tabu search is a well-known heuristic approach in combinatorial optimization (see
for instance Glover and Laguna 1997). In particular, various job shop scheduling
problems have been tackled with this method by numerous authors, e.g. by Nowicki
and Smutnicki (1996) for the classical job shop. We present now a tabu search for
the FBJS based on the feasible neighborhood developed in the previous section, and
using some general features of Nowicki and Smutnicki (1996), in particular Back
Jump Tracking with the maintenance of a list of elite solutions. These features have
proved useful in the (non-flexible) Blocking Job Shop (Gröflin and Klinkert 2009).

First, we reduce the number of potential neighbors by considering only moves of
critical operations. Given a feasible selection (μ,S) in the disjunctive graph G =
(V ,A,E, E , d), let L be the arc set of an (arbitrary) longest path from σ to τ in
subgraph (V μ,Aμ ∪ S,d). The set of critical operations is defined by

I c = {i ∈ I : {h(e), t (e)} ∩ Viμi
�= ∅ for some e ∈ S ∩ L}. (11)

For each operation i ∈ I c, neighbors (μ′, Sf ) according to (1), (2), (3) and (4) are
generated by proceeding for each m ∈ Mi as follows.

(i) If m = μi and h(e) ∈ Viμi
for a (unique) e ∈ S ∩ L, i.e. i stays on its ma-

chine and is preceded on it by a critical operation, namely operation j (i) such that
t (e) ∈ Vj(i)m, then f is the mate of e. The move reverses the precedence between i

and its immediate predecessor j (i) on m. Note that, due to the closures taken, other
operations of job J to which i belongs might be moved as well, and while i is moved
ahead of j (i), it might not be its immediate predecessor. We also point out that if
there is no e ∈ S ∩ L with h(e) ∈ Viμi

, i.e. i is the first critical operation of a “block”
on machine μi , then no move of i staying on μi is generated.

(ii) If m �= μi , i.e. operation i changes its machine, the choice of f is less immedi-
ate. In principle, i could be inserted anywhere in the sequence of operations on m and
one could generate as many neighbors as there are insertion positions. However, in
order to limit the size of the neighborhood, only one f is chosen with the following
idea in mind. In a neighbor selection that is close to the current selection, i is likely to
be scheduled on the new machine m at a time not too far from its time on the current
machine μi . We proceed therefore as follows. In selection (μ,S), for any operation k,
let xk denote the starting time of k on its machine μk , i.e. xk is the length of a longest
path from σ to v1

k,μk
in subgraph (V μ,Aμ ∪ S,d). Let j (i) be an operation on m

such that xj (i) ≥ xi and either j (i) is first in the sequence on m or its predecessor,
say k, has starting time xk < xi . Then f with h(f ) ∈ Vj(i),m, t (f ) ∈ Vim is chosen,
placing i before j (i). If all operations k on m have starting times xk < xi , then set
f = ∅ in (3)–(4). S∅ thus obtained will place i last in the sequence on m. If there are
no operations on m, take again S∅ (as discussed at the end of Sect. 3).

The neighborhood just described will be referred to as N 1
c . Since for each oper-

ation i ∈ I c, |Mi | neighbors (or |Mi | − 1 neighbors if i is the first critical operation
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of a “block”) are generated, the size of N 1
c is relatively large and increases with the

degree of flexibility. For this reason, we also examined a second neighborhood N 2
c

⊆ N 1
c of smaller size (approximately |I c|) independent of the degree of flexibility,

obtained as follows. In selection (μ,S), let the current workload of a machine m be
the sum of the sojourn times of the operations on m (counted for each operation from
start of take-over step to end of hand-over-step), and corresponding set-up times. For
each operation i ∈ I c, a single neighbor is generated by first choosing among all ma-
chines in Mi , the machine, say m, with smallest current workload and constructing
neighbor (μ′, Sf ) as above.

Two tabu search versions with neighborhood N 1
c and N 2

c respectively have been
implemented. A tabu list storing entries of the last maxt iterations is maintained.
Specifically, a tabu list L(μ,S) is associated to the current selection (μ,S), of maxi-
mal length maxt. The list is empty for the initial selection. In an iteration, i.e. after
execution of a move from selection (μ,S) to a neighbor (μ′, Sf ), the list L(μ′,Sf ) is
obtained from L(μ,S) by dropping the oldest entry if |L(μ,S)| = maxt, and entering in
first position arc e chosen as follows. (i) If operation i ∈ I c was moved while staying
on machine m = μi , then e ∈ S ∩ L with h(e) ∈ Viμi

is chosen. (ii) If i ∈ I c was
moved to machine m �= μi , then e ∈ S ∩ L with h(e) ∈ Viμi

, or, if there is no such e,
e ∈ S ∩ L with t (e) ∈ Viμi

is entered. The tabu list is used to define tabu neighbors:
a neighbor (μ′, Sf ) of (μ,S) is tabu if Sf ∩ L(μ,S) �= ∅.

The choice of the move to be executed is based on the evaluation of the so-called
candidate set. This set consists initially of the whole neighborhood. The (minimal)
makespan for each neighbor selection is computed. Then any neighbor which is tabu
and whose makespan does not improve the best makespan found so far (improved-
best aspiration criterion), is removed from the candidate set. If this set becomes empty
(i.e. all neighbors are tabu and non-improving), the neighbor corresponding to the
oldest entry in the tabu list is added to it. The move to be executed is then to the
neighbor with best makespan in the candidate set.

A long term memory is also used in the tabu search by maintaining a list of
bounded length maxl of so-called elite solutions, which is initially empty. A new so-
lution is appended to the list if it is better than any previously encountered solution.
If the tabu search runs for a given number maxiter of iterations without improving
the best makespan or if a cycle is detected, the current search path is terminated and
search is resumed from the last elite solution in the list. For this reason, an elite solu-
tion is stored together with its associated tabu list and the moves already taken from
the solution. Thus, when resuming the search from the solution, its tabu list is restored
and previously executed moves are removed from the candidate set. An elite solution
is deleted from the list if its candidate set is empty. Finally, a procedure is used to
detect cycling that keeps track of the sequence of makespans encountered during the
search and scans for repeated subsequences.

5 Computational results

The tabu search has been implemented in C++ and run on a PC with 3.0 GHz proces-
sor and 2 GB memory. Since the FBJS does not appear in the literature, benchmark
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instances and results were not available. We created therefore a total of 320 instances
starting from data used by Gröflin and Klinkert (2009) in the Blocking Job Shop
(BJS).

We started with the 40 instances la01 to la40. For each lapq , two groups of 4 in-
stances were generated, the first group without transfer and set-up times and referred
to as FBJS0, the second group with transfer and set-up times, referred to as FBJSts .
Within a group, the 4 instances are generated by introducing increasing flexibility: in
the first instance, 1 machine is available for each operation (i.e. the non-flexible in-
stance), while in the 2nd, 3rd and 4th instance, 2, 3 and 5 machines respectively, are
available for each operation. This is achieved by adding randomly and successively
1, 1 and 2 machines, creating for each operation four machine sets of size 1, 2, 3
and 5 that are nested. Such a choice will allow to evaluate the impact of increasing
flexibility.

Transfer and set-up times were generated randomly as described in Gröflin and
Klinkert (2009) for the BJS. Note however that in the FBJS, it is possible that two
operations that are consecutive in a job are on a same machine. In this case, both
corresponding transfer and set-up times are set to zero.

Computations were performed as follows. Tabu search parameters were identical
for all runs and set as: maxt = 14, maxl = 300 and maxiter = 2500. Both versions of
the tabu search with neighborhood N 1

c and N 2
c were executed.

For each instance, five runs were performed with different starting solutions. The
latter were randomly generated permutation schedules, using the choice of machines
(i.e. the mode) of the corresponding non-flexible instance. Computation time of a run
was limited to 1800 seconds.

Detailed computational results are provided in Table 1. Its first line splits the re-
sults into the two groups FBJS0 and FBJSts of problems without, respectively with
transfer and set-up times. The second line refers to the degree of flexibility, i.e. the
number (flex = 2,3 or 5) of machines per operation, and the third line to the neigh-
borhood (N 1

c or N 2
c ) used. The rest of the table is subdivided horizontally according

to the size of the problem, e.g. the first block reports on instances 10 × 5 with 10 jobs
and 5 machines. In each line lapq , the mean makespan (averaged over the five runs)
is reported for varying degree of flexibility, neighborhood and absence or presence
of transfer and set-up times. We discuss now these results, assessing solution quality,
convergence behavior of the tabu search and impact of increasing flexibility on the
makespan.

As is often the case in complex scheduling problems, a definitive assessment of
attained solution quality by comparing it with the mathematically proven optimum is
not possible in the current state of the art. Also, as already mentioned, no benchmarks
for the FBJS are available in the literature. For these reasons, we resorted to compare
performance of our tabu search when applied on the (non-flexible) BJS. Benchmarks
are available in this case. We used the results of Gröflin and Klinkert (2009) which
provide the most comprehensive benchmarks for the BJS without and with set-up and
transfer times.

Since the neighbor construction (3) yields in the non flexible case the same neigh-
bor as used for the benchmark results (see Corollary 1), one would expect that our
tabu search for FBJS performs at best as well or somewhat worse due to computa-
tional overhead. Surprisingly, our method not only matched, but improved nearly all
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Table 1 Detailed tabu search results for various degrees of flexibility

FBJS0 FBJSts

flex 2 3 5 2 3 5

inst N 1
c N 2

c N 1
c N 2

c N 1
c N 2

c N 1
c N 2

c N 1
c N 2

c N 1
c N 2

c

10 × 5

la01 666 689 617 634 – – 1018 1057 860 914 – –

la02 613 637 576 591 – – 956 1010 808 842 – –

la03 563 580 515 536 – – 936 960 744 785 – –

la04 588 612 538 554 – – 914 940 758 778 – –

la05 553 559 549 550 – – 846 879 751 780 – –

15 × 5

la06 920 956 861 892 – – 1387 1469 1154 1231 – –

la07 864 900 805 837 – – 1375 1458 1115 1196 – –

la08 897 925 827 859 – – 1432 1500 1167 1205 – –

la09 1014 1048 919 953 – – 1565 1641 1219 1280 – –

la10 945 987 874 912 – – 1542 1596 1193 1264 – –

20 × 5

la11 1268 1300 1147 1188 – – 2014 2063 1600 1648 – –

la12 1108 1133 1020 1045 – – 1825 1892 1462 1506 – –

la13 1228 1262 1119 1163 – – 1920 2014 1529 1586 – –

la14 1248 1295 1155 1178 – – 1979 2009 1549 1614 – –

la15 1286 1309 1185 1225 – – 1965 2021 1592 1701 – –

10 × 10

la16 818 860 724 796 717 749 1313 1344 1165 1225 967 1043

la17 693 766 646 701 646 651 1213 1256 1081 1122 853 968

la18 776 850 697 778 663 733 1281 1331 1163 1200 957 1058

la19 830 898 705 829 648 782 1308 1353 1194 1224 990 1110

la20 834 895 756 824 756 764 1386 1425 1215 1270 985 1110

15 × 10

la21 1174 1230 1066 1112 1034 1059 1899 1933 1601 1705 1289 1427

la22 1058 1102 989 1020 947 970 1762 1836 1516 1637 1235 1361

la23 1169 1211 1098 1144 1052 1086 1887 1922 1609 1701 1307 1407

la24 1103 1154 1013 1064 1005 1032 1865 1896 1582 1693 1251 1376

la25 1072 1147 982 1050 931 979 1823 1866 1512 1610 1219 1342
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Table 1 (Continued)

FBJS0 FBJSts

flex 2 3 5 2 3 5

inst N 1
c N 2

c N 1
c N 2

c N 1
c N 2

c N 1
c N 2

c N 1
c N 2

c N 1
c N 2

c

20 × 10

la26 1523 1572 1402 1438 1294 1355 2421 2474 2067 2146 1675 1854

la27 1561 1636 1433 1495 1353 1378 2543 2608 2178 2262 1742 1887

la28 1552 1630 1420 1476 1343 1371 2513 2573 2142 2268 1725 1890

la29 1476 1529 1337 1337 1263 1276 2396 2461 2060 2159 1671 1827

la30 1534 1577 1397 1443 1318 1341 2539 2578 2158 2269 1724 1913

30 × 10

la31 2303 2332 2089 2122 1981 1959 3707 3736 3118 3206 2424 2656

la32 2533 2508 2265 2325 2147 2142 3946 3988 3335 3468 2634 2860

la33 2233 2236 2046 2140 1935 1957 3675 3793 3139 3285 2418 2633

la34 2327 2324 2091 2105 2022 1996 3761 3800 3187 3257 2432 2704

la35 2331 2376 2136 2136 2019 2032 3717 3852 3134 3296 2492 2754

15 × 15

la36 1346 1435 1240 1342 1158 1248 2090 2178 1864 1965 1646 1791

la37 1486 1579 1351 1474 1264 1409 2230 2305 2002 2113 1791 1922

la38 1269 1365 1144 1247 1061 1175 2061 2110 1811 1909 1592 1726

la39 1327 1424 1202 1339 1144 1279 2055 2200 1815 1927 1590 1729

la40 1361 1450 1288 1352 1156 1293 2112 2165 1845 1927 1616 1762

(all but one out of 80) makespans to an extent of a few percent to over ten percent.
Detailed comparisons can be found in Table 2. The columns with heading “bench”
and “new” refer respectively to the results reported in Gröflin and Klinkert (2009) and
achieved with our tabu search. (Note that N 1

c = N 2
c if there is no flexibility, so that

there is no distinction between the two neighborhoods to be made here.) Altogether,
our tabu search for the FBJS is competitive even for the BJS, and its logic suggests
that its performance should be comparable in flexible instances.

It is of interest to examine the evolution of attained solution quality during compu-
tation. Table 3 gives an overview for a subset of the benchmark instances, namely all
instances of FBJSts with two machines per operation (flex = 2), and both neighbor-
hoods N 1

c and N 2
c . For each run of each instance, the best makespan ω at the begin-

ning (initial solution), and after 100, 200, 300, 600 and 1200 seconds of computation
has been recorded and its (relative) gap from the final solution (ω − ωf inal)/ωf inal

computed. Table 3 shows in columns 4 to 9 these gaps in an aggregated way, reporting
mean gaps (over runs and instances of same size). Additionally, average number of
iterations and running time are given in columns 2 and 3. The following observations
can be made.
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Table 2 Detailed tabu search results without flexibility

FBJS0 FBJSts FBJS0 FBJSts

bench new bench new bench new bench new

10 × 5 15 × 10

la01 836 820 1570 1487 la21 1617 1576 2987 2805

la02 824 817 1579 1518 la22 1525 1467 2875 2575

la03 765 740 1497 1439 la23 1645 1570 2979 2705

la04 774 764 1470 1398 la24 1623 1546 3019 2738

la05 711 666 1399 1320 la25 1541 1523 2890 2681

15 × 5 20 × 10

la06 1191 1180 2259 2117 la26 2182 2125 4013 3620

la07 1119 1084 2274 2070 la27 2258 2201 4110 3760

la08 1161 1162 2201 2109 la28 2186 2167 4017 3661

la09 1269 1258 2341 2205 la29 2161 1990 4029 3645

la10 1222 1208 2349 2239 la30 2199 2097 4126 3742

20 × 5 30 × 10

la11 1615 1591 3121 2872 la31 3266 3137 6506 5550

la12 1433 1398 2873 2664 la32 3549 3316 6404 5863

la13 1576 1541 2858 2710 la33 3225 3061 6423 5566

la14 1648 1638 2935 2830 la34 3354 3146 6618 5595

la15 1667 1630 2981 2822 la35 3445 3171 6312 5555

10 × 10 15 × 15

la16 1175 1143 2066 1913 la36 1974 1919 3696 3274

la17 1040 977 1960 1786 la37 2133 2029 3808 3386

la18 1112 1098 2068 1880 la38 1939 1828 3571 3119

la19 1124 1102 1966 1844 la39 1987 1882 3587 3158

la20 1184 1162 2119 1958 la40 1982 1925 3496 3173

Initial solutions are often far away from the obtained final solutions: their make-
span is about three times as large for small problem sizes, and 4 to 5 times as large for
larger sizes. Second, most of the improvements are made in the first 100 (300) sec-
onds depending on problem size, and no or only marginal improvements are reached
after 1200 seconds even for larger sizes. Similar results have been achieved for in-
stances with higher flexibility, suggesting good improvement performance and con-
vergence of the tabu search.

We also examined the extent to which increasing flexibility decreases makespan.
For each instance, the mean makespan ω (averaged over the five runs) is compared to
the mean makespan ωnonf lex of the corresponding instance with no flexibility and the
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Table 3 Time analysis for FBJSts tabu search with flexibility 2

size iter time init 100 s 200 s 300 s 600 s 1200 s

N 1
c

10 × 5 683679 1774 1.95 0.03 0.01 0.01 0.00 0.00

15 × 5 326775 1801 1.88 0.03 0.02 0.02 0.01 0.00

20 × 5 194100 1801 1.83 0.03 0.02 0.01 0.01 0.00

10 × 10 215991 1801 3.04 0.03 0.02 0.01 0.01 0.00

15 × 10 97719 1801 3.31 0.05 0.03 0.03 0.01 0.01

20 × 10 55007 1801 3.20 0.07 0.05 0.03 0.02 0.01

30 × 10 25999 1801 3.12 0.08 0.06 0.05 0.02 0.01

15 × 15 51883 1801 4.51 0.08 0.05 0.03 0.02 0.01

N 2
c

10 × 5 363552 552 1.84 0.02 0.01 0.01 0.00 0.00

15 × 5 566514 1801 1.74 0.02 0.01 0.01 0.00 0.00

20 × 5 334144 1801 1.75 0.03 0.02 0.01 0.01 0.00

10 × 10 379275 1801 2.91 0.04 0.02 0.02 0.00 0.00

15 × 10 173712 1801 3.21 0.04 0.03 0.02 0.01 0.00

20 × 10 100534 1801 3.11 0.06 0.04 0.03 0.02 0.01

30 × 10 45378 1801 3.04 0.08 0.05 0.04 0.02 0.00

15 × 15 92562 1801 4.30 0.07 0.04 0.03 0.02 0.01

relative variation (ω − ωnonf lex)/ωnonf lex is computed. These relative variations are
reported in Table 4 in an aggregated way (averaged over instances of same size) for
both neighborhoods N 1

c and N 2
c , and for FBJS0 and FBJSts (without/with transfer

and set-up times). The following observations can be made.
First, flexibility offers more potential for makespan reduction when transfer and

set-up times are present. For instance, for larger problems (10 × 10 to 15 × 15 in
Table 4) and 5 machines per operation, the makespan is reduced by approximately
37% in the absence of transfer and set-up times and by about 53% otherwise. This
can be attributed to the opportunity for two consecutive operations in a job to be
performed on the same machine if their machine sets intersect, in which case transfer
and set-up times are saved. This effect is quite visible when schedules are displayed
in Gantt charts (see example below).

Second, when the number of machines per operation increases from 2 to 3 to 5, the
makespan is reduced on average by 25%, 31% and 37% in the absence of transfer-
and set-up times, and by 32%, 43% and 53% otherwise. While these figures are only
estimates, they give an interesting indication on the benefit of flexibility and also of
the diminishing return of adding flexibility.

We conclude the discussion of computational results by observing that the tabu
search version with neighborhood N 1

c appears to be better than the neighborhood
N 2

c with respect to solution quality. As is apparent in Table 1, N 1
c is systematically

better for problems FBJSts . However, N 2
c yields in six out of 105 instances of FBJS0
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Table 4 Impact of flexibility

FBJS0 FBJSts

flex 2 3 5 2 3 5

size N 1
c N 2

c N 1
c N 2

c N 1
c N 2

c N 1
c N 2

c N 1
c N 2

c N 1
c N 2

c

10 × 5 −22% −19% −26% −25% – – −35% −32% −45% −43% – –

15 × 5 −21% −18% −27% −24% – – −32% −29% −46% −42% – –

20 × 5 −21% −19% −28% −26% – – −30% −28% −44% −42% – –

10 × 10 −28% −22% −36% −28% −37% −33% −31% −28% −38% −36% −49% −44%

15 × 10 −27% −24% −33% −30% −35% −33% −32% −30% −42% −38% −53% −49%

20 × 10 −28% −25% −34% −32% −38% −36% −33% −31% −42% −40% −54% −49%

30 × 10 −26% −26% −33% −32% −36% −36% −33% −32% −43% −41% −56% −52%

15 × 15 −29% −24% −35% −30% −40% −33% −35% −32% −42% −39% −49% −45%

Average −25% −22% −31% −28% −37% −35% −32% −30% −43% −40% −53% −48%

Fig. 6 Gantt chart of instance la05 with flexibility 2 and transfer and set-up times

better results. N 2
c appears to be at an advantage when generating a sufficient number

of iterations in the available computing time is critical. Indeed, since N 2
c ⊆ N 1

c , more
iterations are performed with N 2

c than with N 1
c for a given instance and computation

time. Also, generating a neighbor is computationally more expensive in problems
FBJS0 than in FBJSts , since determining closures in FBJS0 involves detection of
positive cycles (cycles of length 0, corresponding to so-called swaps, being allowed).

Figure 6 shows a Gantt chart of the best schedule with makespan 837 obtained
in instance la05 with two machines per operation and transfer and set-up times. The
narrow bars represent set-up times (filled) and waiting times (hatched), while thick
bars represent take-over, processing and hand-over steps of operations. The numbers
refer to the jobs, e.g. the five 3 in the chart identify the five operations of job 3. Note
that, taking advantage of machine flexibility, several consecutive operations in jobs
are executed on a same machine, thus saving transfer and set-up times.

6 Concluding remarks

It is well-known that adding blocking constraints in the classical Job Shop, turning
it into a Blocking Job Shop (BJS), makes the problem substantially more complex.
Theoretical results as well as empirical evidence with various solution approaches
support this fact. The difficulty stems from feasibility issues. For instance, determin-
ing whether a partial positive acyclic selection can be extended to a feasible selection
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is an NP-complete decision problem (and is easy in the classical Job Shop). Some
heuristic approaches that have been proposed do not always terminate with a feasible
solution, others, based on local search, resort to “repair” steps in order to maintain a
feasible solution, at the risk of deteriorating solution quality.

The Flexible Blocking Job Shop (FBJS), as a generalization of the BJS allowing
for machine choices for the operations, represents therefore a challenge. Up to now,
this problem does not seem to have been tackled, at least we are not aware of previ-
ous work in the literature. We presented in this paper a tabu search for the FBJS that
consistently generates feasible neighbor solutions and leads to substantial solution
improvement. The neighborhood is based on moves of critical operations. An opera-
tion is moved on its currently assigned machine or to another machine, together with
implied moves of other operations.

We conducted numerical experiments on a larger test set which support the va-
lidity of the approach. Our tabu search is competitive even in the non-flexible case
(BJS), improving most benchmarks available in the literature on the test set, and it
establishes first benchmarks for the FBJS. Additionally, it provided interesting infor-
mation on how adding flexibility in a BJS reduces makespan.

Our approach required some theoretical tools. First, we chose to give a compre-
hensive formulation of the FBJS in a disjunctive graph that includes flexibility and
sequence-dependent transfer times and set-up times. For a given assignment of ma-
chines, a so-called mode, the corresponding disjunctive graph is then a node-induced
subgraph. Second, we needed to introduce the framework of job insertion with local
flexibility as the proper structural setting for describing the moves and proving their
feasibility.

Several directions for future research suggest themselves. First, the framework
of job insertion with local flexibility could be exploited further. Indeed, based on
Gröflin and Klinkert (2007), it is not difficult to characterize all feasible insertions in
the insertion graph G′ through stable sets in the so-called conflict graph, so that other
feasible neighbors than the ones used here are at hand.

Second, reducing computation times is desirable, especially in view of applica-
tions in practice. This might be achieved by efficiency improvements in the imple-
mentation of the tabu search. Designing heuristics of constructive nature would be
another alternative. A first step was taken in Pham (2008) where, besides an early
version of the tabu search presented in this paper, also constructive heuristics are
proposed that are faster, however at the cost of markedly lower solution quality.

Finally, extending the FBJS to the Flexible Job Shop with Limited Buffer Capacity
(FJSLBC) suggests itself. In fact the latter problem can be captured as a FBJS by
modeling each buffer capacity unit as a machine. However, as Brucker et al. (2006)
have shown, there are benefits in studying specific buffer configurations. Future work
on the FJSLBC could combine elements of Brucker et al. (2006) with the approach
presented here.

Acknowledgements We are greatly indebted to Andreas Klinkert for letting us benefit from his code
for the blocking job shop. It formed the basis in our code development.
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