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Abstract This paper focuses on the numerical analysis of a finite element method
with stabilization for the unsteady incompressible Navier—Stokes equations. Incom-
pressibility and convective effects are both stabilized adding an interior penalty term
giving L>-control of the jump of the gradient of the approximate solution over the inter-
nal faces. Using continuous equal-order finite elements for both velocities and pres-
sures, in a space semi-discretized formulation, we prove convergence of the approxi-
mate solution. The error estimates hold irrespective of the Reynolds number, and hence
also for the incompressible Euler equations, provided the exact solution is smooth.
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1 Introduction

In this paper we propose a finite element method using interior penalty stabilization
for the incompressible Navier—Stokes equations. This method was introduced by Bur-
man and Hansbo in [12], as an extension of the interior penalty method proposed by
Douglas and Dupont in [17] to the case of pure transport problems or convection—dom-
inated problems. Pressure stabilization for the Stokes problem was then considered
by Burman and Hansbo in [11] and the Oseen’s problem was analyzed by Burman et
al. in [10]. In the latter, a priori error estimates that hold uniformly in the Reynolds
number were proven for sufficiently smooth solutions. In this paper we focus on the
time dependent, non-linear Navier—Stokes equations. There exists a vast literature on
finite element methods for the Navier—Stokes equations. Let us cite the monograph of
Girault and Raviart [20] and the series of papers by Heywood and Rannacher [25-27].
In the case of stabilized finite elements using SUPG-like stabilizations, we cite the
work of Johnson and Saranen [30] on a velocity-vorticity formulation, and the paper by
Hansbo and Szepessy on the velocity-pressure formulation [23]. Other relevant works
on the Navier—Stokes equations include the paper by Tobiska and Verfiihrt [35], the
work by Blasco and Codina [15], the work on stabilized mixed methods for the Na-
vier-Stokes equations by He, Lin and Sun [24], and the work on numerical methods
for LES using hyperviscosity by Guermond and Prud’homme [22]. For relevant ref-
erences on stabilized methods we refer to the subgrid viscosity method by Guermond
[21], the orthogonal subscale method by Codina [14], the local projection method by
Becker et al. [1,2,5] and the work on minimal stabilization procedures by Brezzi and
Fortin [7].

The key issue in this paper is that the stabilization allows for estimates that are
uniform in the Reynolds number. Hence the incompressible Euler equations are cov-
ered by the analysis. It is interesting to note that the present stabilized method allows
for a complete decoupling of the analysis for the velocities and pressures. The only
requirement for convergence is that the solution is sufficiently smooth, in a sense
that will be detailed later, but most importantly we assume that the velocities u €

[L2(0, T; H2+€(2)) N L0, T; W (2)) N H' (0, T; L>(£2))]” and the pressure
pelL*0,T;H %*'6(9)). In case the solution has sufficient additional regularity we
obtain the quasi-optimal error estimate for the velocity approximation:

k+1
la —wpll o0, 75222y < CR 2N, P20, 7: it (2))»

where k denotes the polynomial order.

Our analysis is inspired by the one by Hansbo and Szepessy reported in [23], but our
results using interior penalty stabilization are sharper. In fact, to control the convective
velocity, which is only weakly divergence free, special non-linear stabilization terms
are introduced in [23], leading to a more complex formulation and stronger regularity
assumptions on the exact solution are required. In our case, the fact that the stabil-
ization of the velocities is decoupled from the stabilization of the pressure allows us
to prove convergence using essentially the stabilization terms of the linear case (see
[10]), and under similar regularity assumptions. Moreover, we prove convergence for

@ Springer



Interior penalty FEM for the Navier—Stokes equations 41

all polynomial orders, whereas in [23] the analysis was restricted to piecewise linear
approximations in space and in time.

In this work we only consider discretization in space. For the sake of simplicity we
assume the fluid velocity to be dimensionless and that the mean fluid velocity equals
one. As a result the local Reynolds number is given by % Focus will be put entirely
on the convergence in the high Reynolds number regime (v < h). The estimates are
of course still valid in the low Reynolds number regime (k2 < v), but then the regular-
ity hypothesis may be relaxed while keeping optimal convergence if the stabilization
parameters are properly chosen, see [10].

In the next section we introduce standard notation for the Navier—Stokes equations
and briefly discuss the regularity assumptions. The stabilized finite element scheme,
based on an interior penalty formulation, is introduced in Sect. 3. Some useful standard
estimates are stated in Sect. 4. In Sect. 5, we study the wellposedness of the discrete
scheme and its stability properties. The convergence analysis of the method is carried
out in Sect. 6. First we prove convergence for the velocity and then for the pressure.
The later requires an estimation of the error in the approximate acceleration. Finally,
some conclusions are given in Sect. 7.

2 The time-dependent Navier—Stokes equations

Let £2 be a Lipschitz-continuous domain in R (d = 2 or 3) with a polyhedral bound-
ary 052 and outward pointing normal n. For T > 0 we consider the problem of
solving, foru: 2 x (0,7) — R4 and p: 82 x(0,T) — R, the time-dependent
incompressible Navier—Stokes equations with homogeneous boundary conditions:

oou+u-Va—2vV-e(u)+Vp=f in 2 x(0,7),
V-u=0 in £ x(0,7T),
u=0 on 02 x(0,T),

u(-,0) =ug in £2.

ey

These equations describe the motion of a viscous incompressible fluid confined in £2. In
(1), v > 0 corresponds to the kinematic fluid viscosity coefficient, f : £2 x (0, T) —
RRY represents a given source term, ug : £2 —> R? stands for the initial velocity and

e(u) & % [Vu + (Vu)T] :

for the strain rate tensor.

In the following, we will consider the usual Sobolev spaces W4 (£2), with norm
I - llm.g.2»m > 0and g > 1. In particular, we have L9 (£2) = W%4(£2). We use the
standard notation H"™ (£2) &ef W™-2(£2). The norm of H™(§2) is denoted by | - .2
and its semi-norm by |- |, 2. The space of L?(£2) divergence free functions is denoted
by Hy(div; £2). The scalar productin L2(£2)isdenoted by (-, -) anditsnormby ||+ [|o, .
The closed subspaces HOl (£2), consisting of functions in H 1(§2) with zero trace on 32,
and L%(.Q), consisting of function in L2(£2) with zero mean in §2, will also be used.
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42 E. Burman, M. A. Fernandez

Let us assume that the given functions f and ug have, at least, the following regu-
larity properties

fe L0, T; [L*()1Y), uy e [L*(2)].
For sufficiently regular functions u and p, problem (1) holds if and only if

(0a,v) +c(u;u,v) +a(a,v)+b(p,v)y = (f,v), ae.in (0,7T),
b(g,u) =0, ae.in (0,7), 2)
u(0) =up, ae.in £2,

forall (v, ¢) € [H} ($2)]4 x L3(2), and where

c(w;u,Vv) def (w-Vu,v),
a,v) & 200e), e(v)), 3)
b(p,v) & —(p, V).

2.1 Regularity assumptions

For the analysis below to make sense, the solution and initial data must have the
minimal regularity

uc [L20. T: H>3T(Q)) N L2, T: Wh®(2)) N H'(0, T: L2 (@)1,
pelL*0,T: HI(Q)), w € [H3T(2)N Hi ()17 N Ho(div; £2).  (4)

In this paper we will for simplicity make the stronger regularity assumption

ue[L®0,T; Who@)nHY0, T; L*(2)) N L>®0, T: H (2)]%,
p e L*0,T; H(2)), ug € [H (£2)N H ()1 N Hy(div; 2). (3)

with r, s > 2, in order to use approximability and get optimal order estimates for the
velocity.

Our pressure error estimates are bounded by the LZ-norm of the error in the approx-
imate acceleration d,uy,. The error estimate we provide for this quantity requires the
following additional regularity

uel[HY0,T; H (2)1,
peL*0,T; H(2)NH' 0, T; H (2)). (6)
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Interior penalty FEM for the Navier—Stokes equations 43

3 Space semi-discretization

In this section we introduce a finite element discretization of problem (2) based on a
weakly consistent interior penalty formulation with equal-order interpolations.

3.1 Preliminaries

Let {7),}0<n<1 be a family of triangulations of the domain §2 without hanging nodes.
For each triangulation 7y, the subscript 2 € (0, 1] refers to the level of refinement of
the triangulation, which is defined by

def def
h = max hg, hg = max h,,
KeT, eCIK

with 4, the diameter of the face e.
Moreover we will assume that the family of triangulation {7j}o<n<1 iS quasi-
uniform, i.e.,

h
K < Cr. hg>Cuh, VK eT, Vhe(,1], )
PK

where pg stands for the diameter of the largest inscribed ball in K and Cr, Cy > 0
are fixed constants.

In what follows, the word faces refers to edges in 2D and faces in 3D, and the dis-
tinction will not be made unless necessary. For a given piecewise continuous function
@, the jump [¢], over a face e is defined by

[l )def{fh%l+ (p(x = me) —p(x + ). if e 02,
Ple(X) = -

0, if eC s,
where n, is a fixed but arbitrary normal unit vector on ¢ and x € e.
In this paper, we let Vf denote the standard space of continuous piecewise polyno-

mial functions of degree k > 1,

Vi fve H'(@) vk e Pu(K) VK €T3,

and H2(7},) the space of piecewise H 2 functions,

def

H2(T,) {v 2 — R : v € HX(K), YK eTh}. 8)

For the velocities we will use the space [V}i‘ 1% and for the pressure we will use Ql,‘l &
VEN L3($2).
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44 E. Burman, M. A. Fernandez

3.2 An interior penalty finite element method

Denoting the product space W;]f & [V}f‘]d X Q’,‘l our space semi-discretized scheme
reads: for all ¢ € (0, T), find (uy(?), py(2)) € W;]f such that

Owp, va) + (A + Dlwps W, pr), Vi, gn)] = &, Vi),
u, (0) = ug p, 9)

for all (v, g5) € W}Il‘ and with ug 5, a suitable approximation of ug in [V}i‘ 1. In 9) we
used the following notations:

def
Alwns Wy pr)s Ve a)] = an(p, Vi) + cn (Wi Wy, Vi)
+bn(ph, Vi) — ba(gn, up), (10)

def 1
cn (Wi Wy, Vi) = (Wi ay, Vi) + E(V - Wply, Vi)

_%(Wh SN, Vi) o (11
an(uy, vi) € auy, vi) — 2vewn, vi)sg — (s, 2ve(V))n)yg
(g w), o wnmv g (12)
bi(pn Vi) S b Vi) + (i Vi - M)y (13)
I[wWas @i pi)s he @) ] o, iy Vi) + 7 (g, Vi)
+Jj(pn» qn), (14)

with

: def
Jwy (W, Vi) = Z W3 | Ziwy, - a2 [V, ] : [Vva] ds,

KeTng

. def

J@iv) S D0 [ [V : [Vva] ds, (15)
KeTgk

. def

Jpnan) = /h%([[VPh]]'[[VCIthS-
KeTngk

Here, I,i wj, denotes the interpolation of wy, onto the space [Vhl]d (continuous piece-
wise linear) and y, y,, two positive constants to be fixed later on.

Some remarks are in order. We point out that the additional terms appearing in the
discrete bilinear form A, compared to the formulation (2), are due to the non satisfac-
tion of the divergence free condition and to the weakly imposed boundary conditions
of Nitsche type. To counter effects of insufficient control of the divergence free con-
dition, an artificial term is added that ensures coercivity while remaining strongly

consistent [33] (since V - u = 0 for the exact solution). The Nitsche type boundary
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Interior penalty FEM for the Navier—Stokes equations 45

conditions are inspired by those analyzed in [10] and [19]. In the stabilization term
Jw, (-, -) we use the [P-interpolant of the velocity vector wy, as weight. This may be
replaced by the function wy, itself or the max value of w;, on the face depending on
what is most convenient from implementation standpoint. The analysis below carries
over to these versions with minor modifications.

The discrete formulation (9) satisfies the following approximate Galerkin Orthog-
onality.

Lemma 1 (Approximate Galerkin Orthogonality) Let (u, p) be the solution of (1),
(ap, pn) € W,f the solution of (9) and assume that (u, p) has the minimal regularity
(4). Then,

(3w —wap), vi) + Afu; (u, p), (i, g1)]
— A+ D[wp. Wi, pp). Vi gn)] =0, aein (0,T),

forall (vi, qp) € W;Il‘.

Proof This is an immediate consequence of the consistency of the standard Galerkin
method. O

4 Interpolation

In this section we shall state some standard estimates that will be useful for the con-
vergence analysis below. First, we recall the following local inverse estimate (see [18,
page 75], for instance): for all v, € Vk, and K € 7;,0 < h < 1, there holds

1+d(5-1)

with Cy a positive constant, independent of 4, K, p and ¢, and where 0 < m <[ and
I <p,g <o

Let IT ,’f and I}If be, respectively, the L?-projection and the Lagrange interpolant on
V}f .Foru € H"(£2), r > 2, we have the following standard error estimate (see [18],
for instance),

m—
”Uh”[,p,K = CIhK ”Uh”m,q,Kv (16)

IZfu — ullo.@ + hIVZFu —uw)lo,e < CH™[lully, 2, (17)

where ry o min{r, k + 1}. The following stability estimates for the L2-projection
hold,

k
1T ullo,e < Cllullo,2,
k
T ull,e < Cllull,e, (18)

forall u € H'(£2). Thus, from (17), we then deduce that

lu — Mfullo,e + hlIV (u — Tfu)llo.e < CA™ ullr, 2 (19)
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for u € H"(£2). In addition, the following stability result holds where C; > 0 is a
constant independent of 4 (but not of the polynomial order),

1T ullo.co.0 < Crllullo.cos Yu € L¥(2), (20)
1T ull00.2 < Callulli.co, Yue Wh®(2). Q1)

The second estimate easily follows from the first noting that, from (16), we have

IV IT§ o000 = IVUTfu = %0, o

-1 k 0
< Ch ' \Tfu — Tully o ¢

< ot (1Tfu = ullo,ce. + e — TQully o ¢ )

—1 k 0
< Ch™ (IZhu = wlloco.2 + Il = Mully o ¢)

where K € 7}, stands for the element where the maximum value is taken, and IT I%u

denotes the L2-projection of u onto a piecewise constant on K . Applying now (20) to
the first term of the right hand side we conclude

k -1 k 0
IV T fullo.cee < Ch" (IZhu = ullo.ce, + llu = M3ully o ¢ )

< C|Vullo,c0,02-
It then follows that
1T u — ullo,ce,0 + RITf U — ull1,00,2 < Chllullt 0o, (22)

forall u € Whoo(2).

The results (20) and (21) have been proved in [4,6,16] for low order elements.
We would like to point to the last reference, which readily extends this results to
higher order elements and which gives weighted estimates. Using these estimates, the
assumption of mesh quasi-uniformity in the present paper may be relaxed to local
quasi-uniformity.

In order to handle the non-linear terms, we shall also need a discrete commutator
property, which is stated in the following lemma (for a proof, see [3,29]).

Lemma 2 Let SZ;‘! s Wheo2) > Vf denote the Scott-Zhang interpolator [32].
There exists a constant Cg > 0 independent of h, such that for allu € W-*°(2) and
vy € V,{c R

k
IS 2, (uvn) — uvpllo,2 < Cphllulli,oo,2llvallo,-
The following corollary is a direct consequence of the previous result.
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Corollary 1 Forallu € Wl (2) and vy, € V}f there holds
1T (uvn) — wvpllo.e < Allullico2llvllo.e.

IITf (uvp) — MfFuvyllo. < hllulli.coellvallo.g. (23)

For the error analysis, we shall also use the trace inequality
100305 = C(hE"WIG x +hxIV0I3 5 ). ¥o e H'(K), (24)

see [13] (or [34] for a detailed proof). In particular, by combining the above estimate
with the inverse inequality (16), it follows that

lonlig.ox < Crhg'llvalg k. Yo € Vi (25)

The uniform (in v) stability of the present method relies on the fact that the gra-
dient jumps in (9) can control some interpolation errors of the stream-line derivative,
divergence and pressure gradient. This is formalized, in the following lemma, by
establishing some error bounds for the Oswald quasi-interpolant 71;: (see [28,31]).

Definition 1 For each node x;, let n; be the number of elements containing x; as a
node. We define a quasi-interpolant 77, of degree k by

ef 1
2o € — D wk), Ve [HAT)),

i {K:x;eK}
with H2(7,) given by (8).

Lemma 3 There exist three constants y; > 0, i = 1,2, 3, depending on the local
mesh geometry, but not on the mesh size h, such that

1
B2 (Wh - Vv — 72 (Wi - YV 3 o < V1w, (Vi Vi), (26)
1
182 (Vv — 7 (V- vi)) 5.2 < v2J (Vi V), 27)
1 .
112 (Van — 7 (Va)) 13,2 < 37 @n. an), (28)

forall (vi, gn, wn) € V14 x Vi x [V, 1%

Proof A proof of (26)—(28) can be found in [8,10]. O
We introduce now, for each wy, € [V}f‘ 1 given, the triple-norm
def
Iva. a)lly, = 141> + I[Was (Vi gn). Vi, gn)]s (29)

@ Springer



48 E. Burman, M. A. Fernandez

with
2 def =~ 1 2 1 2 11 2
Vil = 1v2VVillg. o + 11h2V - villg o + 1) 2h2V4l5 50
2
+ vy - n||o,3_Q-

For the continuity of the Stokes system, with Nitsche boundary conditions, it is also
. . . . 3 1
convenient to introduce a norm valid for functions (v, g) € [H21€(£2)]¢ x H21€(2),

def 1 1 _1
Dv. I = [v2VVIG o + I1h2V - vI§ o + 127 2ql5 o
_1 1
+IA72VIG o + 10D IVYIG 0 + 19115 50- (30)
For these two norms we have the following approximation result.
Lemma 4 Assume that (5) holds. Then we have
1 1 _
Il(u — [T, p — I p)lly < C(v2 +h2)A™ul,, 0
1
+Ch'"2pllr, .2, (31
and
1 1 _
I(w— ITfw, p— IEp)ll < C(v2 +h2)A™uly,.0
1
+Ch'2ply, .0, (32)

with ry def min{r, k + 1} and r, def min{s, k + 1}, C > 0 a constant depending only

onyy, y.
Proof From (19) we have

1 k 2 2(rg—1 2
2V (u— Ifu) |3 o < Con* Va2 o,
and
1 2 2ry—1 2
112V - (u = M) f o < CH* 'l o.

We treat the boundary terms using the trace inequality (24) in combination with (19)
and the quasi-uniformity of the triangulation (7), yielding

k.12 —1 k.12
lu— Il o <C D (hm [ — Iyl .
eCos?

+hi, IV (u— ITfu) ||3,KE) (33)

2ra—1 2
< ch?ull?, g,
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where K, denotes the simplex such that e C dK, N 3§2. The interior penalty terms
are treated in the same fashion as the boundary terms. We have

j—IMuu—Iw) = > hi [ [V(a—Tiu)]*ds

KeTy 5k
<C > IV (u— Tfu) I3 4k
KeT,
<C Z (hK||V(u — M) (G +hy IV (u— ngu)ng,,()
KeT,

< c(hnv(u — M) I o + 77|V (u — [Tfu) ||%,9)

2rg—1 112
< Ch7 ully, o

Obviously, the pressure jump term is treated using the same argument, which com-
pletes the proof of (31).

To prove (32) we simply note that by trace inequalities and the stability of the
L?-projection there holds

1 1
1(vh)2V (u — IT)[[§ 50 < Clv2V(a—Zu)|f o
1
+CR* D (v (u—Zhu)|3 «
KeT)
< Cvi* V|7, 5.

To conclude, we apply the inequality (33) to the term ||p — I1 }Il‘ p||%’3 o O

Finally, we shall also make use of the following projection operator, based on a

Stokes-like problem. For each u € [H%'|r€ £2)N HO1 (£2)1¢ N Hy(div; £2), we denote

by S}’iu & (P,fu, R’}:u) € W,’l‘ the unique solution of

(P,’fu, Vi) + ah(P,]fu, Vi) + bi (Rju, Vi)
+vj(Pfa, vi) = (w,vi) + ap(u, vi), (34)
— by (qh, P,]fu) + j(Rﬁu, qh) =0,

for all (vi,, gn) € Wf.

By assuming that u is also sufficiently regular in time, so that the projection makes
sense at each time ¢, we have the following approximation result, whose proof is based
on the results reported in [10].
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50 E. Burman, M. A. Fernandez

Lemma5 Letu e [L*°(0,T; H (£2)N HOl (2)1¢4 N Hy(div; £2). The following error
estimate for the projection P}]f holds:

R T
flu— P/:“”LOO(O,T;Lz(.Q)) < Cz +h2)h" v Yl oo, 7; Hra (2)).-

Moreover, if in addition du € [L*(0, T; H" (£2))]¢, we have
1 1
l10: (“ - Pif“) I220.7:222y) < COZ + AR Bl 20 7 a2y
With ry o min{r, k + 1} and C > 0 independent of v and h.

5 Stability

In this section we investigate the wellposedness and some stability properties of the
discrete scheme (9).

5.1 Existence and uniqueness of discrete solution
The following modified inf-sup condition states the stability of the discrete pressures.

Lemma 6 There exists two constants C, 8 > 0, independent of h and v, such that

|br (gn, vi)|

1 1
+ Ch2j(qn, qn)? = Blignllo.2, (35)
wervie  Vallie

forall gy € Q];l.
Proof Letgy € Qﬁ. From [20, Corollary 2.4], there exists v, € [HO1 (£2)14 such that

V-vg =qn, Ivglli,e < Clignllo, . (36)
Thus, using integration by parts and (13), we have

91113, = (Gn. V- ¥g)
= (Qh» Vv, —V. H}lqu) + (qh, V. H,’l‘vq)
= (Van.va = 115v4) = an, (Mvy) - mhag 37
+ (a0 V- 1TV, )

= (th, Vg — Hﬁvq) — by (qh, H,qu) .
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In particular, using the orthogonality of the L?-projection, Cauchy—Schwarz inequal-
ity, Lemma 3 and (19), we get

((Van., Vg — TEV)| = 1(Van — TE(Van), vq — Tfvy)]
< IVan — I (Van)llo,2 Ivg — Tivgllo.e
< Ch™% j(qn, ai)* IIvg — MTEvgllo.0
< Ch? j(qn, an)* g .-

Thus, from (37), if follows that

L 1
ba(qn. TTEV) | + Ch2 j (qn. qn) 2 Vg lI1.2 > 14all5 ¢-
In addition, from (18) and (36), we have

k
11Ty v4ll1.2 < Clivglli.e

< Clignllo,2,
which completes the proof. O

Remark 1 Note the factor 2 in front of the stabilization operator in equation (35). This
shows that the stabilization of the pressure may be relaxed while keeping a uniform
inf-sup condition. In the low Reynolds number regime this observation may be used
to obtain optimal convergence estimates whenu € H"(2) and p € H ~1(2),r > 2.
See [10] for further details.

At this point, it is worth introducing the following discrete pressure and velocity
subspaces:

def .
Chi = {qh e 0f + jlan an ZO},

iy def
Vil = {vh e (VA1 « by(gn.vi) =0, Vg € Cli,k}'

Clearly Qf N C'(2) C Cj ;. and since Px(2) C Q) N C'(£2), it then follows
that C }]l « 7 {0}. On the other hand, next corollary (which is a direct consequence of
Lemma 6) states that V}:ﬂ,j is also non-trivial (i.e., Vhdilz # {0}).

Corollary 2 There exist a constant 8 > 0, independent of h and v, such that

. 1bn(qn, Vi)l
inf su _ =
aneChy vyervipe lanllo.2lIvallne

We now may state the main result of this paragraph.

Theorem 1 The discrete problem (9) withug j, € V}ﬂi}(’ has a unique solution (uy, pp) €
C'(0, 7; [Vi1?) x €°(0, T; Q).

@ Springer
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Proof The result follows from the Cauchy-Lipschitz theorem and Corollary 2. We
refer to [9] for the details (see also [10]). O

Remark 2 Inorder to ensure convergence, in the following we shall setug , = P,’f up €
div

Vi

5.2 Coercivity

The following Lemma provides control (uniform in v) of the divergence constraint
through the stabilization terms.

Lemma 7 (Divergence control) Assume (uy,, pp) € W,’; be a solution of (9). There
exists a constant C > 0, depending only on the mesh geometry, such that

1
Cllh2V - wyllg o < J[0: (wp, pi), (as p) ] + g -G 5o
Proof By testing (9) with v, = 0 we get
(qn, V -up) — (gn,wp -y + j(pa, gn) = 0.

Thus, taking g5 = 7, (hV - uy) yields

113V w3 o + (V- w7 (hY - wp) — AV - wy)
= (m; (hV -ap), wy - m)ge — j(pn, 7, (AV - wp)).

It follows then, by the quasi-uniformity of the mesh, a Cauchy—Schwarz inequality, a
trace inequality and an inverse inequality, that

1 1 1 1
LR wlfe < Euhz(n;(vuh) — V- -w)llge

1 1
+C (”uh -nllo92 + j2(Ph, Ph)) A2, (V- up)lo,0-

Therefore, using the triangle inequality and the L2-stability of the Oswald interpolant,
this yields

I 1 1
IRV Wil g < Clle2 (2 (V- w) = V- wh) G
+C (Ilwn - nld g + 7 (P o)
1 1
+C (Ilws - nlloag + 7% (pa, i) 112V - whllo.z-

We conclude using a Young’s inequality and the interpolation result (27). O

Using Lemma 7 we may now show that the bilinear form is coercive for the triple
norm || - flyy,-
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Lemma 8 (Coercivity) There exits a constant Cp > 0, depending only on $2 and y,,
such that

A+ D[Wa: Vi an), Vi, an)] = Callva an) iy,

for all (Wi, Vi, q1)) € [V{19 x Wy

Proof From (9) we have

A+ D[wa: O gi)s Vi g)] = 2002 e 3 o

1
+ 3[Wis Vhs an)s O g ] + v 0/ 2 Va3 0 (38)

2
+va - mllg 50 — (4ve(vi)n, va)yg

where we used the fact that, after integration by parts,

1
(Wp - Vv, vp) = E[ (Wi -V, Vi) go — (V- WiV, Vi) |-

The last term in (38) can be bounded using the Cauchy—Schwarz inequality followed
by (25) and the quasi-uniformity of the mesh (7), to obtain

Cr 1 1L vyg
| vevn vidag | 8" [vienll o + 5 1% (5) Vil se-

v

In what follows we will assume that

C
Yo > 4—L >0, (39)
Cu
and therefore
C
) Eoog =T .
Cuyw

From (38), we then get

A+ D[Whs Vi ), O an)] = 20 2 el3 o
1 1
+3[Was (Vi an). i an)] + S5 /M2 Vil g

2
+[Ivp - n”(),a_(z,
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and consequently

A+ D[Wn: Vs qn)s Vs gn) ]
. Yv 1 1
= min {1, 22} (V7o IF o + 102Vl o)

1 1 1
+3[Wns O ). Ve )] + I’ (/)2 Villg o0

+[vh - 0lIg 5
In particular, by choosing (accordingly with (39))

def 1 Cr
= — 4—’
W=t

and since 0 < & < 1, one obtains

»

Ay .
(V)<4h

We conclude the proof using Korn’s inequality and Lemma 7. O

6 Convergence

We now prove convergence first of the velocities and then of the pressures. Since the
problem decomposes into one linear part and one non-linear part it is convenient first
to recall a preliminary result regarding the continuity of the Stokes system from [10].

Lemma 9 There exists a constant C > 0, independent of v and h, such that

an(v, Vi) = bu(q, vi) + bp(gn, v) < CIICV, @)U CVR, gn)llo,
for all (g, v) € [(VIY: x (VDS 0 [ HEE(T) x (HI+T)1 | and (an, vi) €
VE x [VFe.

Proof Using Cauchy—Schwarz and the trace inequality (25) and since 0 < &,
v < 1, for the first term one readily obtains

an (v, vi) = CIICV, O VR, O)lo-

For the second term we have, using the orthogonality of ¢ (to V,f ) and the interpolation
estimate (27),

bu(g,vi) = —(q, V- Vy — (V- Vi) + (g, Va - )50

1 1
A~ 2gllo,21h2(V - v, — 75 (V - vi) llo,2
+ligllo,a221lvh -nllo,a0
< CIIO, VR, O)lp-

IA
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In a similar fashion, after integration by parts in the third term, one obtains

br(gn,v) = —(qn, V- v) +{qn, vV-N)yq
= (Van,v)
= (Vgn — 7, (Vqn), V)
< Ih? (Van — 7 (Van)llo.2 Ih 2 vllo.¢
< CII, OO, gi)llp-

Hence, the proof is complete. O

6.1 Velocity energy norm error estimate

The following theorem states the main result of this paragraph.

Theorem 2 Let (u, p) the solution of (1), (uy, pn) € W,f the solution of (9), with

Uy = P,fuo, and assume that (u, p) has the minimal regularity (4). Then, the fol-
lowing optimal approximation estimates hold

k 2 k 2
”nhu - uh”LOO(O,T;LZ(.Q)) = ceXp”Hhuo - uo,h”()’_Q

+cexp/(c1|[|(u—n,’;u, 0)[]|2+c2J[0; (I, 175 p), (I, n,’;p)D dr,
0
(40)

and

T
k k 2 k 2
/ NI w =y, I p — pu)lly, df < cexpllITyu0 — o nllp o
0

T
+ Cexp / (c1|u(u — [, 0)[]|2+ch|:0; (ITfu, I} p), (ITfu, 1) p):|) dr, 41
0

with

def CT(hlul? Hlull oo w1.00(2y) )
Cexp = ¢ LDC(O,T;WI,DO(Q)) L0, T; W1 () ,

def 1
= C(l +h2||u||L°°(0,T;W1’°°(-Q)))’

def 2 2 2
c=C (1 + ||“||L00(0,T;L00(_Q)) +h ”u”Loo(O’Tgwl,oo(Q))) s

with C > 0 a positive constant independent of v and h.
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We stress that the constants in the above theorem have no explicit dependence on v.
Before proving the main convergence theorem we state two immediate consequences
in the form of corollaries.

Corollary 3 Under the hypothesis of the previous theorem, assuming that the exact
solution (u, p) has the regularity given in (5) and that v < h, the following error
estimates hold

”u S Cuth“—l + Cpthp—l

2
—Up ”LOO(O,T;Lz(.Q))

and

T
/ lw =y, p— pa)ll, dt < Cuh® ="+ C,h*7 ",
0

with ra & min{r. k + 1}, r, & min{s, k + 1} and

def C
Cy = C||“||%OO(0,T;H*U(9)) + Cu,

~ def 2 2
Cu = Cleexpr 1) (101320 7y + 10012, 2) -

def
Cp é C(Cexp7 Cl, C2)||P||i2(0,T;Hrp(_Q))a

and C, C(cexp, €1, €2) two positive constants independent of v and h.

Proof ITmmediate by a triangle inequality, the result of Theorem 2 and approximation
(Lemmas 4 and 5). O

Corollary 4 Under the hypothesis of the previous corollary, the following error esti-
mate holds:

2 2 2
||ll - uh”LOO((),T;LOO(_Q)) =< Ch ||u||LOO(0’T;W1,0C(Q))

L+ (Cuthufl n Cpth,,fl) ,

with C > 0 a positive constant independent of v and h. In particular, there holds
u, € L°(£2 x (0, 7T)).

Proof Immediate using approximation (22), an inverse inequality and (40). O
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6.2 Proof of theorem 2

In the following, ¢; > Ofori = 1, 2, ..., represents a free positive constant to be fixed
later on. We denote the discrete and projection errors as

0 def H,’l‘u—uh, 07 &y — H,’l‘u,
def
= Ofp—py, ¥y" =p—Mfp, (42)
which gives
0p=u—u, —0", y,=p—pp—y". (43)

Note that, since u € Hl(O,T;LZ(SZ)), we may deduce that 6, €
H'(0, T; L?(£2)). Using coercivity (Lemma 8) we then get

1d 2 2
q 1011152 + Call@n, y)ll,
< (301, 01) + A+ D[w; On. yn). O, )]
Hence, from (42)—(43) and the tri-linearity of A and J, we have

1d
Eanoh 15,2 + Calln, y)lIg, < (3w —wp), 04) — (3,07, 01)

+ (A + D[ws; (T, ITf p) (O, y1)]
— A+ D[w; Wi, pr), O, yn)].

Thus, by testing the approximate Galerkin orthogonality (Lemma 1) with (v, g5) =
(04, yn) and since since (9,07, 6;,) = 0, we obtain

1d
S 108182+ Cal@n 3G, = A+ Dlus: (Mhu. 175 p) @4 0]

Writing out all the terms of A and J, as given in (10), we get

1d
310013 2+ CANG IR, < —~an (6. 04) = bu(s™ . 04) + b1 (s, 07)
+yi (U;'fu, 0h) +j (H;lfp, yh) +en (uh; I}, 0/1) — c(u; u, 0y)

+ juy (M0, 84) .
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Now we may use the continuity of the Stokes system (Lemma 9) to obtain,

1d
53 101152 + Call®@n, Y,
1
= (e, yon + 12 [0; (Myu. 1T p). (Myu, n,’;p)}) B, y)llg
1
k k
+ (llh . Vnhll, 0h) + z (V . uhnhll, 0h)
1
- 5w, nITju,0;)92 — (- Vu, ;)

+ Z ha |, 2[VITFa] : [V0,] ds.
KeTigk

Using (43), this leads to
1d
2 dr
1
C (m(o”, YOI + J2 [o; (M, 11§ p), (Mfu, 11} p)D N@n, yu)llo

1041152 + Call@n. y)llz, <

1
—(uy, - VO™, 0)) — E(V ~u,0”,0p)
1
+ §<uh 00", 0,)50 + ((up, —u) - Vu, 8)

1
+ 5 (7w, 0) + > | W\ Ty, - nP[VITfu] : [V6,] ds,
KeThgk

which, after integration by parts in the convective term, gives

1d Cie
53 103162 + Call®@n, Y, < =@, vl
C
50 (0™ 50 + (0. azfu. ifp). (tfu. 11 p))

1 1
+ (0", u, - VO,) + E(V ~upf”,0;) — §<Uh 00", 0n)50 (44)
—_— ——
T

b T3

1
+ ((wp —uw) - Vu, 0;) + E(V -upu, 05)

—_—
Ty Ts
+ > [ hkIZhw, - nP[VITfu] : [V6,] ds .
KeTiyk
T
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In the next paragraphs we analyze the terms 7;,i = 1, 2, ..., 6. Using the orthog-
onality of the L?-projection, approximation and Lemma 3, we have

Ti = 0™, (w, — Zjuy) - VOy)
11,1
+ (07, Z}uy - VO, — 7} (Zlay - V).
T2

In the first term, we use the local interpolation property of the [P -interpolant followed
by an inverse inequality showing that

lay — Zhupllo.x < CZh%(|uh|2,K

1
< Cillup — Zyullo,k -

Using this inequality, for the first term of 77,1 we have

Ti1 < Ca D llwy — Tyunllo k11041707 [lo.k
KeTy

< Cs D llwy = Zyullox 11VO:1707 o k.
KeT,

We now use the decomposition (43), to obtain

710 =Cs > (18alo.x + 1Tfu = Zhullo.x ) 11V841T0 o,k
KeT,

Thus, using inverse inequalities (16) and the L°°-stability of IT }]f (22), one gets

—1 2
Tii < Ceh™ D 167 lo.0o.x 10415 &
KeT,

k 1
+C7 > Tfu = Zullo.00 kI V0405 107 ll0.
KeTy,

-1 2
< Csh™ 1107 [lo,00,2 104 115, 2

_1 _1
+Coh™2 || ITfu — Zhullo.co.e Y, 10allo.x 2607 0.k
KeT,

.y 2
< Cioh™ 1107 llo,00,2 10 15,2

_1 _1
+Cih~E u = Thuloco.e (16413 . + 11726713 o)
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which, in combination with (20) and approximation, leads to

2 Tip—5a7 2
Ti1 = CoalVuloco.e (1013 o + 52 126713 o)

2 1 T 2
< CisllVullo.ce.c (18413, + 12167, 0)1)
Finally, using Cauchy—Schwarz inequality and (3), we obtain

1 1
Tio < 1k~ 20% o2 h2 (Zyw, - VO, — 7} (Ziwy, - V6,)) llo.e

N €Y1 .
< 2—62||h 207 |5, + T]uh(oh, 05),

1 €Y1 2
< — 167, 0> + ZZ 105, O3
=25 M -+ 5 1@, 0y

For the second term, we use approximation and that the divergence is included in
the triple norm,

1
T = 3 (0”, V-0,+V- 0”)0;,))

IA

_1 1 1
D 107 0.0,k (Ilhév “Onllo.x + I1hEV - 0”||0,K) 105110,k
KeT,

1 1 1
Craesh? | Vulo.ce.c (117V 8413 o + 113V - 8713 o)

IA

Cis 1
+ = h2 VUl 10413
1
< Ci563)Vullo,00,2 (lﬂ(oh, Ol +rznem, 0>n|2)
Ci5, 1
+ ghz IVullo,00,2 104115, -

In this last inequality we used the fact that 0 < h < 1.
For the third term, using (43), we have

1
I3 = E((uh —u)-né", 0,0

1 1
= —5(0” 00", 0,) 90 — §<0h 0", 0,)50

IA

1
5”07[”0,00,9”0/1”0,39 (167 - nllo,a2 + 104 - nllo,a52) -

Therefore, using approximation and (25), we conclude that

1
T3 < Ci6h2 || Vullo,c0,2 104 ll0.2 (167, O)I + 104, 0)llo)

h
< Cir  IVull o0 1045 0 + €4Ci7 (™. 0% + 184, 0)13)
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Using again (43) and approximation, for the fourth term we obtain

Ty = —((0" +65) - Vu,0y)
IVullo,co,2 (107 l0,2 + 104 ll0.2) 100,22

1 L
SIVullosc.e (A2 10720713 o + 316417 o)

IA

IA

IA

1 1
SIVulo.cc.2 (12007 O + 310415 ¢ ) -

By testing (9) with v, = 0 and ¢, = 17,/1‘ (u - 8y), it follows that

(V-uy, ITf(u-0) — (uy -n, [T (- 0,))s0
+ j(pn, ITf(u-0y)) = 0.

Thus, inserting this expression into 75, one gets

1
T5 = E(V~uh,u-0h)

1 1
=S (Vow, (w0 — Iiu-8y))) + 5w e, Ti(u-0;))ac

- %j (ph,H;’f(u-oh)),

which, from (43) and the fact that u = 0 on 962, leads to

1 k
T5=—§(v.0”,u-0h—nh(u-0h))

15

_ %(v.ah,u.ah—n,’f(u-ﬂh))

T5,

1
= SO +01) -m, IFu-0,) —u-0,)s0

T53
1. X
5 (ph, I, (u - 9h)) .

Ts 4

@ Springer



62 E. Burman, M. A. Fernandez

Each of these terms are treated separately. Using approximation and Corollary 1
we have

1 1 I 1
< Euhzvo”né,g + S Ih 2 -0 — i u-0))5

&
A

A

Cis (107, 0% + hllul? o 10413.2) -

Using again Corollary 1, it follows that

T5,5

A

1 1 _1
Ellhzv “Onllo,2llh"2(- 0, — H;]f(ll 0o,

A

C19h
Croesh @ Ol + = Iullf .19, o-

For the next term, we have

1
Ts3 < 3 (16" -nllo.a2 + 104 - nllo.ae) 1T5 (@ - 0;) —u- 0,000
1
1 L
= 5 (167, 0llg + 11, 0)llo) ( > IS 6y) — u-ohné,a,mm)
KeT,
< Cao (6™, 0)II + 1181, 0)lo)

1
2

> 1T -0~ ITju- 0415 axran+ D, 1UTu— w0415 ok o
KeT, KeT,

Thus, using the trace inequality (25), we have

Ts3 < Co1 (107, O)[I + 14, O)lly)

1
2

> h T - 0) — T 0,15+ D IUTfu—w)[§ o chg 104115 &
KeTy, KeT,

1
<Ch™2 (167 Ol + 1. 0)llo)
(177 04) = Ffu - 8ullo.c + 1UTfu — Wlo.c.2104l0.2) -
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Now, using Corollary 1 and (22), we conclude that

1
Ts3 < Co3 (107, O)I + 1181, 0)llg) A2 lull1,00,21101l0,2

Cosh
< Caues (107, O + 101, OIF) + =2 0l .0 19415

For T5 4 we first have,

Ts54 = Z /h%([Vphﬂ : [[VH}]:(U -0p)] ds
KeTiyk

1
< Cosj(pnp)? | . [ hxIV (H;]f(u +0) — Myu- 0h)ﬂ2ds
KeTuyk
1

+ > /h%(ﬂv (ngu-ah)]]st
KeTigk

1
< Caoj (P p)® | D WRIV (Mf - 00) = 1Tfu-6,) 13 0k
KeT,

1
2

+ Z /h%((whﬂ[v (17,’;u)]]2 + |n,’;u|2[[voh]]2) ds

KeTwyk
Thus, by combining the trace inequality (25) with an inverse estimate (16), Corollary

1 and the stability estimate for the L>-projection (20)—(21), we get

. 1 _
Ts4 < Ca7j(pn, pn)? E h T (- 0y) — ITw - 0,115 «
KeT,

=

+ D IVITRUIG o ohk 108115k + ITTEUIG o 7 Brs O1)
KeT,

) ) Cog

< Cager(GUTN p, TTF p) + j (yn, i) + ?hnun%m,gnohnag

cz

—~ja (0,0
+ 3y 100,00, 1. On)

.ok k Cag 2 2
< Cagey (] (ITf p, ITf p) + 1100, yh)mo) ot oo 210416,
2

Cn 2 .
— 0,,605).
+ e ullg, 00,27 (@n, 0n)
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Finally, for the last term in (44), using (43), we have

To= Y [ hi|Tyw, -nP[VITfu] : [V6,] ds
KeThyk
1 €
<o > /h§(|z,§uh|2[[vn,fu]]z ds+38 > /h%dlhluh -n|?[V0,]? ds
S KTk KeTigk
(45)

268

c
< ﬁ[ > /h%dz,iuh — wy [V T u]? ds
KeTyk

T,

+ > [ r (|oh|2+ |17,§u|2) [[vn,’;uﬂzds}
KeTng

Ts,2

€
+38 > /him}uh -n|>[V6,]? ds.
KeTigk

In order to estimate 7,1, we use approximation and an inverse inequality to obtain

1 2 2 2
IZpun —wpllg 55 < C3ohklals 5k
2 17k 2
- Cgthlzhnhll - uh|2’3K

17k 2
< GaullZ,Myu — w5k -

This estimate, combined with (21), the trace inequality (25), approximation and an
inverse inequality (16), leads to

/h%dI},uh —w,P[VIIfu)* ds < (I[VIT]llf o ¢ / ha | Thuy, — uy|* ds

K K
< Ca | [VITfu] 1§ 0.0 % / W% |Z} Mfa — uy)? ds
0K
< CallV il B o [ (1T~ Tiu + 104 ds
K

= Cah IV TR o (I8 T50 = TTSwIR -+ 10415 )
< C3shg I[VITFU]§ 005k (hf,é IZ4 Tyu — ITfulf o + ||oh||%,K)

= Caoh I IV IR o (R 21T o+ 1041 & )

2-d komi2  pd+2y2 2 2
< Cyrhy NIV ITu] 5 ok RT3 N0l 0,2 + P C371 VT o o 100116 & -
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Therefore,
Tor = Caslul} e, (127 (T, Tfw) + 110415 )
Using the trace inequality (25) and the stability of the L>-projection (21), we obtain

2 2 2 . k k
Teo < h||u||1,oo,9||0h||o,g + “u”O,oo,.Q.](nhlL ;).

Finally, by inserting these last two estimates into (45), we obtain

C39 .
To < = (101 .2 1041 2 + (101 .2 + 12012 ) (T, W) |

€8
+ 5 1@ Ol

Based on (44) and the previous estimates, we chose €;,i = 1, ..., 8, such that
€1Cy €Y1 Ca
—_— = C \Y4 = C =¢eC = ¢6C = —

> > €3C15[Vullo,00,2 = €4C17 = €5C19 = €6Ca 16
€3 Ca
€Crg = — = —,
7C28 5 16

and y such as

2

> —Z||lu ,
Y 2¢; I “0,00,52

for instance

der 8C7
= C—”C28||U||%,oo,9 + L.
A

Then, from (44) using the previous estimates, we get
55”0” 6.2+ =~ N1®h. yw)ll,

2 2
= Cao (M1l o 0 + Nulhco.2) 1041

1
+Caoll @™, O (1+ A2 | Vullo.co,2 )

+ Cao (14113 o0+ 10115 o ) J[o; (v, T p). (1Tfu, n,’:p)}, (46)
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a.e. in (0, T'). Therefore, using Gronwall’s lemma we obtain

T
104117 e 0.7 122y T / 1®h. y)lI3, df < Cexpll€4 ()15 2
0

T T
+ Cexp [cl / n@O~, 00%dr +co [ J [0; (M, 11} p), (Mfu, 11} p)] dt},
0 0

with

2
Copp LT (I o 1 gy HI 0 0 71 )

s

def 1
c1 = Cao (1 +h2||u||L°°(O,T;W1*°C(Q)))’
def
e = Cao (1 + ||u||%0°(0,T;L°O(Q)) + hz”“”iw(O,T;W"&(Q))) ’

which gives (40) and (41).

6.3 Pressure estimates

Based on the previous convergence analysis for the velocity and on the modified inf-
sup condition (35), in this paragraph, we provide error estimates for the pressure.
The optimal approach to follow here is not clear cut. Depending on how much reg-
ularity one can expect for the pressure, different analysis should be applied. Here
we choose first to present two error estimates for the pressure in the LZ-norm and,
for regular pressures, in the H'-norm. The upper bounds consist of one part using
the previous convergence of the velocities, and a second part consisting of different
norms of the approximation error in the time derivative of the velocities. We will then
show how to get an estimate that is optimal for low-order elements if the pressure is
in H1(0, T; H'(£2)) using a suboptimal approximation of the time derivative of the
velocities. Other possible strategies will be briefly discussed in the conclusion.

Lemma 10 Let (u, p) the solution of (1), (uy, py) € W;l‘ the solution of (9), with
uy, = P,fuo, and assume that (w, p) has the regularity (5) and that v < h. Then, the
following error estimate holds

T

2 2ra—1) g2 2rp—1) 112
/||P = Pillo.e dr < C[h B L 2T i [ Rty
0

+ ”81 (ll - uh)||i2<0’r;v/(9)):| .

with V'(82) standing for the dual of H'(2) and C > 0 a constant independent of v
and h.
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Proof From (42) and (19), we only need to estimate

T
/ llynllf o dr.
0

To this aim, we use the modified inf-sup condition (35). Let v;, € [V}f‘]d, from (43),
we have

bu(yn, vi) = ba(p — pn, Vi) — b (y™, V).
The last term can be bound using Lemma 9. This yields
1br (Y™, vi)l < CIO, YO HIVallL 2.

On the other hand, using the approximate Galerkin orthogonality (Lemma 1) with
qn = 0, for the first term we get

by(pn — p, Vi) = ap(u —uy, vy) — yj(ay, vi)

T
+ cp(u;u, vi) — cp(ap; wp, Vi) 47)
1
= Ju, (U, Vi) + (8 (@ —wp), Vp) .
T3 T4

Term T is treated using the arguments given in [10, Proof of Theorem 4.4]. Thus, we
have

T1 < Cli(a —uz, O)llgll(va, 0)llg
—(2ve(u —up)n, vi)s0 — (W —uy, 2ve(vyn)yeo .
T\

The boundary terms are controlled in the following fashion

1 1 1
Ti1 <2[(vh)2e(u —wp)llo,02llvZh™2vhll050
1 1 1
+2[|(vh)2e(Vi)llo,aellv2h™2(a —up)llo 90
1
<2|l(vh)ze(m —wp)lo,a2l1(Vi, O)llg

1
+2[[(vh)2 e (Vi) llo,a2 I (@ — up, 0)[lo.
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On the other hand, we have

1 1
I 2e@—w)lloae < [(vh)2e— Miw o0

1
+[l(vh)Ze(ITfu —wy) llo.o0,

where the first term satisfies, using the trace inequality (24), (19) and that v < A,

1 1
1 k o
[(vh)2e(u — IMywllo.ae < Cv2h™ ull,. @

< CHv 2 ully, 0.
and the second, using (25),

1 1
()2 e(ITfu —wp)llo.pe < CllvZe(ITiu—w,)llo o
< CllUTfu =y, ).

In the same fashion we conclude that
1
l(vh)2e(vi)llo,ae < Cll(vh, O)lo-

Thus, collecting terms, using the fact that ||(v, 0)|lg < Cllvnll1,e since v < h, we
have

_1
7 = € (I = wi, Ollg + 4 ulls, ) [¥alh..
For the third term, we have

=@ -V—uy),vy) + ((a—uy) - Vuy, vp)

1 1
+ §<Uh ‘N, Vi)e02 — E(V “Up, Wy - V).

Thus, integrating by parts and since V - u = 0 and ujp = 0, we get

T, =—((u—uy) - Vv, u)— (uy - Vvp,u —uy)
131
1 1
—E(uwnuh,vh)m +§ (V-up,uy,-vp). (48)
T T3

Now, we treat each term separately. Using Cauchy—Schwarz on the first term one gets
Tr,1 < C (lullo,co,2 + lIUrllo,00,2) lu —wpllo,2lIValli,e.
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For the second, using the Cauchy—Schwarz inequality and the argument followed in
(33), we obtain

T2 < lupllo,co,2 s - mlloae21IVrllo,a5
< Cllupllo,co,2 (@ =y, p — pu)lly, IVall1,2-

Using the Cauchy—Schwarz inequality, in the third term, we have

11
T3 <h 2[h2V - wllo,ellusllo,co.2 VR llo,2

_1
= Ch2|wpllo,co,2 (@ —ap, p = pp)lly, Va1, (49)

For the jump term in (47), we use the Cauchy-Schwarz inequality, (16) and the regu-
larity u € H"v(£2), which yields

. 1, 1
13 < ju,(up, up) 2 ju, (Vi, Vi) 2

. 1
< Jju,(p, up)?2 Z h% Juy, - n 2 [V, ]?
KeTng

0=

1
. 1 2
< Cju, (wn,wp)? [uplloco.2 | D hxlIVVAlG «
KeTy

1, 1
< ChZ jy, (up, wp) 2 [ugllo,co,2 I VRII1,2,

1
= Ch2|lupllo,00,2 (@ — vy, p— pp)lly, IVall1 -
Finally by duality, we have
Ty < [|0: (@ —wp)lly ) llvalli,e-

Therefore, from (47) and by collecting the previous estimations, we have

\bi(pn — p. vi)I* < C[ 19 (@ = wp) 3y + 2 lull}, o
+ A+ h N uplf s, )@ —wi, p— pIIE,

2 2 2 2
+ (1013 . + 104 1 0. 2) 0 = WAl ] vl

We conclude the proof after integration over (0, 7') and application of Lemma 6 and
Corollaries 3 and 4. O

Remark 3 From the optimal convergence estimate provided by Corollary 3, one would
expect a similar rate for the pressure. However, the fact that, at the discrete level, the
convective velocity is not divergence free, leads to a loss of half an order in the pressure
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estimate, see Eq. (49). The reason for this is that we do not have stability of the gradi-
ent of the finite element solution in W !-°°(£2). However, if the solution is sufficiently
regular and the polynomial order is sufficiently high we can use an argument similar
to that of term 75 of Eq. (44) to improve the estimate.

Unfortunately, it seems difficult to obtain an estimate of the time derivative of the
velocities in the dual norm of H'! (appearing in the previous Lemma). As pointed out
in [25], one may obtain a crude bound by using, instead, the L%-norm of the error
in the time derivative. We therefore propose to estimate the error in the gradients of
the pressure, valid only if the pressure is sufficiently regular, but leading to an esti-
mate which is close to optimal and which uses the L2-norm of the error in the time

1
derivative. In fact as in the analysis for the velocities only a factor 22 is lost.

Lemma 11 Under the hypothesis of the previous corollary, the following error esti-
mate holds

T
/ IV(p = p)li§ o dr < [hz’H||u||iz(O,T;Hm(m)
0
2(rp—1 2 2
+ h (rp )”p”LZ(O’T;pr (£2)) + ”8[(“ - uh)”Lz(O,T;LZ(.Q))]'

Proof To estimate the error in the pressure gradient we start by noticing that

T T
/ IV — pldgdi < C / IVp - TE )3 o dr
0 0

T T
+C / I1Tf(Vp) — IF(Vpi)lI§ o dt + C / ITf (Vpi) = Vpillf g dt.
0 0

Using approximation, (28), the fact that p € H*(§2) and Corollary 3, we obtain

T T
/ IVp — I (V)G .o + / I} (V pr) — Voull§.e
0 0

T
< CR* VNP2 oo 2y + Ch_l/j(ph’ Pr) dt
0
T
= Ch*rr=h ||P||%2(0,T;H’P(Q)) +Ch™! / TP = p = dr

0

< c[hz“"—”nuniz (50)

2y =1) 11 o112
©O.1:Hu(2)y T ”p”Lz(O,T;H'P(.Q))i|‘
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Hence, it is sufficient to study the second term. Note that, by the orthogonality of the
L?-projection and a partial integration, we have

IIT£ (Y p) — TE(Y pi) 132

(Vo = Vi (V) = iV )
=~ (p =P V- UTETP) = TTE T 1))
+(p = . (IT;(Vp) = 1T, (Vpi) - Mo

=bi(p — p- vy ,)-

with the notation v;‘l’p &ef H}]f(Vp — V).
Therefore, using the approximate Galerkin orthogonality (Lemma 1) with (v, g5) =
(Vﬁyp, 0), we get

k k 2 k . k
VTV p = T pill o = an (w = wiv% ) = v (wn. v )
+cpluu Vk —cp (s uy Vk
s Uy h,p 9 ) h,p

— ju, (uh, Vﬁ’p) + (8t(u —uy), Vzp) .

Proceeding term by term, in a fashion similar to the previous lemma with V];l » instead
of v;, and using an inverse inequality, we obtain

11T (Y p) = TR (Vi) 5. < Ch—z[h% IplI7, e
+h* 2 o+ A+ hlul§ e )@ —wi, p = pi)llg,
+ (1013 o+ 10213 2 ) 0 = w ||5,9]

+C (7 N0l o N0 = Wi p =PI, + 10,0 = w3 )

Finally, we conclude the proof after integration over (0, T'), application of the results
of Corollaries 3 and 4 and (50). O

To close the problem of convergence of the pressure approximations we need an
estimate of the error in the time derivative of the error. This is the subject of the next
paragraph. Here we focus on proving an estimate that requires minimum assumptions

on the pressure regularity, but makes the estimate of Lemma 11 quasi-optimal for
piecewise linear approximations.

6.4 An estimate for 9; (u — uy,)

The following theorem states the main result of this paragraph.
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Theorem 3 Let (u, p) the solution of (1), (uy, pp) € W}’l‘ the solution of (9), with
Uy = P/fuo, assume that (w, p) has the regularity (5)—(6) and that v < h. Then, the
following estimate holds

T

— _1
/na,(u—uh)né,g dr = Cw, p, 1) (B 4+ 02 pl oy ). 6D
0

witha & min{ry, 7}, C > 0 with no explicit dependence of v and h and C(u, p, T)
is proportional to the sum of the the constant of Theorem 2 and the constant of the
second estimate of Lemma 5.

Proof We first decompose the error (u —uy,, p — pj,) in two parts, using the projection

operator Sy, def (PF, Rﬁ ) defined by (34)

u—uhzu—P;'fu—l—P;fu—uh:G”—i-Oh,
—_— ) ——

07 0
p—pn=p— Rpu+Riu— p,=y" + y. (52)
———— —————
y” Yh

Thus, using the triangle inequality and from Lemma 5, we only need to estimate

T
/ 18,0115, dz.
0
To this aim, we first test the modified Galerkin orthogonality (Lemma 1) with (v, g5) =
(8:0, 0), to obtain

(0 (m —uy), 0,05) + ap(a —ay, 0,04) + by (p — pn, 0:0)
+cp(u;u, 0,0p) — cp(up; uy, 0:05)
+yja—wy, 0,0p) + ju,(w—uy, 0,0;) =0.

Thus, using (52), we get

180413 o + an@n. 8:01) + by (v, 3:01) + vj On, 8,605)
= —(8,07,8,01) — an(0™,8,0,) — by(y", 3,01) + vj(Pfu, 8,0,)
+cp(uy; uy, 0:0,) —cp(u; w, 0:0y) + ju, Wy, 0:0p). (53)

Using the definition of a;, from (12), one readily obtains that
. 1 .
an(@n, 90n) + yj(On, 3,05) = Eat[ah(oh, ) +vjOn. 01)]. (54)
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We now test (9) with v, = 0, and derive the remaining equation with respect to ¢,
which yields

0 = 0, (bn(gn, wp) — j(pn,qn))
= bu(qn, 9rup) — j (0 pn, qn) + br(0rqn, wp) — j(pn, 0:qn)
= by (qn, 9rup) — j(Orpn, qn).

The last equality is obtained by noticing that d;q;, € V}f‘ and therefore

b (3:qn, wp) — j(pn, diqn) = 0.
We then have

b (qn, 9rwp) — j (3 pn, qn) =0, (55)
for all gj, € V,{‘. On the other hand, using the same argument, from (34) we obtain

br(gn. 3 Pyw) = j (3 Ryu, qn), (56)
for all gj, € fo. Thus, by taking g, = yp, in (55) and (56), we get

by (yn, 9:01) = j(0:yn, yn)

1
= Eazj O yn)- (57)

Therefore, by inserting (54) and (57) into (53), we have

1
||3z0h||§,_q + §3z [ah 01, 01) + jn, yn) +vi@p, 0h)]

= (3,07, 8,01) — an(0™, 3,0,) — by(y™, 3,0;) + yj(Plu, 8,0))

T
+ cp(uy; uy, 0,05) — cp(us u, 8,0p) + ju, (U, 0,05) . (58)
Ip) T3
Now we estimate the terms 7; fori = 1, ..., 3. In the following, ¢ > 0 stands for a

constant to be fixed later on. For the first term, we use (34) to obtain,

Ty = —(3,0",9,0;,) + (0™, 8,0,) — by (p, 3,0)

1 €
= 5 U2 5. + 107115 o) + §||at0h||2 — by(p, 3,01). (59)

A
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The second term is treated as in (48), with 9,6}, in the place of IT ;f vp. Therefore, after
using an inverse inequality, we get

T < Chtu —wllo.2 (Iullo,co,2 + Wrll0,00,2) 1130110, 2
_1
+Ch 2 [ llo,00,2 0 = wh, p = pi)lly, 13:0ll0.52-

Finally, using Cauchy—Schwarz and an inverse inequality

1, 1
T3 < ju,(ap, up)? ju, (0,05, 0,04)2

_1
< Cll@=wp. p = p)lly, 19 ll0.00.27~ 2 113:01 10,2 (60)
Kl €
< Clul oo, 0 = wh, p = pi)llg, + C 138415 -

Integrating over (0, T'), using coercivity (Lemma 8) and by combining estimates
(59)-(60) with Theorem 2, we obtain (for ¢ > 0 sufficiently small)

T
/ 1301115, dr < Cll(@4(0), ya (O + C (u, p, T)p*™ntrurp}=3
0

T

=+ /bh(p, 8,0h)dt. 61)
0

First of all, we note that after partial integration first in space and then in time, we may
write (for the last term on the right hand side),

T

T
/ b (p, 903) dt = / (Vp, 0,61) dt
0

0
T
= —/(atvp, 05)dr + (Vp(T), 0,(T))
0

—(Vp(0), 0,(0)).

By applying a Cauchy—Schwarz inequality and the Sobolev embedding

IVPllLoo. 122y < CIVPI a1 0.1:12(52))5
in combination with Theorem 2 we have

T
1

/bh(P, 3i0n) dt < Clipll g o,7; 11 (ph™" 173,
0
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Clearly, we have a triple norm contribution from the unknown initial discrete error in
the pressure yj, (0) in the right hand side of (61). Indeed, the term we need to control
is

Jn(0), y4(0)) = j(Rkug, Rbug — py(0))
— j(pr(0), Rfug — pr(0)). (62)

Using the discrete incompressibility equations for uy (0) and P,f‘uo (and since V-ug =
0) we have

bn(gn, up(0)) = j(pr(0), qn),
bu(qn, PFug) = j(Rfuo, qn).

Thus, taking g;, = Rﬁuo — pr(0) and since u, (0) = P;Ifllo, from (62) we have

0 = by (Rfug — pr(0), Pfug —u,(0))
= j(Rfuo, Rfug — pr(0)) — j(pr(0), Riug — pr(0))
= j(u(0), 1, (0)).

Hence we conclude that j (y;(0), y,(0)) = 0 and the theorem follows. O

7 Conclusion

We have derived a priori error estimates for finite element approximations of the
incompressible Navier—Stokes equations that are independent of the local Reynolds
number and hence valid also for the incompressible Euler equations. The estimates
are similar to those obtained in [23] in the case of piecewise linear elements and quasi-
optimal for the velocities, with the loss of h? with respect to approximation typical
for stabilized methods.

For polynomial orders k > 2 the estimates for the time derivative of the veloc-
ity of Theorem 3 is suboptimal in case the pressure is very regular due to the non-
consistency of the projection (34). The estimate can be improved if the analysis is
performed in a time weighted norm [25] or assuming “sufficient” regularity of the
pressure, typically p € cl, T; H1(2)) (see, for instance, [18]). It is question-
able if this stronger hypothesis can be justified (see the discussion in [25]). Con-
vergence may also be proven assuming less regularity on the pressure, however if
dependence on the viscosity is to be avoided it seems difficult to get away with less
than p € H'(0, T; L2(2))NL3*(0, T; H'(2)).Itis our hope that the present analysis
sheds some light on the question of how to construct reliable numerical methods for
large eddy simulation, where the local Reynolds number must always be assumed to
be high. The fully discretized case and numerical examples will be addressed in a
forthcoming work.
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