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Abstract Recently, tumor necrosis factor (TNF)-related

apoptosis-inducing ligand (TRAIL/Apo2L) has been shown

to be a potential candidate for cancer therapy. TRAIL

induces apoptosis in various cancer cells but not in normal

tissues. Here we show that HCT116 and SW480 cells with a

deficient mitochondrial apoptotic pathway were resistant to

TRAIL-induced apoptosis, whereas HCT116 and SW480

cells with a functional mitochondrial apoptotic pathway

underwent apoptosis upon exposure to TRAIL. Surpris-

ingly, TRAIL induced phenotypic changes in cells with a

dysfunctional mitochondrial apoptotic pathway, including

membrane blebbing and a transient loss of adhesion

properties to the substratum. Accordingly, TRAIL stimu-

lated the ability of these cells to migrate. This behavior was

the consequence of a transient TRAIL-induced ROCK1

cleavage. In addition, we report that Bax-deficient HCT116

cells exposed to TRAIL for a prolonged period lost their

sensitivity to TRAIL as a result of downregulation of

TRAIL receptor expression, and became resistant to com-

bination of TRAIL and other drugs such as MG-132 and

bortezomib. These findings may have important conse-

quences for TRAIL anti-cancer therapy.
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Abbreviations

TRAIL Tumor necrosis factor (TNF)-related

apoptosis-inducing ligand

TNFR1 Tumor necrosis factor receptor-1

DISC Death inducing signaling complex

TRAIL-R1 TRAIL receptor-1

TRAIL-R2 TRAIL receptor-2

MLC Myosin light chain

ROCK1 Rho-associated, coiled-coil containing

protein kinase 1

IAPs Inhibitors of apoptosis

XIAP X-linked inhibitor of apoptosis

Introduction

Tumor necrosis factor (TNF)-related apoptosis inducing

ligand (TRAIL) is a type 2 transmembrane protein whose

extracellular domain shows homology with the extracel-

lular domain of Fas ligand and TNF-a [1, 2]. TRAIL is
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normally expressed in the immune system and plays a crit-

ical role in antitumor immunity. TRAIL binds its receptors

(DR4, also called TRAIL-R1 or DR5, also called TRAIL-

R2), and triggers apoptosis via the extrinsic pathway. TRAIL

receptors belong to the family of death receptors, which

includes TNFR1 and Fas (Apo1, CD95) receptors [3–7].

These receptors display a death domain in their intracellular

region. When bound to their ligands, they oligomerize and

recruit the cytosolic protein FADD, which in turn recruits

and activates caspase-8 [8, 9]. This expanding complex is

called the death inducing signaling complex (DISC) [10].

Caspase-8 in turn cleaves and activates executioner caspases

leading to apoptosis. In many cell types, the extrinsic path-

way is linked to the intrinsic mitochondrial pathway by tBid.

tBid, which is generated by the cleavage of Bid by caspase-8,

activates apoptosis by recruiting Bax in the mitochondrial

outer membrane [11]. This leads to permeabilization of the

outer mitochondrial membrane, cytochrome c release, cas-

pase-9 activation and ultimately to activation of executioner

caspases and cell death.

Although TRAIL preferentially induces apoptosis in

cancer cells, it also engages non-apoptotic signalling

pathways leading to activation of pro-survival molecules,

such as protein kinase C, phosphatidyl inositol 3 kinase

(PI3K), Akt, nuclear factor kappaB (NF-kappaB) and

mitogen-activated protein kinases [12–19]. These pathways

stimulate transcription of genes encoding anti-apoptotic,

angiogenic, mitogenic and cell migration-stimulating fac-

tors, raising the possibility of unwanted effects of TRAIL

in cancer therapy.

Resistance of cancers to TRAIL is one of the major

obstacles in TRAIL therapy. There are several causes for

TRAIL resistance including the loss of expression of

TRAIL-R1 and TRAIL-R2 on the plasma membrane,

increased level of TRAIL-R3, TRAIL-R4, c-FLIP, Bcl-2,

Bcl-xL, and loss of caspase-8 and -10 due to mutations

[20–22]. Members of the inhibitors of apoptosis (IAPs) are

reported to block the activity of caspase-9, -3 and -7 and

high expression of XIAP, one of the IAP family members,

has been shown to contribute to TRAIL resistance in a

number of tumor cell lines [23]. While exploring the

mechanisms of Bax activation induced by TRAIL, we

observed an unexpected behavior of Bax-/- HCT116

human colon cancer cells. Upon TRAIL treatment,

Bax-/- cells displayed robust membrane blebbing, and

detached from the culture dish similar to Bax-/? cells,

however, the Bax-/- cells re-adhered to the culture dish

after several hours and continued to proliferate. We have

found that blebbing of Bax-/- cells occurs through cas-

pase-3 mediated cleavage of ROCK1, a kinase important in

cell membrane blebbing and motility. In vitro, TRAIL

enhanced migration of Bax-/- cells. Moreover, a 24 h

exposure of HCT116 Bax-/- cells to TRAIL conferred

resistance to drug-mediated (such as MG-132 and bort-

ezomib) sensitization of these cells to TRAIL-induced

apoptosis. Cell detachment from the primary tumor is the

first of a series of events required for metastasis. Our

results raise the possibility that, in vivo, TRAIL anti-cancer

therapy may facilitate migration of tumor cells in which the

intrinsic mitochondrial pathway of apoptosis is impaired.

Materials and methods

Materials

Dulbecco’s Modified Eagle Medium (DMEM), L-gluta-

mine, fetal bovine serum (FBS), cell culture trypsin, MG-

132 and Y-27632 were from Sigma; cell culture plates

were from Nunc; Hoechst and Lipofectamine reagent were

from Life Technologies; Bortezomib was from ChemieTek

(USA); Hybond-P membranes were from GE Healthcare

Life sciences; Annexin V-FITC was from BD Biosciences;

The following antibodies were used. Bax (Neomarkers,

clone 2D2), Bcl-xL (Santa Cruz, S-18), cleaved caspase-3

and GAPDH (Cell Signaling), caspase-3 (Alexis), caspase-

8 (BD Pharmingen), PARP, ROCK1 (N-terminal), caspase-

7 and XIAP (BD Transduction Laboratories), actin and

ROCK1 [(C-terminal) (Sigma)], TRAIL-R1 and TRAIL-

R2 (Exbio) and ppMLC (Generously provided by James

Staddon, Eisai London Research Laboratories Ltd.,

London, UK).

Cell culture, transfections, and quantification

of blebbing and detachment

Cell lines were cultured in DMEM with 10 % FBS,

100 U/ml penicillin, 0.1 mg/ml streptomycin and 2 mM

glutamine, and maintained in 5 % CO2 at 37 �C. HCT116

human colon cancer cell lines (HCT116 Bax-/? and

Bax-/-) that differ in the presence or absence of Bax were

kindly provided by Bert Vogelstein, Howard Hughes

Medical Institute. These isogenic cell lines were originally

generated from HCT116 colon cancer cells [24]. HCT116

Bax-/? cell lines over expressing Bcl-2 or Bcl-xL were

generated by retroviral transduction of HCT116 Bax-/?

cells followed by cell sorting using Coulter EPICS Elite

ESP, Beckman-Coulter-France, Villepinte, France [22].

In order to show that cleavage of ROCK1 is sufficient to

induce membrane blebbing, a plasmid encoding an active

form of ROCK1 [(ROCK1 (G1114opa); N-terminal domain

of ROCK1 cleaved by caspase-3; the cDNA was kindly

provided by Michael F. Olson, Beatson Institute for Cancer

Research, UK] was used to transiently transfect HCT116

Bax-/- cells. TRAIL resistant SW480 cells (ATCC) were

generated by transient transfection using a plasmid
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encoding anti-apoptotic protein Bcl-xL. For the downreg-

ulation of caspase-3, HCT116 Bax-/? and Bax-/- cells

were transfected with siRNA targeting caspase-3 [Mission

siRNA (ranking 1), SASI_Hs01_00139105] or universal

negative control (SIC001) (Sigma) using Microporator

MP100 (Digital Bio).

For blebbing and detachment analyses, cells were trea-

ted with 100 ng/ml of TRAIL or TRAIL (100 ng/ml) and

Y-27632 (10 lM) for 5 h to allow membrane blebbing and

detachment. Cells were then fixed with paraformaldehyde,

stained with Hoechst and observed using phase contrast

and fluorescence microscopy with a 639 objective (Zeiss

Axiovert 135). The morphology of blebbing cells could

easily be distinguished from that of non-blebbing adherent

cells. The blebbing cells are also distinct from refringent,

round cells that are undergoing mitosis. In order to com-

pare dead and living cells, HCT116 Bax-/? and Bax-/-

cells were left untreated or treated with 100 ng/ml of

TRAIL for 5 h. The cells were then stained with 5 ll/ml of

Annexin V-FITC and 1 mg/ml of Hoechst in 19 Binding

Buffer (10 mM HEPES, 140 mM NaCl, 2.5 mM CaCl2,

pH 7.4) for 5–10 min in the dark and imaged. The Hoechst

and annexin V stainings allowed us to differentiate

between blebbing cells undergoing apoptosis (they dis-

played a fragmented and/or condensed nucleus, and were

annexin V positive) and blebbing cells, which were resis-

tant to apoptosis (their nucleus was intact and these cells

were annexin V negative).

Combined TRAIL and proteasome inhibitor treatments,

and apoptosis quantification

HCT116 Bax-/- cells were categorized into the following

three groups: cells that had never been exposed to TRAIL

(naı̈ve cells); cells that had been pretreated with TRAIL for

24 h (pretreated cells); cells that received TRAIL for 24 h,

then were left untreated for 48 h before a second exposure

to TRAIL (sequentially treated cells). Each group of cells

was left untreated or treated with TRAIL (100 ng/ml), MG-

132 (10 lM), bortezomib (25 nM), TRAIL (100 ng/ml)

and MG-132 (10 lM) or TRAIL (100 ng/ml) and bort-

ezomib (25 nM). Cells were harvested after 5 h of treat-

ment and apoptosis was detected using Annexin V-FITC as

described earlier [25].

Time-lapse microscopy

HCT116 Bax-/- and Bax-/? cells were plated in 35 mm

glass bottom dishes (WillCo-dish, type 3522, WillCo Wells

BV). The cultures were placed in a 37 �C chamber equil-

ibrated with humidified air containing 5 % CO2 while

working with video microscopy. At 5 min before obser-

vation, the media was changed to fresh DMEM containing

10 % serum added with TRAIL (100 ng/ml). Time-lapse

microscopy was performed with a Leica AF6000LX

microscope using a 409 objective. The cells were imaged

using differential interference contrast with a classical

halogen lamp as the illumination source. Images were

captured every 7 min and the movies were made out of the

time-lapse series using ImageJ software.

Western blotting

Cells were resuspended in lysis buffer containing 10 mM

HEPES, 300 mM KCl, 5 mM MgCl2, 1 mM EGTA, 1 %

Triton X-100 (v/v), 0.1 % (w/v) sodium dodecyl sulphate

(SDS), pH 7.4, and supplemented with 19 protease inhib-

itors (Roche Diagnostics, Germany). The lysate was cen-

trifuged at 2,0009g, and the protein concentration was

determined by Bradford assay (Bio-Rad). Equal amounts of

protein were subjected to SDS–polyacrylamide gel elec-

trophoresis, and transferred to Hybond-P membranes.

Membranes were blocked with 5 % milk in PBST

(PBS ? 0.05 % Tween 20) and incubated overnight at 4 �C

with primary antibodies. Blots were then washed in PBST

and incubated for 1 h with secondary polyclonal antibodies

coupled to horseradish peroxidase. Membranes were then

washed in PBST and developed using chemiluminescence.

Immunocytochemistry and FACS analysis

To visualize the phosphorylation of the myosin light chain

(MLC), HCT116 Bax-/- cells grown on coverslips were

incubated in growth medium, with or without TRAIL for 5

and 24 h. The cells were then fixed in 4 % paraformalde-

hyde, permeabilized and immunostained with an antibody

directed against ppMLC. For the quantification of TRAIL

receptors, Bax-/- cells subjected to different treatments

were stained with anti-TRAIL-R1 and anti-TRAIL-R2

antibodies followed by staining with FITC-conjugated

secondary antibodies and analyzed by FACS.

Cell migration assay

Cell migration was quantified using 24 well cell migration

assay kit (Trevigen) utilizing a modified Boyden chamber

design with polyethylene terephthalate membrane. HCT116

Bax-/- and Bax-/? cells were serum starved overnight.

The following day, cells were re-suspended in serum free

DMEM without or with TRAIL (100 ng/ml), Y-27632

(10 lM) or TRAIL (100 ng/ml) and Y-27632 (10 lM), and

were added into the top inserts of the chamber. DMEM

supplemented with 10 % serum was added into bottom

wells of the chamber followed by incubation for 24 h. The

cells that had migrated were quantified using Calcein-AM

as described by the supplier (Trevigen).
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Results

TRAIL promotes reversible membrane blebbing

and detachment of Bax-/- HTC116 cells and of Bcl-

xL overexpressing SW480 cells

We have compared the effect of TRAIL on Bax-/? and

Bax-/- HCT116 colon cancer cells early after addition of

TRAIL. We observed that *100 % Bax-/? cells dis-

played membrane blebbing and detached from the culture

dish after addition of TRAIL (Fig. 1a, b, c and Movie 1).

These cells were Annexin V positive and displayed a

fragmented nucleus with condensed chromatin, two hall-

marks of apoptosis (Fig. 1d). Bax-/- cells also displayed

membrane blebbing (Fig. 1a, b, d), and *20 % cells were

detached from the culture dish at 5 h TRAIL treatment

(Fig. 1c). To our surprise, however, these blebbing cells

remained Annexin V negative and their nucleus was intact

(Fig. 1d). The Bax-/- cells started blebbing and detach-

ing 1–2 h after TRAIL treatment, with a maximum of cells

blebbing after *10 h (Fig. 1e, f and Movie 2). Thereafter,

blebs began to disappear and the cells were able to

re-attach within the 24 h following TRAIL treatment.

Similar findings were obtained with HCT116 Bax-/? cells

overexpressing Bcl-2 or Bcl-xL (see Supplementary Fig. 1a,

b). Moreover, different colon cancer cells, SW480 cells,

overexpressing Bcl-xL, were found to resist to TRAIL-

induced apoptosis (Supplementary Fig. 2a) and displayed

a similar blebbing phenotype upon exposure to TRAIL

(Supplementary Fig. 2b, c, d). Thus, at least two different

cell types with a defect in the activation of the mitochondrial

intrinsic pathway of apoptosis did not undergo apoptosis

when exposed to TRAIL but showed membrane blebbing,

and a transient loss of adhesion properties.

TRAIL promotes blebbing, detachment and migration

of HCT116 Bax-/- cells by caspase-3 mediated

cleavage of ROCK1

Whereas caspase-8 was equally activated in Bax-/? and

Bax-/- HCT116 cells upon TRAIL treatment (Fig. 2i),

caspases-3 and -7 were not completely processed (p17 and

p12 fragments were not detected) in the absence of Bax

(Fig. 2a), which explained their resistance as previously

reported [26, 33]. One of the caspase-3 substrates is ROCK1

that upon cleavage generates an active truncated kinase,

which is responsible for membrane blebbing and cell

detachment [27, 28]. We analyzed ROCK1 in Bax-/? and

Bax-/- cells and found that the protein was cleaved in both

cell types upon TRAIL treatment (Fig. 2b). Interestingly,

full length ROCK1 was re-expressed in Bax-/- cells that

survived TRAIL treatment (Fig. 2b). In addition, by

immunostaining, we observed a transient increase in the

level of phosphorylation of MLC, a direct substrate of

ROCK1, in TRAIL treated Bax-/- cells (Fig. 2c). MLC

phosphorylation was undetectable in untreated cells or in

TRAIL-treated cells that had re-attached (Fig. 2c). Impor-

tantly, in the presence of ROCK1 inhibitor Y-27632,

membrane blebbing was efficiently blocked in HCT116

Bax-/- cells (Fig. 2d, e). In contrast, this treatment did not

prevent detachment and death of Bax-/? cells (Fig. 2d).

Similar to HCT116 Bax-/- cells, blebbing and detachment

of Bcl-xL overexpressing SW480 cells was significantly

inhibited by the ROCK1 inhibitor Y-27632 (Supplementary

Fig. 2b, c). On the other hand, whereas caspase-8, caspase-

3, PARP and ROCK1 were efficiently cleaved in SW480

control cells, in Bcl-xL overexpressing SW480 cells, only

caspase-8 and ROCK1 were efficiently processed while

caspase-3 was partially processed (Supplementary Fig. 2e).

These observations suggested the involvement of ROCK1

cleavage in the detachment of Bax-/- HCT116 and Bcl-xL

overexpressing SW480 colon cancer cells. Since caspase-3

is known to be responsible for the cleavage of ROCK1 and

cleaved ROCK1 is responsible for blebbing of cells [28,

29], we tested whether down-regulation of caspase-3 would

have an impact on cell blebbing and detachment. We used

RNA interference to down-regulate caspase-3 in HCT116

Bax-/- cells (Fig. 2f). As expected, the ROCK1 protein

was processed less efficiently in caspase-3 siRNA trans-

fected cells than in cells transfected with control siRNA

(Fig. 2i). Consequently membrane blebbing was signifi-

cantly reduced after TRAIL treatment (Fig. 2g, h). In

addition, transient overexpression of a ROCK1 mutant with

constitutive activity [28] (this mutant corresponds to the

caspase 3-cleavage product of ROCK1), was sufficient to

induce membrane blebbing (Supplementary Fig. 3a, b).

Together, these data confirm that caspase-3 mediated

cleavage of ROCK1 is essential and sufficient for the

blebbing of Bax-/- cells.

Fig. 1 TRAIL treatment promotes reversible membrane blebbing in

Bax-/- human colon cancer cells. a HCT116 Bax-/- and Bax-/?

cells were treated with TRAIL (100 ng/ml) and visualized by phase

contrast microscopy. b Western blot showing the status of Bax in

HCT116 Bax-/- and Bax-/? cells. GAPDH is used as the loading

control. c HCT116 Bax-/- and Bax-/? cells were treated with

100 ng/ml of TRAIL for 5 h and the detached cells were collected,

counted and expressed as percentage of the total number of cells in

the well. Results are an average of three independent experiments.

d HCT116 Bax-/- and Bax-/? cells treated with TRAIL (100 ng/

ml) for 5 h were stained with Hoechst and Annexin V-FITC. e Time-

lapse images showing the changes in the morphology of HCT116

Bax-/- cells after treatment with TRAIL (100 ng/ml). Arrowhead

tracks the morphology of a single cell, which starts to bleb after 1 h of

TRAIL treatment and then gradually comes back to normal. f The

number of blebbing cells were quantified from the time-lapse images

taken at the indicated time points. The results are an average of three

independent experiments

c
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The blebbing phenotype shown by HCT116 Bax-/-

cells upon TRAIL treatment led us to test whether this

could enhance the migratory activity of these cells. Using

Boyden chambers we compared migration of HCT116

Bax-/- and Bax-/? cells. A significant increase in the

migration of TRAIL treated HCT116 Bax-/- cells com-

pared to untreated cells was observed (Fig. 3). Addition of

the ROCK1 inhibitor Y-27632 suppressed migration of

HCT116 Bax -/- cells in the presence of TRAIL (Fig. 3).

As reported for other cell lines [30, 31] we found that

treatment with Y-27632 alone was sufficient to prevent

migration of HCT116 Bax-/? and Bax-/- cells (Fig. 3)

confirming ROCK1 as a potential target to inhibit cell

migration.

High caspase-3 activation obtained by a combined

treatment with TRAIL and proteasome inhibitor leads

to apoptosis of HCT116 Bax-/- cells

We found that activation of caspase-3 was responsible for

the cleavage of ROCK1 leading to membrane blebbing and

cell detachment. However, caspase-3 was unable to trigger

apoptosis in Bax-/- HCT116 cells. Upon death receptor

stimulation, caspase-3 follows a spatio-temporal activation,

which initiates in the cytosol and leads to the translocation

of at least some of the active fragments into the nucleus to

cleave critical nuclear proteins [32, 33]. Immunostaining of

Bax-/- HCT116 cells revealed that active caspase-3 was

mainly localized at the cell periphery upon engagement of

TRAIL receptor (Fig. 4a). We think that this subcellular

localization may explain why only a limited number of

substrates, including ROCK1, are cleaved by caspase 3

(Fig. 4a). However, this subcellular localization does not

necessarily explain why caspase-3 is unable to undergo full

activation and to trigger apoptosis in these cells.

Bax-/- HCT116 cells express high levels of IAPs such

as XIAP [33], which are known to regulate caspase activity

by ubiquitination and proteasome degradation. We rea-

soned that the small active fragments of caspase-3 (p17 and

p12) produced by caspase-8, possibly at proximity of the

plasma membrane, could be rapidly degraded by the pro-

teasome before they reach their substrates in the nucleus

and elsewhere. In order to test this hypothesis we inhibited

the proteasome in TRAIL-treated cells using the chemical

inhibitor MG-132. Proteasome inhibition has been previ-

ously reported to sensitize cells to TRAIL [34]. We found

that Bax-/- cells treated with TRAIL and MG-132

underwent apoptosis, as did wild type cells in the presence

of TRAIL alone (Figs. 4b, 2a, i). Similarly SW480 colon

cancer cells overexpressing Bcl-xL were sensitized by the

combined treatment of TRAIL and MG-132 (Supplemen-

tary Fig. 2a). Importantly, the use of MG-132 allowed

detection of the short fragment of caspase-3 in HCT116

Bax-/- cells (Figs. 4c, 2a). To strengthen our interpreta-

tion that partial activation of caspase-3 is responsible for

membrane blebbing and cell detachment, we downregu-

lated caspase-3 in HCT116 Bax-/- cells with siRNA

(Fig. 2f). Caspase-3-deficient cells did not detach and were

found to be resistant to the combination of TRAIL and

MG-132 (Figs. 2f, g, h, i, 4b, c).

Acquired resistance of HCT116 Bax-/- cells

to TRAIL

There are numerous reports showing that combining pro-

teasome inhibition with TRAIL is a promising approach for

the treatment of TRAIL resistant cancers [34–39].

Accordingly, we found that cells that had never been

exposed to TRAIL (naı̈ve cells) underwent apoptosis after

exposure to TRAIL and a proteasome inhibitor (Fig. 5a, b).

Interestingly, we observed that Bax-/- cells treated with

TRAIL for 24 h (pretreated cells) became insensitive to a

further co-treatment with TRAIL and proteasome inhibi-

tors MG-132 or bortezomib (Fig. 5a, b). However, sus-

pension of the TRAIL treatment for 48 h (sequentially

treated cells) resensitized cells to the combined treatment

of TRAIL and MG-132 or bortezomib (Fig. 5a, b). More-

over, we found that downregulation of caspase-3 rendered

naı̈ve Bax-/- cells insensitive to TRAIL and MG-132

Fig. 2 TRAIL promotes blebbing and detachment of HCT116

Bax-/- cells by caspase-3 mediated cleavage of ROCK1. a Activa-

tion of caspase-3 and -7 in HCT116 Bax-/- and Bax-/? cells in

response to TRAIL and proteasome inhibitors. Cells were left

untreated or treated with TRAIL (100 ng/ml), TRAIL (100 ng/ml)

and MG-132 (10 lM) or TRAIL (100 ng/ml) and Bortezomib

(25 nM) for 5 h. Protein lysates prepared from these cells were

separated by SDS-PAGE and analyzed for caspase-3 and -7 expres-

sion by Western blotting. Actin was used as the loading control.

b Cell lysates were prepared from HCT116 Bax-/- and Bax-/?

cells left untreated or treated with TRAIL for 5 or 24 h and analyzed

for ROCK1 by Western blotting. The blot is representative of three

independent experiments. c Phosphorylation of MLC in untreated or

TRAIL treated HCT116 Bax-/- cells for 5 and 24 h. d Effect of

ROCK1 inhibitor Y-27632 (10 lM) on TRAIL-induced membrane

blebbing in HCT116 Bax-/? and Bax-/- cells. e Quantification of

TRAIL-mediated membrane blebbing in HCT116 Bax-/- cells in

presence and absence of Y-27632. Mean values ± SEM are shown

for three independent experiments with **p \ 0.01. f Down regula-

tion of caspase-3 by siRNA. HCT116 Bax-/- and Bax-/? cells

were microporated with siRNA for caspase-3 or with a control

siRNA. The cells were harvested after 72 h and the cell lysates were

analyzed for caspase-3 by Western blotting. Caspase-3 deficient

HCT116 Bax-/- cells were treated with TRAIL (100 ng/ml) and

imaged by phase contrast microscopy (g), and the number of blebbing

cells was quantified (h). Mean values ± SEM are shown for three

independent experiments with ***p \ 0.001. i Downregulation of

caspase-3 reduces the processing of ROCK1 in HCT116 Bax-/-

cells. HCT116 Bax-/- and Bax-/?cells transfected with siRNA

targeting caspase-3 or control siRNA were treated with or without

TRAIL, and protein lysates were analyzed for ROCK1, caspase-3,

caspase-8, PARP and actin by Western blotting

c
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co-treatment showing that these drugs work through acti-

vation of caspase-3 (Fig. 4b, c). To understand the mech-

anisms by which pretreated cells exposed to TRAIL

acquired resistance to the combination of TRAIL and a

proteasome inhibitor, we compared the status of caspase-3,

caspase-8, XIAP and the expression of the TRAIL-R1 and

TRAIL-R2 receptors in these cells. We observed that

caspase-8 was significantly less processed in TRAIL-pre-

treated cells (Fig. 6a). Moreover, the amount of XIAP

protein remained constant in TRAIL-pretreated cells,

330 Apoptosis (2013) 18:324–336
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whereas it was decreased in naı̈ve cells treated with TRAIL

(Fig. 6a), possibly as a result of cleavage by caspase-3

[40]. Importantly, expression of both TRAIL-R1 and

TRAIL-R2 receptors was also reduced in pretreated cells

compared to naı̈ve or sequentially treated cells (Fig. 6b).

Interestingly, whereas the level of TRAIL-R2 returned to a

normal value in sequentially treated cells, the level of

TRAIL-R1 remained low (Fig. 6b). Together, these results

suggest that the desensitization of Bax-/- cells to TRAIL

could be in part due to decreased expression of TRAIL-R1

and TRAIL-R2 at the cell surface and that re-sensitization

of these cells to TRAIL after interruption of the treatment

may be due to TRAIL-R2 re-expression.

Discussion

In this paper we show that upon TRAIL treatment, two

different cells lines, HCT116 and SW480 cells, lacking an

efficient intrinsic pathway not only resist apoptosis, but

also display membrane blebbing and an enhanced capa-

bility to migrate. Membrane blebbing and enhanced

migratory activity of these cells lies in the cleavage of

ROCK1 by caspase-3 since inhibition of ROCK1 inhibited

both processes. TRAIL-induced membrane blebbing and

Fig. 3 TRAIL promotes in vitro migration of HCT116 Bax-/- cells.

Migration of HCT116 Bax-/- and Bax-/? cells in response to

TRAIL (100 ng/ml), Y-27632 (10 lM) or TRAIL (100 ng/ml) and

Y-27632 (10 lM) was analyzed using a modified Boyden chamber

assay as described in the ‘‘Materials and methods’’ section. Mean

values ± SD are shown for six independent experiments with

*p \ 0.05

Fig. 4 Potentiation of TRAIL with a proteasome inhibitor. a Immu-

nofluorescence analysis of active caspase-3 in untreated and TRAIL-

treated HCT116 Bax-/- cells for 5 h. b Quantification of apoptosis

using Annexin V staining of control or caspase-3-deficient HCT116

Bax-/- cells treated for 5 h with TRAIL (100 ng/ml) and the

proteosome inhibitor MG-132 (10 lM). Mean values ± SEM are

shown for four independent experiments with **p \ 0.01. c Cell

lysates from these cells were analyzed for PARP, caspase-8, caspase-

3 and actin by Western blotting
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adoption of an amoeboid morphology has previously been

described ([41, 42], A. Ashkenazi, personal communica-

tion). The process of membrane blebbing is not specific for

apoptosis, as this has been observed under many physio-

logical and pathological conditions such as embryonic

development, cell division, cell spreading and metastasis

[43, 44]. Many cancer cell lines such as M2 melanoma or

migrating Walker carcinoma show membrane blebbing

when they move [45]. During metastasis, cancer cells can

either attain a mesenchymal mode of motility utilizing

proteolytic mechanisms or an amoeboid blebbing mode of

motility, or both to bypass tissue barriers before dissemi-

nation into lymphatic or blood vessels [46–48]. The fact

that TRAIL promotes cell blebbing and migration is con-

sistent with previous observations made in vitro [42, 49]

and in vivo [50]. In the latter case, orthotopically trans-

planted human pancreatic ductal adenocarcinoma cells in

the pancreas of severe combined immunodeficiency mice

led to a dramatic increase in metastatic spread upon TRAIL

treatment [50].

HCT116 cells are described as type II cells since they

require the intrinsic pathway to activate executioner

Fig. 5 Acquired resistance to TRAIL. a Naı̈ve cells, pretreated cells

and sequentially treated cells (see ‘‘Materials and methods’’ section)

were treated with TRAIL (100 ng/ml), MG-132 (10 lM), Bortezomib

(25 nM), TRAIL (100 ng/ml) and MG-132 (10 lM) or TRAIL

(100 ng/ml) and bortezomib (25 nM) for 5 h, and imaged. b The

treated cells were harvested and apoptosis was measured by Annexin

V staining. Mean values ± SEM are shown for three independent

experiments with ***p \ 0.0001
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caspases and undergo apoptosis upon engagement of

TRAIL receptors. Activation of the intrinsic pathway,

which leads to the release of Smac/DIABLO from

mitochondria, is required to counteract IAPs and to allow

efficient caspase-3 activation. Accordingly, we observed

that in the absence of a functional intrinsic pathway due to

Fig. 6 TRAIL receptors are downregulated in pretreated HCT116

Bax-/- cells. a Cell lysates prepared from HCT116 Bax-/- cells at

the indicated treatment conditions were analyzed for expression of

caspase-3, caspase-8, XIAP and actin. b Analysis of cell surface

expression of death receptors on HCT116 Bax-/- cells by flow

cytometry. Cells as indicated in the treatment conditions were stained

for anti-TRAIL-R1 or anti-TRAIL-R2 antibodies, counterstained with

FITC conjugated secondary antibodies and analyzed by FACS
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the absence of Bax in HCT116 cells or due to the over-

expression of Bcl-xL in SW480 cells, the level of active

caspase-3 was significantly decreased after TRAIL treat-

ment. This level was, however, sufficient to cleave ROCK1

but insufficient to cleave other key substrates and execute

the cell. This result is in agreement with previous data

showing that activation of caspase-3 is compartmentalized

in many cells types [51, 52] and can be compatible with

cell proliferation, survival and metastasis [53–59]. A wave

of caspase-3 activation has also previously been reported to

diffuse from underneath the plasma membrane to the

nucleus [32, 60]. In Bax-/- HCT116 and Bcl-xL over-

expressing SW480 cells this gradient of activation appears

to be interrupted in the cytosol, due to the lack of Smac/

DIABLO release and the persistence of a high IAP activity.

Previous data have shown that an interaction between the

cleaved form of caspase-3 (p24) and XIAP, one of the IAP

family members, prevents the complete processing of

caspase-3 in HCT116 Bax-/- cells [33]. Moreover, sev-

eral of the human IAPs (XIAP, c-IAP1, and c-IAP2) are

known for their ability to inhibit caspases directly [61, 62].

It was also reported that XIAP acts as a ubiquitin-protein

ligase for caspase-3 [63]. Using constitutively active

mutants of caspase-3, the authors have shown that XIAP

promotes the degradation of the active-form of caspase-3 in

a proteasome-dependent manner. In agreement with these

studies, we found that inhibition of the proteasome, toge-

ther with TRAIL, was accompanied by complete process-

ing of caspase-3 and cell death. Thus inhibition of the

proteasome transformed type II cells into type I cells.

Use of proteasome inhibitors has emerged as a promis-

ing approach for treating a number of cancers. Proteasome

inhibitors enhance TRAIL-induced apoptosis in various

tumor cells including colon cancer cells [35–39, 64].

Interestingly, we observed that a continuous treatment of

Bax-/- cells with TRAIL rendered these cells resistant to

the combination of TRAIL and a proteasome inhibitor.

Previously published data have shown that acquired resis-

tance to TRAIL could occur through c-Cbl-mediated

downregulation of TRAIL receptors TRAIL-R1 and

TRAIL-R2 [65]. In agreement with these findings, we

found a decreased surface expression of TRAIL-R1 and

TRAIL-R2 after exposure of Bax-/- HCT116 cells to

TRAIL for 1 day. Removal of TRAIL from the culture

medium for 2 days allowed these cells to recover expres-

sion of TRAIL-R2. We cannot exclude that in addition to

the decreased surface expression of the receptors, other

mechanisms may be at work to explain desensitization of

the cells to TRAIL.

In conclusion, our observations, although limited to

in vitro studies, are important to consider from a thera-

peutic point of view since they indicate that continuous

TRAIL treatment can promote tumor resistance. Moreover,

they point to the risk of inducing cell migration, and pos-

sibly metastasis, if TRAIL would be used alone to eradi-

cate tumor cells displaying a deficient intrinsic

mitochondrial pathway. In order to prevent cell detachment

and migration, compounds such as ROCK1 inhibitors

could be of great value. Finally our results raise the

intriguing possibility that the immune system may be del-

eterious for the organism when fighting against tumors,

since through expression of TRAIL or other death ligands

of the TNF-a family, it may elicit tumor cell migration and

thereby greatly influence disease outcome. All these

hypotheses will have to be tested in vivo.
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