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Abstract Let M be an n-dimensional connected compact manifold with non-empty
boundary equipped with a Riemannian metric g, a spin structure σ and a chirality opera-
tor �. We define and study some properties of a spin conformal invariant given by:

λmin(M, ∂M) := inf
g∈[g]|λ

±
1 (g)|Vol(M, g)

1
n ,

where λ±
1 (g) is the smallest eigenvalue of the Dirac operator under the chiral bag boundary

condition B
±
g . More precisely, we show that if n ≥ 2 then:

λmin(M, ∂M) ≤ λmin(S
n+, ∂S

n+).
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Chiral bag boundary condition · Yamabe problem
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1 Introduction

On a compact Riemannian spin manifold without boundary (Mn, g), several results (see
[6,17,21] or [5] for instance) have been devoted to a spin conformal invariant independently
introduced by Hijazi and Lott and defined in terms of the smallest positive eigenvalue of the
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322 S. Raulot

Dirac operator. This invariant is given by:

λ+
min(M, [g], σ ) := inf

g∈[g]λ
+
1 (g)Vol(M, g)

1
n , (1)

where [g] and σ are respectively the conformal class of the Riemannian metric g and a spin
structures on M (they also define this invariant from the largest negative eigenvalue of the
Dirac operator). In [4,21], the authors proved that λ+

min(M, [g], σ ) > 0 using pseudo-differ-
ential operators and Sobolev embedding theorems. Moreover, in [1,4] it is shown that:

λ+
min(M, [g], σ ) ≤ λmin(S

n, [gst], σst) = n

2
ω

1
n
n , (2)

where S
n is the n-dimensional Euclidean sphere with standard conformal and spin structure

and ωn stands for its volume. In [3], Ammann et al. proved that Inequality (2) is strict under
some geometrical assumptions. More precisely, they introduced the mass endomorphism on
locally conformally flat manifolds which is the constant term of the Green function of the
Dirac operator and they showed that if this endomorphism is not identically zero, n �≡ 3 mod 4
and ker(D) = {0} then Inequality (2) is strict. The strict inequality has several applications;
first using the Hijazi inequality (see [17,18]), it gives a spinorial proof of the Yamabe prob-
lem (see [22] for an overview over this problem); secondly one can obtain solutions of a
nonlinear partial differential equation in a way analogous to the Yamabe problem. Note that
this equation is critical in the sense that the Sobolev embeddings involved are critical. For a
complete review of these results, see [2].

In this paper, we define and study an analogous spin conformal invariant in the context
of compact manifolds with boundary. On such manifolds, the Dirac operator has an infi-
nite dimensional kernel and a closed image with finite codimension so we have to impose
some boundary conditions on the restriction to the boundary ∂M of the spinor fields on M .
More details on elliptic boundary conditions for the Dirac operator can be found in [7,20]
or [13]. In order to define a well-posed spin conformal invariant, we have to choose some
adapted boundary condition, i.e., a conformally invariant boundary condition. The chiral bag
boundary condition is such a condition and so on a compact Riemannian spin manifold with
boundary we let:

λmin(M, ∂M) := inf
g∈[g]|λ

±
1 (g)|Vol(M, g)

1
n ,

where λ±
1 (g) is the smallest eigenvalue of the Dirac operator under the chiral bag boundary

condition B
±
g (see Sect. 2), g (resp. [g]) is a Riemannian metric (resp. the conformal class

of g) and σ a spin structure on M . The main result of this article is the following:

Theorem 1 Let (Mn, g, σ ) be a connected compact Riemannian spin manifold equipped
with a chirality operator � and with smooth boundary. Then:

λmin(M, ∂M) ≤ λmin(S
n+, ∂S

n+) = n

2

(ωn

2

) 1
n
, (3)

where ωn stands for the volume of the standard sphere S
n.

The proof of this theorem is given in four steps. First in Sect. 3, we give a variational
characterization of this invariant. Then in Sect. 4, we will compute explicitly its value on the
standard hemisphere and in particular we will construct Killing spinor fields which satisfy
the chiral bag boundary condition. Section 5 is devoted to the construction of a trivialization
of the spinor bundle over the manifold M equipped with a Riemannian metric which sends
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On a spin conformal invariant on manifolds with boundary 323

(locally) a spinor field on the flat space to a spinor field over an open set of M . Finally from
a Killing spinor field and this trivialization, we will obtain an adapted test spinor to evaluate
in the variational characterization of λmin(M, ∂M). Note that in [25], we give a sufficient
condition for a certain type of manifolds for which Inequality (3) is strict. This condition is
based on the construction of the Green function for the Dirac operator under the chiral bag
boundary condition.

This invariant is closely related to the Yamabe invariant involved in the Yamabe problem
on manifolds with boundary. This problem could be stated as follows: given (Mn, g) a com-
pact Riemannian manifold of dimension n ≥ 3, does there exist a metric g conformal to g
for which the scalar curvature is constant and the mean curvature is zero? This problem has
been solved in many cases by Escobar [12]. Solving the Yamabe problem is equivalent to
find a positive smooth function f of the following boundary value problem:

{
Lg f := 4(n−1)

n−2 �g f + Rg f = C f N−1 on M

Bg f|∂M := − 2
n−2

∂ f
∂ν

+ Hg f = 0 along ∂M

where Rg (resp. Hg) is the scalar (resp. mean) curvature of (M, g) (resp. (∂M, g|∂M )),
N = 2n

n−2 and C is a constant. The existence of a smooth positive solution to this system is
based on the study of the Yamabe invariant defined by

µ(M, ∂M) := inf
u∈C1(M),u �=0

∫
M

(
4 n−1

n−2 |∇u|2 + Rgu2
)

dv(g)+ 2(n − 1)
∫
∂M Hgu2ds(g)

( ∫
M |u|N dv(g)

) 2
N

.

This number only depends on the conformal class of g and if µ(M, ∂M) ≥ 0 it can be
expressed as

µ(M, ∂M) = inf µ1(Lg)Vol(M, g)
2
n ,

where the infimum is taken over all metrics g conformal to g and where µ1(Lg) is the first
eigenvalue of the eigenvalue problem:

{
Lgu = µ1(Lg)u on M
Bgu|∂M = 0 along ∂M.

(4)

In [12], Escobar shows that:

µ(M, ∂M) ≤ µ(Sn+, ∂S
n+) = n(n − 1)

(ωn

2

) 2
n
. (5)

Moreover, he proves that if this inequality is strict then the Yamabe problem is solved. To
point out the relation between λmin(M, ∂M) and this problem, let us recall some results. If
n ≥ 3, then the Hijazi inequality on manifolds with boundary [24] relates λ±

1 (g) to the first
eigenvalue µ1(Lg):

λ±
1 (g)

2 ≥ n

4(n − 1)
µ1(Lg)

and equality holds if and if only (M, g) is isometric to a half-sphere. Using the Hölder
inequality gives:

λmin(M, ∂M)2 ≥ n

4(n − 1)
µ(M, ∂M). (6)
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324 S. Raulot

2 Chiral bag boundary condition

In this section, we give some standard facts about compact Riemannian spin manifold with
boundary and chiral bag boundary condition. This condition has been introduced in [14] to
prove some positive mass theorems for black holes (see also [16]). Note that this condition
has also been studied in a serie of papers by Gilkey, Kirsten and others (see [9,10,15]). For
more details on boundary conditions for the Dirac operator, we refer to [7] or [20] .

Let (Mn, g) be a compact Riemannian spin manifold with boundary, denote by �g(M)
its spinor bundle, ∇ its Levi-Civita connection and “·” its Clifford multiplication. The spinor
bundle is endowed with a natural Hermitian scalar product denoted by 〈 , 〉 compatible with
∇ and with the Clifford multiplication. The Dirac operator Dg is then the first order elliptic
differential operator acting on �g(M) locally given by:

Dgϕ =
n∑

i=1

ei · ∇eiϕ,

for all ϕ ∈ � (�g(M)
)

and where {e1, . . . , en} is a local g-orthonormal frame of the tangent
bundle. Since the boundary is an oriented hypersurface of M , there exists a unit vector field ν
normal to ∂M and then the boundary is itself a spin manifold. We denote by Sg := �g(M)|∂M

the restriction of the spinor bundle of M to the boundary. This bundle is also endowed with
a Levi-Civita connection ∇S, a Clifford multiplication and a natural compatible Hermitian
scalar product.

Now suppose that there exists on the manifold M a chirality operator �, i.e., an endomor-
phism of the spinor bundle satisfying:

�2 = Id, 〈�ϕ, �ψ〉 = 〈ϕ,ψ〉
∇X (�ψ) = �(∇Xψ), X · �ψ = −�(X · ψ) (7)

for all ϕ, ψ ∈ �
(
�g(M)

)
and X ∈ �(TM). Since the endomorphism ν · � is involutive,

we have an eigenbundle decomposition Sg = V+ ⊕ V− where V± is the eigensubbundle
associated with the eigenvalue ±1. We can then check that the projection:

B
±
g : L2(Sg) −→ L2(V±)

ϕ �−→ 1
2 (Id ± ν · �)ϕ,

defines an elliptic boundary condition for the Dirac operator called the chiral bag boundary
condition. Indeed, in [13] the authors show that:

Dg : H±
g =

{
ϕ ∈ H2

1 / B
±
g (ϕ|∂M ) = 0

}
−→ L2 (�g(M)

)
(8)

defines a self-adjoint Fredholm operator, i.e., the kernel of Dg is finite dimensional and its
image is closed in L2

(
�g(M)

)
. Then we have an L2-orthogonal splitting:

H±
g = Ker±(Dg)⊕ C±

g , (9)

where C±
g is the L2-orthogonal of Ker±(Dg) in H±

g . It is easy to check that C±
g is closed in

H±
g . Moreover, under this boundary condition, the spectrum of the Dirac operator Dg with

domain H±
g consists of entirely isolated real eigenvalues with finite multiplicity and it admits

a spectral resolution:

L2 (�g(M)
) =

⊕

λ±(g)∈Spec±(Dg)

Nλ±(g)(Dg), (10)
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On a spin conformal invariant on manifolds with boundary 325

where Spec±(Dg) is the spectrum under the boundary condition B
±
g and Nλ±(g)(Dg) is the

eigenspace associated with the eigenvalue λ±(g). In [24], we show that this set of eigenvalues
satisfies the Hijazi inequality (6). We are now ready to define the chiral bag invariant.

Definition 1 The chiral bag invariant is given by:

λ±
min(M, ∂M) := inf

g∈[g]|λ
±
1 (g)|Vol(M, g)

1
n ,

where λ±
1 (g) is the smallest eigenvalue of the Dirac operator under the chiral bag boundary

condition B
±
g .

Remark 1 This definition seems to depend on the boundary condition chosen B
+
g or B

−
g ,

however it doesn’t. Indeed, we are going to check that Spec+(Dg) = −Spec−(Dg) and then
λ+

min(M, ∂M) = λ−
min(M, ∂M). Let ϕ ∈ � (�g(M)

)
be an eigenspinor for the Dirac operator

under the B
−
g boundary condition, then it satisfies the eigenvalue problem:

{
Dgϕ = λϕ on M
ν · �ϕ|∂M = ϕ|∂M along ∂M

We can then decompose the eigenspinor following the chirality decomposition, i.e., ϕ =
ϕ+ +ϕ− where ϕ± = 1

2 (1±�)ϕ. Since the Dirac operator sends positive spinors to negative
ones and conversely, an easy calculation leads to Dgϕ̃ = −λϕ̃, where ϕ̃ = ϕ+ − ϕ−. Using
the boundary condition, the chirality decomposition and since Clifford multiplication by ν
interchanges the chirality of spinor fields, we can easily check that ν · ϕ±

|∂M = ±ϕ∓
|∂M . We

deduce that:

ν · �ϕ̃|∂M = ν · ϕ+
|∂M + ν · ϕ−

|∂M = ϕ−
|∂M − ϕ+

|∂M = −ϕ̃|∂M ,

and then −λ ∈ Spec+(Dg). In particular, we have Ker+(Dg)  Ker−(Dg) and Clifford
multiplication by ν sends C+

g on C−
g .

Taking this into account, we will denote by λmin(M, ∂M) the chiral bag invariant in the
rest of this paper and we will consider the B

−
g condition.

3 Variational characterization

The aim of this section is to give a variational characterisation of the chiral bag invariant.
More precisely, we prove that:

Proposition 2 We have:

λmin(M, ∂M) := inf
g∈[g]|λ

−
1 (g)|Vol(M, g)

1
n = inf

ϕ∈C−
g

⎧
⎪⎪⎨
⎪⎪⎩

( ∫
M |Dgϕ| 2n

n+1 dv(g)
) n+1

n

∣∣∫
M Re

〈
Dgϕ, ϕ

〉
dv(g)

∣∣

⎫
⎪⎪⎬
⎪⎪⎭
. (11)

In order to prove this proposition, we need a variational characterization of the first eigen-
value of the Dirac operator under the chiral bag boundary condition. So we first show:

Proposition 3 The square of the first eigenvalue of the Dirac operator is given by:

λ−
1 (g)

2 = inf
ϕ∈C−

g

{∫
M |Dgϕ|2dv(g)∫

M |ϕ|2dv(g)

}
.
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326 S. Raulot

We omit the proof of this proposition which can be seen as a direct application of the
Rayleigh quotient. However, we refer to [23] for a rigorous proof. We can easily deduce from
the Cauchy–Schwarz inequality and from the preceding proposition the following result
which is very useful for the variational characterization of λmin(M, ∂M).

Corollary 4 The first eigenvalue of the Dirac operator under the chiral bag boundary con-
dition is given by:

|λ−
1 (g)| = inf

ψ∈C−
g

{ ∫
M |Dgψ |2dv(g)∣∣∫

M Re
〈
Dgψ,ψ

〉
dv(g)

∣∣
}
.

From now on, all quantities which depend of the metric are written with their reference
metric. We now briefly recall some conformal aspects of spin geometry. Let g = f 2g be a
metric in the conformal class of g, then there exists an isomorphism F between their respec-
tive spinor bundles �g(M) and �g(M). We can also relate the Dirac operators Dg and Dg

(see [19] or [17]) by the formula:

Dg(F(ψ)) = f − n+1
2 F

(
Dg
(

f
n−1

2 ψ
))
. (12)

The chiral bag boundary condition transforms nicely under conformal change of metrics.
Indeed, if there exists a chirality operator acting on �g(M), then the map

� := F ◦ � ◦ F−1 : �g(M) −→ �g(M)

defines a chirality operator on the spinor bundle over M endowed with the metric g. Thus
the orthogonal projection

B
±
g : L2(Sg) −→ L2(V

±
)

ϕ �−→ 1
2 (Id ± ν ·�)ϕ,

also defines elliptic boundary condition for the Dirac operator. Then using the conformal
covariance of the Dirac operator and that of the chiral bag boundary condition, we easily
check that:

ψ ∈ Ker(Dg) ⇐⇒ f − n−1
2 F(ψ) ∈ Ker(Dg).

Its L2-orthogonal complement also transforms naturally as:

ψ ∈ C−
g ⇐⇒ f − n+1

2 F(ψ) ∈ C−
g .

Proof of Proposition 2 The proof is closely related to the one given in [4]. First we note
that since the Dirac operator under the chiral bag boundary condition admits a self-adjoint
L2-extension, we can identify the orthogonal of the kernel with the image of Dg . With a

slight abuse in the notations, let � = f − n+1
2 F(ϕ) ∈ C−

g and then using Corollary 4 and the
preceding discussion, we can write:

|λ−
1 (g)| = inf

�∈C−
g

⎧⎨
⎩

∫
M |�|2dv(g)∣∣∣∫M Re
〈
�,D−1

g �
〉

dv(g)
∣∣∣

⎫⎬
⎭

= inf
�∈C−

g

⎧
⎨
⎩

∫
M | f − n+1

2 F(ϕ)|2 f ndv(g)∣∣∣∫M Re
〈

f − n+1
2 F(ϕ),D−1

g

(
f − n+1

2 F(ϕ)
)〉

f ndv(g)
∣∣∣

⎫
⎬
⎭

= inf
ϕ∈C−

g

⎧⎨
⎩

∫
M f −1|ϕ|2dv(g)∣∣∣∫M Re
〈
ϕ,D−1

g ϕ
〉

dv(g)
∣∣∣

⎫⎬
⎭ . (13)
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On a spin conformal invariant on manifolds with boundary 327

Now note that, using the Hölder inequality, we have:

⎛
⎝
∫

M

|ϕ| 2n
n+1 dv(g)

⎞
⎠

n+1
n

≤
⎛
⎝
∫

M

f −1|ϕ|2dv(g)

⎞
⎠

n
n+1

vol(M, g)
1
n ,

for all f ∈ C∞+ (M), ϕ ∈ C−
g and with equality if and only if f = c |ϕ| 2

n+1 or ϕ ≡ 0. We then
obtain that:

inf
f ∈C∞+ (M)

⎧⎪⎨
⎪⎩

⎛
⎝
∫

M

f −1|ϕ|2dv(g)

⎞
⎠

n
n+1

vol(M, g)
1
n

⎫⎪⎬
⎪⎭

≥ ||ϕ||2L2n/(n+1) ,

forϕ ∈ C−
g . However, if the spinor fieldϕ has no zeros we can let f = |ϕ| 2

n+1 and then we have
equality in the preceding inequality. Otherwise we can easily find a sequence fk : M → R

∗+
such that if gk = f 2

k g then:

⎛
⎝
∫

M

f −1
k |ϕ|2dv(g1)

⎞
⎠

n
n+1

vol(M, gk)
1
n −→

k→∞ ||ϕ||2L2n/(n+1) , for all ϕ ∈ C−
g .

Using all these arguments and the fact that g = f 2g, the chiral bag invariant is then
given by:

λmin(M, ∂M) = inf
f ∈C∞+ (M)

|λ−
1 (g)|vol(M, g)

1
n

= inf
f ∈C∞+ (M)

inf
ϕ∈C−

g

⎧⎨
⎩

( ∫
M f −1|ϕ|2dv(g)

)
∣∣∣∫M Re

〈
ϕ,D−1

g ϕ
〉

dv(g)
∣∣∣
vol(M, g)

1
n

⎫⎬
⎭

= inf
ϕ∈C−

g

inf
f ∈C∞+ (M)

⎧
⎨
⎩

( ∫
M f −1|ϕ|2dv(g)

)
∣∣∣∫M Re

〈
ϕ,D−1

g ϕ
〉

dv(g)
∣∣∣
vol(M, g)

1
n

⎫
⎬
⎭

= inf
ϕ∈C−

g

⎧
⎪⎪⎨
⎪⎪⎩

( ∫
M |ϕ| 2n

n+1 dv(g)
) n+1

n

∣∣∣∫M Re
〈
ϕ,D−1

g ϕ
〉

dv(g)
∣∣∣

⎫
⎪⎪⎬
⎪⎪⎭
.

��

4 The case of the hemisphere

In this section, we consider the particular case where the manifold is the hemisphere endowed
with its standard spin structure and conformal class. In fact, we show that on S

n+, we can
construct Killing spinor fields satisfying the chiral bag boundary condition. Thus we will be
able to compute explicitly the value of λmin(S

n+, ∂S
n+). First we prove the following result:
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328 S. Raulot

Proposition 5 On the half-space R
n+ endowed with the standard Euclidian metric ξ , there

exists a spinor field ψ± ∈ � (�ξ(Rn+)
)

which satisfies the following boundary problem:
{

Dξψ± = ± n
2 fψ± on R

n+
B

−
ξ (ψ

±
|∂Rn+

) = 0 along ∂R
n+

where Dξ is the Dirac operator on R
n+ and f is the real-valued function given by f (x) = 2

1+r2

with r2 = x2
1 +· · ·+x2

n if x = (x1, . . . , xn) ∈ R
n+. Moreover, we have the following relations:

|Dξψ±|2 = f n+1 and |ψ±|2 = f n−1. (14)

Proof Fix 0 a parallel spinor on �ξ(Rn+) and for x = (x1, . . . , xn) ∈ R
n+, we define:

ψ±(x) = 1√
2

f
n
2 (x)(1 ∓ x) ·0(x).

An easy computation using the parallelism of0 and the relation ∂i · ∂ j + ∂ j · ∂i = −2δi j

for all 1 ≤ i, j ≤ n leads to:

Dξψ
+(x) = − n

2
√

2
f

n
2 +1(x) x ·0 + n

2
√

2
f

n
2 (x)

(
2 − f (x)r2)0.

Note that:

2 − f (x)r2 = f (x)

and then:

Dξψ
+(x) = n

2
f (x)ψ+(x). (15)

The preceding calculation depends only on the parallelism of the spinor field 0, so we
now show that this spinor can be chosen satisfying the chiral bag boundary condition. In fact,
if we let �0 = 1

2 (0 + ν̃ · �0) where ν̃ is a smooth extension of the normal field ν, then,
since ∂R

n+ is totally geodesic in R
n+, the spinor field�0 is also parallel hence it also satisfies

(15). Now using the properties (7) of the chirality operator, we have:

ν · �ψ+
|∂Rn+

= 1

2
f

n
2 (x)ν · � ((1 − x) · (0 + ν · �0))|∂Rn+ = ψ+

|∂Rn+
.

Finally, we can easily compute that this spinor field satisfies the relations (14). ��
Using this result, we can now construct a Killing spinor field on the standard hemisphere

S
n+ satisfying the chiral bag boundary condition. Indeed, we have:

Corollary 6 On the standard hemisphere S
n+, there exists a Killing spinorψ± ∈ � (�gst (S

n+)
)

satisfying the following eigenvalue problem:
{

DS
n+(ϕ±) = ± n

2ϕ
± on S

n+
B

−
gst
(ϕ±

|∂Sn+
) = 0 along ∂S

n+,
(16)

where DS
n+ is the Dirac operator on S

n+.

Proof First recall that if q ∈ ∂S
n+, then the stereographic projection of pole q gives an isome-

try between
(
R

n+, f 2 geucl
)

and
(
S

n+\{q}, gst
)
, where f is the function given in Proposition 5.

The bundle isomorphism F described in Sect. 3 allows to identify the spinor bundle over R
n+
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On a spin conformal invariant on manifolds with boundary 329

with that over S
n+ \ {q}. So if we let ϕ± := f − n−1

2 F(ψ±) where ψ± is the spinor field
constructed in Proposition 5, the conformal covariance of the Dirac operator (12) gives:

DS
n+(ϕ±) = ±n

2
ϕ±

and the one of the chiral bag boundary condition leads to B
−
gst
(ϕ±

|∂Sn+
) = 0 on S

n+\{q}. Now

we show that this spinor field extends to the whole hemisphere. For ε > 0 let ηε : U → [0, 1]
be a cut-off function with support in an open set U of S

n+ and with q ∈ U. More precisely, we
suppose that ηε ≡ 1 on B+

ε (q), supp (ηε) ⊂ B+
2ε(q) and |∇ηε| ≤ C/ε where C is a positive

real number. Observe now that for  ∈ H−
gst

we have:
∫

U

〈
ϕ±,DS

n+
〉

dv(gst) =
∫

U

〈
ϕ±,DS

n+ (ηε+ (1 − ηε))
〉

dv(gst)

=
∫

U

〈
ϕ±,DS

n+ ((1 − ηε))
〉

dv(gst)+
∫

U

〈
ϕ±, ηεDS

n+
〉

dv(gst)

+
∫

U

〈
ϕ±,∇ηε ·〉 dv(gst). (17)

Since ϕ± satisfies the chiral bag boundary condition on S
n+\{q}, we get:

∫

U

〈
ϕ±,DS

n+ ((1 − ηε))
〉

dv(gst) = ±n

2

∫

U

〈
ϕ±, (1 − ηε)

〉
dv(gst)

−→
ε→0

±n

2

∫

U

〈
ϕ±,

〉
dv(gst).

On the other hand, an estimation of the second term in Identity (17) leads to:
∣∣∣∣∣∣

∫

U

〈
ϕ±, ηεDS

n+
〉

dv(gst)

∣∣∣∣∣∣
≤ ||ϕ±||L2(B+

2ε)
||DS

n+||L2(B+
2ε)
.

It is then easy to conclude that the righthand side of this inequality goes to 0 when ε → 0.
Let’s now look at the last term in (17). We have:
∣∣∣∣∣∣

∫

U

〈
ϕ±,∇ηε ·〉 dv(gst)

∣∣∣∣∣∣
≤ vol

(
B+

2ε(q)
) 1

2 ||∇ηε||C0 ||ϕ±||L2 ||||L2≤ C ||ϕ±||L2(B+
2ε)
ε

n
2 −1

and since n ≥ 2, it converges to 0 when ε → 0. Hence, we have proved that the spinor
field ϕ± satisfies, in a weak sense on U, the eigenvalue boundary problem (16). The classical
regularity theorems allow to conclude that it is satisfied, in a strong sense, on S

n+. ��
We can thus easily compute the value of the chiral bag invariant on the hemisphere. Indeed

we have the following result:

Corollary 7 The chiral bag invariant on the hemisphere S
n+ is given by:

λmin(S
n+, ∂S

n+) = n

2

(ωn

2

) 1
n
. (18)
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Proof First, we note that using the Hijazi inequality (6) we have:

λmin(S
n+, ∂S

n+)2 ≥ n

4(n − 1)
µ(Sn+) = n2

4

(ωn

2

) 2
n
.

Moreover (see Corollary 6), since a Killing spinor is an eigenspinor for the Dirac operator
under the chiral bag boundary condition, we obtain:

λmin(S
n+, ∂S

n+) := inf
g∈[gst]

|λ1(g)|Vol(Sn+, g)
1
n ≤ |λ1(gst)|Vol(Sn+, gst)

1
n = n

2

(ωn

2

) 1
n

and we can easily conclude. ��

5 A trivialization of the spinor bundle

In order to prove Theorem 1, we have to construct a trivialization of the spinor bundle over M
endowed with a Riemannian metric around a boundary point. This trivialization arises from
a bundle isomorphism introduced by Bourguignon and Gauduchon [8] to identify spinors on
a Riemannian spin manifold endowed with two distinct metrics and from an adapted chart of
the manifold around a boundary point, the Fermi coordinates. We follow more particularly
[1].

Let q be a boundary point and let (x1, . . . , xn−1) be normal coordinates on ∂M at this
point. Let t �→ γ (t) be the geodesic leaving from (x1, . . . , xn−1) in the orthogonal direction
to ∂M and parametrized by arc length. Then:

Fq : U ⊂ Tq M −→ V ⊂ M
(x1, . . . , xn−1, t) �−→ m

are called the Fermi coordinates at q ∈ ∂M . Moreover in these coordinates, the arc length
ds2 is given by:

ds2 = dt2 + gi j (x, t)dxi dx j , (19)

for all 1 ≤ i, j ≤ n − 1 and (x, t) ∈ U. Now let:

G : V ⊂ M −→ S2+(n,R) = {A ∈ Mn(R)/A symmetric and positive-definite}
m �−→ Gm = (

gi j (m)
)

1≤i, j≤n

the smooth map which associates to any point m ∈ V the matrix of the coefficients of the
metric g at this point in the basis {∂1, . . . , ∂n−1, ∂t }. In Fermi coordinate, we can also write:

Gm =
(

G̃m 0

0 1

)
, with G̃m = (

gi j (m)
)

1≤i, j≤n−1 .

Since the manifold M is Riemannian, the metric is positive-definite and symmetric at
each point m ∈ V, hence Gm too. In a same way, the matrix G̃m is also positive-definite and
symmetric. So there exists B̃m ∈ S2(n − 1,R) such that:

B̃2
m = G̃−1

m ,

which depends smoothly on m. If we let:

Bm =
(

B̃m 0

0 1

)
∈ S2(n,R),
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then this matrix satisfies B2
m = G−1

m . Note that for all X, Y ∈ R
n+, we have:

t (Bm X)Gm (BmY ) = t X InY = ξ(X, Y ), (20)

where ξ stands for the standard euclidian metric on R
n+. We then have an isomorphism:

Bm :
(

TF−1
q (m)U  R

n+, ξ
)

−→ (TmV, gm) ,

which, by construction, depends smoothly on m. We can now identify the SOn-principal bun-
dles SO(U, ξ) and SO(V, g) of oriented ξ and g-orthonormal frames of (U, ξ) and (V, g).
In fact, the following diagram is commutative:

SO(U, ξ) SO(V, g)

U ⊂ Tq M V ⊂ M

�ζ

� �
�

Fq

where ζ is given by the natural action of B on SO(U, ξ). This diagram commutes with the
right action of SOn , then the map ζ can be lifted to:

Spin(U, ξ) Spin(V, g)

U ⊂ Tq M V ⊂ M

�̃ζ

� �
�

Fq

Hence, we obtain an identification between the spinor bundles�ξ(U) and�g(V) given by:

�ξ(U) := Spin(U, ξ)×ρn �n −→ �g(V) := Spin(V, g)×ρn �n

ψ = [s, ϕ] �−→ ψ = [̃ζ (s), ϕ]. (21)

where (ρn, �n) is the complex spinor representation. In the same way, we can identify the
boundary spinor bundles Sξ (U) := �ξ(U)|U∩∂Rn+ and Sg(V) := �g(V)|V∩∂M .

Now we are going to relate the Dirac operator Dg acting on sections of �g(V) with the
Dirac operator Dξ acting on those of �ξ(U). First, let:

ei := b j
i ∂ j ,

where b j
i are the coefficients of the matrix Bm and then {e1, . . . , en} is a local orthonormal

frame of (TV, g). We can also suppose that the unit vector field en is the inner unit vector
field ν := ∂t normal to ∂M and then we have b j

n = δ
j
n and bn

i = δn
i for all 1 ≤ i, j ≤ n.

Denote by ∇ (resp. ∇) the Riemannian and spinorial Levi-Civita connection on (U, ξ) (resp.
(V, g)) and the Christoffel of the second kind �̃k

i j are defined by:

�̃k
i j = g(∇ei e j , ek).

We can then easily check that Clifford multiplications on�ξ (U) and�g(V) are related by:

∂i · ψ = ei · ψ,
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for all ψ ∈ �ξ(U). Moreover, for a spinor field ψ ∈ �
(
�ξ(U)

)
then ψ ∈ �

(
�g(V)

)
and

by construction of the spinorial Levi-Civita connection, we have:

∇eiψ = ei (ψ)+ 1

4

∑
1≤ j,k≤n

�̃k
i j e j · ek · ψ. (22)

Using the local expression of the Dirac operator Dg , we get:

Dgψ = Dξψ +
n∑

i, j=1

(
b j

i − δ
j
i

)
∂i · ∇∂ jψ + 1

4

∑
1≤i, j,k≤n

�̃k
i j ei · e j · ek · ψ. (23)

We can then prove the following statement:

Proposition 8 If Dξ and Dg are the Dirac operators acting respectively on �ξ(U) and
�g(V), then we have

Dgψ = Dξψ +
n∑

i, j=1

(
b j

i − δ
j
i

)
∂i · ∇∂ jψ + W · ψ + T · ψ

+ν̃ · Z · ψ − n − 1

2
Ht ν̃ · ψ, (24)

where ν̃ ∈ �(TM) is a local extension of the inner normal vector field ν ∈ �(TM|∂M ) and
where W ∈ �(�3(T∗V)), T ∈ �(T∗V) and Z ∈ �(�2(T∗V)) are given by

W = 1

4

∑
1≤i, j,k≤n−1

i �= j �=k

br
i ∂r (b

l
j )(b

−1)kl ei · e j · ek

T = 1

4

∑
1≤i, j≤n−1

(�̃i
i j − �̃

j
i i ) e j

Z = 1

4

∑
1≤i, j≤n−1

i �= j

(
∂n(b

l
i )(b

−1)
j
l + br

j�
l
rn(b

−1)il

)
ei · e j ,

with Ht the mean curvature of ∂Mt := {�q(x, t)/t is constant} and where, for any point
m ∈ V, the coefficients (b−1)kl are the coefficients of the inverse matrix of Bm.

Proof In order to compute the second term of formula (23), we decompose the sum into
tangential and normal parts. An easy calculation using the fact that �̃n

nn = 0 leads to

∑
1≤i, j,k≤n

�̃k
i j ei · e j · ek · ψ =

n−1∑
i, j,k=1

�̃k
i j ei · e j · ek · ψ + ν̃ ·

n−1∑
i, j=1

�̃
j
ni ei · e j · ψ

−ν̃ ·
n−1∑

i, j=1

�̃
j
in ei · e j · ψ + ν̃ ·

n−1∑
i, j=1

�̃n
i j ei · e j · ψ

−
n−1∑
i=1

(
�̃i

nn − �̃n
ni + �̃n

in

)
ei · ψ.

Now note that we have �̃k
i j = −�̃ j

ik , �̃i
nn = 0 by construction and:

�̃n
in = ei (g(̃ν, ν̃))− g(ei ,∇ ν̃ ν̃) = −�̃n

in
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hence �̃n
in = 0 for all 1 ≤ i ≤ n. Then the preceding equality gives:

n∑
i, j,k=1

�̃k
i j ei · e j · ek · ψ =

n−1∑
i, j,k=1

�̃k
i j ei · e j · ek · ψ + ν̃ ·

n−1∑
i, j=1

(
�̃

j
ni − 2�̃ j

in

)
ei · e j · ψ.

However, the last term of this expression can be simplified using the fact that �̃i
ni =

−�̃i
ni = 0 to give:

ν̃ ·
n−1∑

i, j=1
i �= j

(
�̃

j
ni + �̃i

jn − �̃
j
in

)
ei · e j · ψ − 2(n − 1)Ht ψ,

where Ht = 1
n−1

∑n−1
i=1 g(−∇ei ν̃, ei ) is the mean curvature of ∂Mt . A direct computation

gives:

n−1∑
i, j,k=1

�̃k
i j ei · e j · ek · ψ =

∑
i �= j �=k �=i

�̃k
i j ei · e j · ek · ψ +

n−1∑
i, j=1

(
�̃i

i j − �̃
j
i i

)
e j · ψ,

then combining all the above results, we have:

Dgψ = Dξψ +
n∑

i, j=1

(
b j

i − δ
j
i

)
∂i · ∇∂ jψ +

(1)︷ ︸︸ ︷
1

4

n−1∑
i, j,k=1

i �= j �=k

�̃k
i j ei · e j · ek · ψ

+1

4

n−1∑
i, j=1

(
�̃i

i j − �̃
j
i i

)
e j · ψ

−n − 1

2
Ht ν̃ · ψ + 1

4
ν̃ ·

n−1∑
i, j=1

i �= j

(
�̃

j
ni + �̃i

jn − �̃
j
in

)
ei · e j · ψ

︸ ︷︷ ︸
(2)

.

We are now going to give the expansion of the preceding expression in terms of the coef-
ficients (b j

i )1≤i, j≤n . First consider (1); by construction of the b j
i , we have �̃k

i j ek = �̃k
i j b

l
k∂l

and otherwise:

�̃k
i j ek = ∇ei e j = br

i ∇∂r (b
s
j∂s) = br

i ∂r (b
s
j )∂s + br

i bs
j�

l
rs∂l ,

where the Christoffel symbols �l
rs are given by �l

rs = g(∇∂r ∂s, ∂l). We then have:

�̃k
i j ek =

(
br

i ∂r (b
l
j )+ br

i bs
j�

l
rs

)
∂l ,

and so:

�̃k
i j =

(
br

i ∂r (b
l
j )+ br

i bs
j�

l
rs

)
(b−1)kl . (25)

The term (1) is hence given by:

n−1∑
i, j,k=1

i �= j �=k

�̃k
i j ei · e j · ek · ψ =

n−1∑
i, j,k=1

i �= j �=k

(
br

i ∂r (b
l
j )+ br

i bs
j�

l
rs

)
(b−1)kl ei · e j · ek · ψ.
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Using the symmetry of the Christoffel symbols and the relation ei · e j = −e j · ei for
i �= j , we easily check that (1) is given by:

1

4

n−1∑
i, j,k=1

i �= j �=k

�̃k
i j ei · e j · ek · ψ = 1

4

∑
1≤i, j,k≤n−1

i �= j �=k

br
i ∂r (b

l
j )(b

−1)kl ei · e j · ek · ψ = W · ψ

with W ∈ �(�3(T∗V)). For (2), note that we have �̃ j
ni = (

∂n(bl
i )+ br

i �
l
nr∂l

)
(b−1)

j
l and:

�̃i
jnei = �̃i

jnbl
i∂l = ∇e j ν̃ = br

j∇∂r ∂t = br
j�

l
rn∂l ,

so identifying the two parts leads �̃i
jn = br

j�
l
rn(b

−1)il . The symmetry of the Christoffel
symbols allows to conclude:

(2) = 1

4
ν̃ ·

n−1∑
i, j=1

i �= j

(
∂t (b

l
i )(b

−1)
j
l + br

j�
l
rn(b

−1)il

)
ei · e j · ψ = ν̃ · Z · ψ,

where Z ∈ � (�2(T∗V)
)
. ��

6 Manifolds of dimension n ≥ 3

In this section, we use all the preceding results to prove the following theorem:

Theorem 9 Let (M, g, σ ) be a connected compact Riemannian spin manifold of dimension
n ≥ 3 equipped with a chirality operator � and with non-empty smooth boundary. Then

λmin(M, ∂M) ≤ λmin(S
n+, ∂S

n+) = n

2

(ωn

2

) 1
n
, (26)

where ωn stands for the volume of the standard sphere S
n.

The proof of this theorem is based on the computation of the first terms of the Taylor
development of the Dirac operator in the trivialization introduced in Sect. 5. The final step
consists of the construction of a test spinor satisfying the chiral bag boundary condition using
the one of Sect. 4.

6.1 Expansion of the metric

Here we give the development of the metric in Fermi coordinates around a boundary point
in order to obtain the Taylor expansion of the Dirac operator in the trivialization of Sect. 5 in
terms of curvatures. Let q ∈ ∂M and for any point m with V � m  (x, t) ∈ U, denote by
r = |(x, t)| the distance from q to m. Recall that in Fermi coordinates in the neighborhood
of q , we have the following development of the inverse g−1 of the metric g (see [11]):

gi j = δi j + 2hi j (q)t − 1

3
Ri j
αβ (q) xαxβ + gi j

,tα(q) xαt

+
(

3him(q)h j
m (q)+ R̃ i j

nn (q)
)

t2 + O(r3), (27)

for all 1 ≤ i, j ≤ n − 1 and where hi j = gik g jl hkl (hkl are the components of the second
fundamental form), R̃ i j

αβ (resp. Ri j
αβ ) those of the Riemann curvature tensor of the manifold
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M (resp. of the boundary ∂M) and gi j
,tα := ∂α∂t gi j . Then we write:

G−1
m = Id + G1 + G2 + G3 + G4 + O(r3),

with:

(G1)
i j = 2hi j (q)t, (G2)

i j = − 1
3 Ri j

αβ (q) xαxβ

(G3)
i j = gi j

,tα(q) xαt, (G4)
i j =

(
3him(q)h j

m (q)+ R̃ i j
nn (q)

)
t2.

Using the fact that GmG−1
m = Id, an easy computation gives:

gi j = δi j − 2hi j (q)t + 1

3
Riαβ j (q)x

αxβ + gi j,tα(q)x
αt

+
(

him(q)h
m

j (q)− R̃in jn(q)
)

t2 + O(r3). (28)

In order to have the Taylor development of W ∈ �(�3(T∗V)), T ∈ �(T∗V) and Z ∈
�(�2(T∗V)) of Proposition 8, we first consider the development of the b j

i -coefficients.
Writing:

Bm = Id + B1 + B2 + B3 + B4 + B5 + O(r3),

with:

(B1)i j = Bi jαxα, (B2)i j = Bi j t t
(B3)i j = Bi jαβxαxβ, (B4)i j = Bi jαt xαt,
(B5)i j = Bi j t2 t2,

and the relation B2
m = G−1

m yields to:

b j
i = δ

j
i + hi j (q)t − 1

6
Ri j
αβ (q) xαxβ + 1

2
gi j
,tα(q) xαt

+1

2

(
2him(q)h j

m (q)+ R̃ i j
nn (q)

)
t2 + O(r3). (29)

An analogous computation gives the following inverse (b−1)
j
i -coefficients expansion:

(b−1)
j
i =δ j

i − hi j (q)t+ 1
6 Ri j

αβ (q) xαxβ − 1
2 gi j

,tα(q) xαt− 1
2 R̃ i j

nn (q) t2 + O(r3) (30)

We also need the first derivatives developments:

∂kb j
i = − 1

6

(
Ri j

kα (q)+ Ri j
αk (q)

)
xα + 1

2 gi j
,tk(q) t + O(r2) (31)

and:

∂t b
j
i = hi j (q)+ 1

2 gi j
,tα(q) xα +

(
2him(q)h j

m (q)+ R̃ i j
nn (q)

)
t + O(r2). (32)

We are now ready to prove the following statement:

Proposition 10 The fields W ∈ �(�3(T∗V)), Z ∈ �(�2(T∗V)) and T ∈ �(T∗V) given in
Proposition 8 satisfy: |W| = O(r2), |Z| = O(r2) and |T| = O(r).

Proof First consider the 3-form W; using Proposition 8 and Identity (32), and since ∂k(bl
j )

has no constant term, we can observe that any term of order 1 in br
i ∂r (bl

j )(b
−1)kl is a product

of 0-order term of br
i and of a term of 1-order of ∂r (bl

j ), then we have:

W = 1

4

∑
1≤i, j,k≤n−1

i �= j �=k

(
∂i (b

k
j )+ O(r2)

)
ei · e j · ek .
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Moreover since ∂i (bk
j ) = ∂i (b

j
k ) and for j �= k, e j · ek = −ek · e j then
∑

1≤i, j,k≤n−1
i �= j �=k

∂i (b
k
j ) ei · e j · ek = 0

and |W| = O(r2). We now investigate the 2-form Z; because of the expression of Z, we first
develop the Christoffel symbols �l

rn for 1 ≤ r, l ≤ n − 1. Recall that:

�l
rn = 1

2
glk (∂r gnk + ∂ngrk − ∂k grn)

and since 1 ≤ k, r ≤ n − 1 then gnk = grn = 0, so we have �l
rn = 1

2 glk∂ngrk . Using (28),
we deduce that:

∂ngrk = −2hrk(q)+ grk,tα(q)xα + 2
(
hrm(q)hm

k(q)− R̃rnkn(q)
)

t + O(r2).

Similarly, we compute:

�l
rn = −hrl(q)+ 1

2 grl,tα(q)xα + (
Krl(q)− 2hlk(q)hrk(q)

)
t + O(r2),

where Krk = hrmhm
k − R̃rnkn and finally with the help of (29) and (30), we obtain:

br
j�

l
rn(b

−1)il = −hi j (q)+ 1
2 gi j,tα(q)xα + (

K j i (q)− 2hik(q)hkj (q)
)

t + O(r2).

The first term ∂n(bl
i )(b

−1)
j
l in Z is given by:

∂n(bl
i )(b

−1)
j
l = (

hil(q)+ 1
2 gil

,tα(q)x
α + K̃il(q)t + O(r2)

) (
δ

j
l − hl j (q)t + O(r2)

= hi j (q)+ 1
2 gi j

,tα(q)x
α + (

K̃i j (q)− hil(q)h jl(q)
)

t + O(r2).

where K̃il = 2himh l
m + R̃ i l

nn . Combining these two developments leads to |Z| = O(r2).
To conclude we examine the 1-form T; first we are going to relate the Christoffel symbols �̃k

i j

with the Christoffel symbols of first kind �k
i j = g(∇∂i ∂ j , ∂k). Using the classical formula:

�k
i j = 1

2
gkl (∂i g jl + ∂ j gil − ∂l gi j

)

and a simple derivation on the development (28) of the metric tensor components gives:

∂k gi j = 1

3

(
Rikα j (q)+ Riαk j (q)

)
xα + gi j,tk(q)t + O(r2)

and then it yields to:

�k
i j = 1

6

(
R jiαk(q)+ R jαik(q)+ Ri jαk(q)+ Riα jk(q)− Rikα j (q)− Riαk j (q)

)
xα

+ 1
2

(
g jk,ti (q)+ gik,t j (q)− gi j,tk(q)

)
t + O(r2).

The symmetries of the Riemannian curvature tensor give:

�k
i j = −1

3

(
Rikα j (q)+ Riαk j (q)

)
xα + 1

2

(
g jk,ti (q)+ gik,t j (q)− gi j,tk(q)

)
t + O(r2),

Using Proposition 8 and the fact that �k
i j has no constant term, we have:

�̃k
i j = ∂i (b

k
j )+ �k

i j + O(r2).
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The 1-form T then clearly satisfies T = O(r). Moreover, we can give an explicit compu-
tation of the development of T. Indeed, we get:

T =
n−1∑
j=1

(
−1

4
Ric(q)α j xα − 1

2
R̃ic(q)t j t + O(r2)

)
e j ,

where we used the Codazzi equation:

Ri jkn = hik, j − h jk,i (33)

and the formula gi j,t = −2hi j . ��
6.2 The estimate

In this section, we give the proof of Inequality (26). However, we need the following lemma
which gives the existence of an adapted test spinor in the trivialization constructed in Sect. 5:

Lemma 11 Let U and V be the open sets of the trivialization constructed in Sect. 5 and
let 0 ∈ �

(
�ξ(U)

)
be a parallel spinor such that ν · �0(q) = 0(q) for one point

q ∈ ∂V ∩ M. Then we have:

ν · �0|∂V∩M = 0|∂V∩M ,

i.e., B
−
g (0|∂V∩M ) = 0.

Proof Consider the function f (p) = |ν · �0 − 0|2(p) defined on V, then we have to
show that f vanishes along the boundary ∂V ∩ M . However, for 1 ≤ i ≤ n − 1 we have:

ei ( f ) = ei (|ν · �0 −0|2)
= 2 ei

(|0|2 + Re
〈
ν · �0,0

〉)

Note that the spinor field 0 is parallel, so we can assume that |0|2 = 1 and since the
trivialization is a fiberwise isometry, we have |0|2 = 1 and then ei

(|0|2
) = 0. Now using

the compatibility of the Hermitian metric with the spinorial Levi-Civita connection and the
properties (7) of the chirality operator �, we get:

ei
(
Re
〈
ν · �0,0

〉) = Re
〈∇ei ν · �0,0

〉+ 2Re
〈
ν · �(∇ei0),0

〉
.

However since the spinor field 0 is parallel, Formula (22) leads to:

∇ei0 = 1

4

n∑
j,k=1

�̃k
i j e j · ek ·0

and thus we have 2Re
〈
ν · �(∇ei0),0

〉 = 1
2

∑n
j,k=1 �̃

k
i j Re

〈
ν · �(e j · ek ·0),0

〉
. We

can now split this sum with respect to the tangent part and the normal part. Indeed, we write:

n∑
j,k=1

�̃k
i j e j · ek ·0 =

n−1∑
j,k=1

�̃k
i j e j · ek ·0 −

n−1∑
j=1

�̃
j
ine j · ν ·0

+
n−1∑
j=1

�̃n
i j e j · ν ·0 − �̃n

in0
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and since in Fermi coordinates we have �̃n
i j = −�̃ j

in and �̃n
in = 0, we obtain:

n∑
j,k=1

�̃k
i j e j · ek ·0 =

n−1∑
j,k=1

�̃k
i j e j · ek ·0 + 2

n−1∑
j=1

�̃n
i j e j · ν ·0.

This leads to:

Re
〈
ν · �(∇ei0),0

〉 = Re
〈∇ei ν · �0,0

〉

+1

2

∑
1≤ j �=k≤n−1

�̃k
i j Re

〈
ν · �(e j · ek ·0),0

〉

−1

2

⎛
⎝

n−1∑
j=1

�̃
j
i j

⎞
⎠Re

〈
ν · �0,0

〉

+
n−1∑
j=1

�̃n
i j Re

〈
ν · �(e j · ν ·0),0

〉

and since �̃ j
i j = 0 and �̃n

i j e j = −∇ei ν, we conclude that:

ei ( f ) =
∑

1≤ j �=k≤n−1

�̃k
i j Re

〈
ν · �(e j · ek ·0),0

〉
.

An easy computation using the properties of the Hermitian metric and those of the chirality
operator show that:

〈
ν · �(e j · ek ·0),0

〉 = − 〈ν · �(e j · ek ·0),0
〉
.

Thus we have Re
〈
ν · �(e j · ek ·0),0

〉 = 0 and finally ei ( f ) = 0 for all 1 ≤ i ≤ n −1.
Moreover since f (q) = 0, the function f vanishes identically on ∂V ∩ M , i.e.:

ν · �0|∂V∩M = 0|∂V∩M .

��

We are now ready to prove the main theorem of this paper.

Proof of Theorem 9 Using Proposition 5, there exists a spinor field ψ ∈ � (�ξ(Rn+)
)

satis-
fying:

Dξψ = n

2
f ψ

where f (x) = 2
1+r2 and r2 = x2

1 + · · · + x2
n−1 + t2, |ψ | = f

n−1
2 and |Dξψ | = f

n+1
2 . Recall

that this spinor field is given by:

ψ(x) = 1√
2

f
n
2 (x)(1 − x) ·0(x)

where 0 is a parallel spinor which is chosen to satisfy:

ν · �0(q) = 0(q), (34)

at one point q ∈ V∩∂M . From this spinor field, we construct an adapted spinor on M for our
problem. So let η be a cut-off function given by η = 1 on B+(q, δ), η = 0 on M\B+(q, 2δ)
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where δ is a positive number such that δ ≤ 1 and B+(q, z) is the half-ball of center q and
radius z contained in the open set V defined in Sect. 5. Moreover, without loss of generality,
we can assume that η satisfies |∇η| ≤ Cr , where C is a positive real number. In the following,
the symbol C will stand for positive constants which can differ from one line to another. Let
ε > 0 be a small positive number, then we set:

ψε(x, t) = η ψ

(
(x, t)

ε

)
∈ � (�g(M)

)
.

Since the spinor field 0 satisfies (34), Lemma 11 and the properties (7) of the chirality
operator lead to:

ν · �ψε|∂M = ψε|∂M .

Using Propositions 8 and 10, we have:

Dgψε (x, t) = ∇η · ψ
(
(x, t)

ε

)
+ ηDg

(
ψ

(
(x, t)

ε

))

= ∇η · ψ
(
(x, t)

ε

)

+ η

ε

n

2
f

(
(x, t)

ε

)
ψ

(
(x, t)

ε

)
+ η

ε

n∑
i, j=1

(
b j

i − δ
j
i

)
∂i · ∇∂ jψ

( x

ε

)

+ ηW · ψ
(
(x, t)

ε

)
+ η T · ψ

(
(x, t)

ε

)
+ η ν̃ · Z · ψ

(
(x, t)

ε

)

− n − 1

2
ηHt ν̃ · ψ

(
(x, t)

ε

)
,

with |W| = O(r2), |Z| = O(r2), |T| = O(r). Since the chiral bag invariant is independent
of the metric chosen in the conformal class of g, we can assume that g is such that Rg is of
constant sign and Hg = 0. For this, one only needs to choose the conformal factor as being
a solution of the eigenvalue problem (4) and thus we obtain |Ht | = O(r). We now develop
the third term of the preceding identity. In fact, we can easily check that:

n∑
i, j=1

(
b j

i − δ
j
i

)
∂i · ∇∂ jψ

(
(x, t)

ε

)
= 1√

2
f

n
2

n∑
i=1

(
bi

i − 1
)
0 − n√

2
X · ψ

(
(x, t)

ε

)
,

where X = f
∑n

i, j=1

(
b j

i − δ
j
i

)
x j∂i ∈ �(TM). Using the development of b j

i given in (29)

yields to:

1√
2

f
n
2

n∑
i=1

(
bi

i − 1
)
0 = 1√

2
f

n
2 (O(r))0 (35)

Then we develop:

|Dgψε|2(x, t) = (I )+ (I I )+ (I I I )+ (I V )+ (V )+ (V I )

+ (V I I )+ (V I I I )+ (I X)+ (X)

+ (X I )+ (X I I )+ (X I I I )+ (X I V )+ (X V )

+ (V I )+ (X V I I )+ (X V I I I )
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+ (X I X)+ (X X)+ (X X I )+ (X X I I )

+ (X X I I I )+ (X X I V )+ (X X V )

+ (X X V I )+ (X X V I I )+ (X X V I I I ),

where:

(I ) = |∇η|2|ψ |2
(
(x, t)

ε

)

(I I ) = η2

ε2

n2

4
f 2
(
(x, t)

ε

)
|ψ |2

(
(x, t)

ε

)

(I I I ) = η2

ε2

∣∣∣∣∣∣
n∑

i, j=1

(
b j

i − δ
j
i

)
|∂i · ∇∂ jψ |2

(
(x, t)

ε

)

(I V ) = η2|W|2|ψ |2
(
(x, t)

ε

)

(V ) = η2|T|2|ψ |2
(
(x, t)

ε

)

(V I ) = η2|Z|2|ψ |2
(
(x, t)

ε

)

(V I I ) = η2h2|ψ |2
(
(x, t)

ε

)

(V I I I ) = nη

ε
f

(
(x, t)

ε

)
Re

〈
∇η · ψ

(
(x, t)

ε

)
, ψ

(
(x, t)

ε

)〉

(I X) = 2η

ε

n∑
i, j=1

(
b j

i − δ
j
i

)
Re

〈
∇η · ψ

(
(x, t)

ε

)
, ∂i · ∇∂ jψ

(
(x, t)

ε

)〉

(X) = 2ηRe

〈
∇η · ψ

(
(x, t)

ε

)
,W · ψ

(
(x, t)

ε

)〉

(X I ) = 2ηRe

〈
∇η · ψ

(
(x, t)

ε

)
,T · ψ

(
(x, t)

ε

)〉

(X I I ) = 2ηRe

〈
∇η · ψ

(
(x, t)

ε

)
, ν̃ · Z · ψ

(
(x, t)

ε

)〉

(X I I I ) = 2h ηRe

〈
∇η · ψ

(
(x, t)

ε

)
, ν̃ · ψ

(
(x, t)

ε

)〉

(X I V ) = nη

ε2 f

(
(x, t)

ε

) n∑
i, j=1

(
b j

i − δ
j
i

)
Re

〈
ψ

(
(x, t)

ε

)
, ∂i · ∇∂ jψ

(
(x, t)

ε

)〉
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(X V ) = n
η2

ε
f

(
(x, t)

ε

)
Re

〈
ψ

(
(x, t)

ε

)
,W · ψ

(
(x, t)

ε

)〉

(X V I ) = n
η2

ε
f

(
(x, t)

ε

)
Re

〈
ψ

(
(x, t)

ε

)
,T · ψ

(
(x, t)

ε

)〉

(X V I I ) = n
η2

ε
f

(
(x, t)

ε

)
Re

〈
ψ

(
(x, t)

ε

)
, ν̃ · Z · ψ

(
(x, t)

ε

)〉

(X V I I I ) = n
η2

ε
f

(
(x, t)

ε

)
Re

〈
ψ

(
(x, t)

ε

)
, h ν̃ · ψ

(
(x, t)

ε

)〉

(X I X) = η2

ε

n∑
i, j=1

(
b j

i − δ
j
i

)
Re

〈
∂i · ∇∂ jψ

(
(x, t)

ε

)
,W · ψ

(
(x, t)

ε

)〉

(X X) = η2

ε

n∑
i, j=1

(
b j

i − δ
j
i

)
Re

〈
∂i · ∇∂ jψ

(
(x, t)

ε

)
,T · ψ

(
(x, t)

ε

)〉

(X X I ) = η2

ε

n∑
i, j=1

(
b j

i − δ
j
i

)
Re

〈
∂i · ∇∂ jψ

(
(x, t)

ε

)
, ν̃ · Z · ψ

(
(x, t)

ε

)〉

(X X I I ) = η2

ε
h

n∑
i, j=1

(
b j

i − δ
j
i

)
Re

〈
∂i · ∇∂ jψ

(
(x, t)

ε

)
, ν̃ · ψ

(
(x, t)

ε

)〉

(X X I I I ) = 2η2Re

〈
W · ψ

(
(x, t)

ε

)
,T · ψ

(
(x, t)

ε

)〉

(X I V ) = 2η2Re

〈
W · ψ

(
(x, t)

ε

)
, ν̃ · Z · ψ

(
(x, t)

ε

)〉

(X V ) = 2hη2Re

〈
W · ψ

(
(x, t)

ε

)
, ν̃ · ψ

(
(x, t)

ε

)〉

(X V I ) = 2η2Re

〈
T · ψ

(
(x, t)

ε

)
, ν̃ · Z · ψ

(
(x, t)

ε

)〉

(X V I I ) = 2hη2Re

〈
T · ψ

(
(x, t)

ε

)
, ν̃ · ψ

(
(x, t)

ε

)〉

(X V I I I ) = 2hη2Re

〈
ν̃ · Z · ψ

(
(x, t)

ε

)
, ν̃ · ψ

(
(x, t)

ε

)〉

where h = − n−1
2 Ht . Since ∇η and T are 1-forms and Z is a 2-form then:

(V I I I ) = 0, (X V I ) = 0, (X V I I I ) = 0 (X X V I I ) = 0 and (X V I I I ) = 0.
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Using this development, the properties of the fields W, T, U and h given in Proposition 10
and since we assumed that |∇η| ≤ Cr and r ≤ δ ≤ 1, one can check that:

• (I )+ (I V )+ (V )+ (V I )+ (V I I )+ (X)+ (X I )+ (X I I )+ (X I I I )

+(X X I I I )+ (X X I V )+ (X X V )+ (X X V I ) ≤ Cr2 f n−1
(
(x,t)
ε

)

• (I X)+ (X V )+ (X V I I )+ (X I X)+ (X X)+ (X X I )+ (X X I I )

≤ C
ε

r2 f n
(
(x,t)
ε

)
+ C

ε
r2 f n+1

(
(x,t)
ε

)

• (I I )+ (I I I )+ (X I V ) ≤ n2

4ε2 f n+1
(
(x,t)
ε

)
+ C

ε2 r f n+1
(
(x,t)
ε

)
+ C

ε2 r2 f n
(
(x,t)
ε

)
.

We can then write:

0 ≤ |Dgψε|2(x, t) ≤ n2

4ε2 f n+1
(
(x, t)

ε

)
+ C

ε2 r f n+1
(
(x, t)

ε

)
+ C

ε2 r2 f n
(
(x, t)

ε

)

+C

ε
r2 f n

(
(x, t)

ε

)
+ C

ε
r2 f n+1

(
(x, t)

ε

)
+ Cr2 f n−1

(
(x, t)

ε

)

≤ n2

4ε2 f n+1
(
(x, t)

ε

)
[1 +�] ,

where � = Cr + Cr2 f −1
(
(x,t)
ε

)
+ Cεr2 + Cr2ε f −1

(
(x,t)
ε

)
+ Cr2ε2 f −2

(
(x,t)
ε

)
. Note

that since |Dgψε|2 ≥ 0, then � ≥ −1. On the other hand, if x ≥ −1 we have:

(1 + x)
n

n+1 ≤ 1 + n

n + 1
x,

so we get:

|Dgψε|
2n

n+1 (x, t) ≤
(

n2

4ε2 f n+1
(
(x, t)

ε

)) n
n+1

[1 +�]
n

n+1

≤
( n

2ε

) 2n
n+1

f n
(
(x, t)

ε

)[
1 + n

n + 1
�

]
,

i.e.:

|Dgψε|
2n

n+1 (x, t) ≤
(n

2

) 2n
n+1

ε−
2n

n+1

[
f n
(
(x, t)

ε

)
+ C

n

n + 1
r f n

(
(x, t)

ε

)

+ C
n

n + 1
r2 f n−1

(
(x, t)

ε

)
+ C

n

n + 1
εr2 f n

(
(x, t)

ε

)

+ C
n

n + 1
εr2 f n−1

(
(x, t)

ε

)
+ C

n

n + 1
ε2r2 f n−2

(
(x, t)

ε

)]
.

Integrating the last inequality leads to:
∫

M

|Dgψε|
2n

n+1 dv(g) ≤ ε−
2n

n+1 [A + B + C + D + E + F] ,
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where:

A =
∫

B+
q (2δ)

f n
(
(x, t)

ε

)
dv(g)

B = C
n

n + 1

∫

B+
q (2δ)

r f n
(
(x, t)

ε

)
dv(g)

C = C
n

n + 1

∫

B+
q (2δ)

r2 f n−1
(
(x, t)

ε

)
dv(g)

D = C
n

n + 1
ε

∫

B+
q (2δ)

r2 f n
(
(x, t)

ε

)
dv(g)

E = C
n

n + 1
ε

∫

B+
q (2δ)

r2 f n−1
(
(x, t)

ε

)
dv(g)

F = C
n

n + 1
ε2

∫

B+
q (2δ)

r2 f n−2
(
(x, t)

ε

)
dv(g).

Now we have to estimate these terms. Let’s start with A. Note that since the function f is
radial, spherical coordinates lead to:

A = ωn−1

2

∫

B+
q (2δ)

rn−1 f n
(
(x, t)

ε

)
S(r)dr,

where:

S(r) = 2

ωn−1

∫

S
n−1+

√
det(gr x )ds(x).

However with the help of the development of the volume form of (M, g) (see [11]), we
have:

S(r) ≤ 1 + Cr,

and thus:

A ≤ ωn−1

2

⎡
⎢⎢⎣

∫

B+
q (2δ)

rn−1 f n
(
(x, t)

ε

)
dr + C

∫

B+
q (2δ)

rn f n
(
(x, t)

ε

)
dr

⎤
⎥⎥⎦ .

A simple change of variables gives:

A ≤ ωn−1

2
εn

⎡
⎢⎣

2δ
ε∫

0

rn−1 f n(r)dr + Cε

2δ
ε∫

0

rn f n(r)dr

⎤
⎥⎦ .
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Some calculations show that if n ≥ 1:

+∞∫

2δ
ε

rn−1 f n(r)dr = o(1),

2δ
ε∫

0

rn f n(r)dr = o(lnε).

We finally get:

A ≤ ωn−1

2
εn

⎡
⎣

+∞∫

0

rn−1 f n(r)dr + o(1)

⎤
⎦ .

We now give an upper bound for B. In the same way, we compute:

B = C
∫

B+
q (2δ)

r f n
(
(x, t)

ε

)
dv(g)

≤ C
∫

B+
q (2δ)

r f n
(
(x, t)

ε

)
dx + C

∫

B+
q (2δ)

r2 f n
(
(x, t)

ε

)
dx

i.e.:

B ≤ Cεn+1

2δ
ε∫

0

rn f n(r)dr + Cεn+2

2δ
ε∫

0

rn+1 f n(r)dr.

We can easily check that if n ≥ 1 then B = o(εn). For the quantity C, we write:

C = C
∫

B+
q (2δ)

r2 f n−1
(
(x, t)

ε

)
dv(g)

≤ C
∫

B+
q (2δ)

r2 f n−1
(
(x, t)

ε

)
dx + C

∫

B+
q (2δ)

r3 f n−1
(
(x, t)

ε

)
dx

which after a change of variable gives:

C ≤ Cεn+2

2δ
ε∫

0

rn+1 f n−1(r)dr + Cεn+3

2δ
ε∫

0

rn+2 f n−1(r)dr.

We can thus conclude that if n ≥ 3, C = o(εn). The term D satisfies:

D = Cε
∫

B+
q (2δ)

r2 f n
(
(x, t)

ε

)
dv(g)

≤ Cε
∫

B+
q (2δ)

r2 f n
(
(x, t)

ε

)
dx + Cε

∫

B+
q (2δ)

r3 f n
(
(x, t)

ε

)
dx
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and then:

D ≤ Cεn+2

2δ
ε∫

0

rn+1 f n(r)dr + Cεn+3

2δ
ε∫

0

rn+2 f n(r)dr.

So we have shown that if n ≥ 1, D = o(εn). In the same way, we compute that if n ≥ 3,
then E and F satisfy E = o(εn) and F = o(εn). Finally we get that for n ≥ 3:

∫

M

|Dgψε|
2n

n+1 dv(g) ≤
(n

2

) 2n
n+1 ωn−1

2
ε

n(n−1)
n+1

⎡
⎣

∞∫

0

rn−1 f n(r)dr + o(1)

⎤
⎦ ,

and so:
⎛
⎝
∫

M

|Dgψε|
2n

n+1 dv(g)

⎞
⎠

n+1
n

≤ n2

4

(ωn−1

2

) n+1
n

I
n+1

n εn−1 (1 + o(1)) , (36)

where I := ∫∞
0 rn−1 f n(r)dr . We are now going to estimate the denominator of the varia-

tional characterization of λmin(M, ∂M). Indeed we have:

Re
〈
Dgψε,ψε

〉 = (I ′)+ (I I ′)+ (I I I ′)+ (I V ′)+ (V ′)+ (V I ′)+ (V I I ′),

where:

(I ′) = ηRe

〈
∇η · ψ

(
(x, t)

ε

)
, ψ

(
(x, t)

ε

)〉

(I I ′) = n

2ε
η2Re

〈
f

(
(x, t)

ε

)
ψ

(
(x, t)

ε

)
, ψ

(
(x, t)

ε

)〉

(I I I ′) = 1

ε

n∑
i, j=1

η2
(

b j
i − δ

j
i

)
Re

〈
∂i · ∇∂ jψ

(
(x, t)

ε

)
, ψ

(
(x, t)

ε

)〉

(I V ′) = η2Re

〈
W · ψ

(
(x, t)

ε

)
, ψ

(
(x, t)

ε

)〉

(V ′) = η2Re

〈
ν̃ · Z · ψ

(
(x, t)

ε

)
, ψ

(
(x, t)

ε

)〉

(V I ′) = η2Re

〈
T · ψ

(
(x, t)

ε

)
, ψ

(
(x, t)

ε

)〉

(V I I ′) = η2Re

〈
hν̃ · ψ

(
(x, t)

ε

)
, ψ

(
(x, t)

ε

)〉
.

We then easily check that since:

(I ′) = 0, (V I ′) = 0 and (V I I ′) = 0

we have: ∣∣∣∣∣∣

∫

M

Re
〈
Dgψε,ψε

〉
dv(g)

∣∣∣∣∣∣
= A′ + B′ + C′ + D′,
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where we let:

A′ = n

2ε

∫

B+
q (2δ)

f

(
(x, t)

ε

)
|ψ |2

(
(x, t)

ε

)
dv(g) = n

2ε

∫

B+
q (2δ)

f n
(
(x, t)

ε

)
dv(g)

B′ = C

ε

n∑
i, j=1

∫

B+
q (2δ)

(
b j

i − δ
j
i

)
Re

〈
∂i · ∇∂ jψ

(
(x, t)

ε

)
, ψ

(
(x, t)

ε

)〉
dv(g)

C′ =
∫

B+
q (2δ)

Re

〈
W · ψ

(
(x, t)

ε

)
, ψ

(
(x, t)

ε

)〉
dv(g)

D′ =
∫

B+
q (2δ)

Re

〈
ν̃ · Z · ψ

(
(x, t)

ε

)
, ψ

(
(x, t)

ε

)〉
dv(g).

However using Proposition 10, we have |W| = O(r2) and |Z| = O(r2), thus:

C′ + D′ = C
∫

B+
q (2δ)

r2 f n−1
(
(x, t)

ε

)
dv(g),

so:
∫

M

Re
〈
Dgψε,ψε

〉
dv(g) = n

2ε

∫

B+
q (2δ)

f n
(
(x, t)

ε

)
dv(g)

+ C
∫

B+
q (2δ)

r2 f n−1
(
(x, t)

ε

)
dv(g)+ C

ε

n∑
i, j=1

∫

B+
q (2δ)

(
b j

i − δ
j
i

)

×Re

〈
∂i · ∇∂ jψ

(
(x, t)

ε

)
, ψ

(
(x, t)

ε

)〉
dv(g).

As done for the numerator, we compute:

A′ = n

2ε

∫

B+
q (2δ)

f n
(
(x, t)

ε

)
dv(g)

= n

2ε

∫

B+
q (2δ)

f n
(
(x, t)

ε

)
dx + C

ε

∫

B+
q (2δ)

r f n
(
(x, t)

ε

)
dx

and for n ≥ 1, we conclude:

A′ = n

4
ωn−1I εn−1 (1 + o(1)) .

Using the estimate of the term B, we check that:

B′ = C

ε

∫

B+
q (2δ)

r f n
(
(x, t)

ε

)
dv(g)
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and so B′ = o(εn−1) if n ≥ 3. A similar calculation shows that C′ + D′ = o(εn−1) if n ≥ 3.
Finally we get:

∣∣∣∣∣∣

∫

M

Re
〈
Dgψε,ψε

〉
dv(g)

∣∣∣∣∣∣
= n

2

ωn−1

2
I εn−1 (1 + o(1)) .

Now using the variational characterization of λmin(M, ∂M) given in Proposition 2, we
obtain:

λmin(M, ∂M) ≤
( ∫

M |Dgψε|
2n

n+1 dv(g)
) n+1

n

∣∣∫
M Re

〈
Dgψε,ψε

〉
dv(g)

∣∣ .

The estimate of this functional allows to write:
( ∫

M |Dgψε|
2n

n+1 dv(g)
) n+1

n

∣∣∫
M Re

〈
Dgψε,ψε

〉
dv(g)

∣∣ ≤
n2

4

(ωn−1
2

) n+1
n I

n+1
n εn−1

n
2
ωn−1

2 I εn−1
(1 + o(1)) ,

which gives:

λmin(M, ∂M) ≤
( ∫

M |Dgψε|
2n

n+1 dv(g)
) n+1

n

∣∣∫
M Re

〈
Dgψε,ψε

〉
dv(g)

∣∣ ≤ n

2

(ωn−1

2

) 1
n

I
1
n (1 + o(1)) .

However since ωn−1I = ωn , we get:

λmin(M, ∂M) ≤ n

2

(ωn

2

) 1
n
(1 + o(1)) = λmin(S

n+, ∂S
n+) (1 + o(1)) ,

and we can thus conclude that λmin(M, ∂M) ≤ λmin(S
n+, ∂S

n+). ��
Remark 2 This result gives in particular a spinorial proof of Escobar’s result given by (5).
Indeed, using the Hijazi inequality (6), we note that:

n

4(n − 1)
µ(M, ∂M) ≤ λmin(M, ∂M)2 ≤ λmin(S

n+, ∂S
n+)2 = n2

4

(ωn

2

) 2
n

and thus

µ(M, ∂M) ≤ n(n − 1)
(ωn

2

) 2
n = µ(Sn+, ∂S

n+).

7 The case of surfaces with boundary

We can show that Inequality (26) still holds if M is a compact Riemannian surface with
connected boundary. However, the test spinor needs a slight modification. We follow the
argument given in [1]. In fact, we show:

Theorem 12 Let (M2, g) be a compact Riemannian surface with connected boundary. Then
the chiral bag invariant satisfies:

λmin(M, ∂M) ≤ λmin(S
2+, ∂S

2+) = √
2π. (37)
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Sketch of proof First note that since M is a surface it is always spin and it is equipped with a
chirality operator given by the complex volume element of the spinor bundle. Moreover we
can assume that g is locally conformally flat and since the boundary is connected it is umbilic.
Now let 0 < ε ≤ α ≤ δ be real numbers and consider the positive function defined by:

fε(x) =
⎧⎨
⎩

2ε2

ε2+r2 if r ≤ α

2ε2

ε2+α2 if r ≥ α

where r = d(q, x) and q ∈ ∂M . Using Proposition 5, there exists a spinor field ψ ∈
�
(
�ξ(R

2+)
)

which satisfies:

Dξψ = fψ

where f (r) = 2
1+r2 ∈ C∞(M) and the spinor ψ can be written:

ψ = 1√
2

f (1 − x) ·0,

where 0 is a parallel spinor field such that B
−
g (0)(q) = 0. Now let η a smooth function

on M such that:

η(x) =
{

1 on B+
q (δ)

0 on M\B+
q (2δ)

and |∇η| ≤ 1

δ

with B+
q (2δ) ⊂ V and V is an open flat subset of M defined in Sect. 5. We then consider the

test spinor given by ψε(x) = η(x)ψ( x
ε
) (which by construction satisfies B

−
g (ψε |∂M ) = 0)

and so using Corollary 4 we have:

λ1(gε) ≤
∫

M |Dεψε|2 f −1
ε dv(gε)∣∣∫

M Re
〈
Dεψε, ψε

〉
dv(gε)

∣∣

where λ1(gε) is the first eigenvalue of the Dirac operator Dε under the chiral bag boundary
condition in the metric gε = f 2

ε g ∈ [g]. We can then estimate this ratio and we obtain:

λ1(gε) ≤ 1

ε
+ o(1).

Now we compute the volume of the surface M equipped with the metric gε and we clearly
have:

Vol(M, gε) =
∫

M

f 2
ε dv(g) = ε2ω1 (1 + o(ε)) .

Combining these estimations leads to:

λmin(M, ∂M) ≤ λ1(gε)Vol(M, gε)
1
2 = ω

1
2
1 (1 + o(1)) = √

2π (1 + o(1))

and then Inequality (37) follows directly since λmin(S
2+, ∂S

2+) = √
2π . ��

Acknowledgments I would like to thank Oussama Hijazi and Emmanuel Humbert for their support. I am
also very grateful to Marc Herzlich and Sebastián Montiel for their remarks and their suggestions.

123



On a spin conformal invariant on manifolds with boundary 349

References

1. Ammann, B., Humbert, E., Grosjean, J.-F., Morel, B.: A spinorial analogue of Aubin’s inequality. Math.
Zeit (to appear)

2. Ammann, B., Humbert, E., Morel, B.: Un problème de type Yamabe sur les variétés spinorielles
compactes. C. R. Acad. Sci. Paris 338(12), 929–934 (2004)

3. Ammann, B., Humbert, E., Morel, B.: Mass endomorphism and spinorial Yamabe type problem on
conformally flat manifolds. Commun. Anal. Geom. 14(1), 163–182 (2006)

4. Ammann, B.: A spin-conformal lower bound of the first positive Dirac eigenvalue. Differ. Geom. Appl.
18, 21–32 (2003)

5. Ammann, B.: A variational problem in conformal spin geometry. Habilitationsschrift, Universität
Hamburg (2003)

6. Bär, C.: Lower eigenvalue estimate for Dirac operator. Math. Ann. 293, 39–46 (1992)
7. Booß-Bavnbek, B., Wojciechowski, K.P.: Elliptic Boundary Problems for the Dirac Operator. Birkhäuser,

Basel (1993)
8. Bourguignon, J.P., Gauduchon, P.: Spineurs, opérateurs de Dirac et variations de métriques. Commun.

Math. Phys. 144, 581–599 (1992)
9. Beneventano, C.G., Gilkey, P., Kirsten, K., Santangelo, E.M.: Strong ellipticity and spectral properties

of chiral bag boundary conditions. J. Phys. A 236(45), 11533–11543 (2003)
10. Esposito, G., Gilkey, P., Kirsten, K.: Heat kernel coefficients for chiral bag boundary conditions.

J. Phys. 38(10), 2259–2276 (2005)
11. Escobar, J.F.: Conformal deformation of a Riemannian metric to a scalar flat metric with constant mean

curvature on the boundary. Ann. Math. 136, 1–50 (1992), Addendum in 139, 749–750 (1994)
12. Escobar, J.F.: The Yamabe problem on manifolds with boundary. J. Differ. Geom. 35, 21–84 (1992)
13. Farinelli, S., Schwarz, G.: On the spectrum of the Dirac operator under boundary conditions. J. Geom.

Phys. 28, 67–84 (1998)
14. Gibbons, G., Hawking, S., Horowitz, G., Perry, M.: Positive mass theorems for black holes. Commun.

Math. Phys. 88, 295–308 (1983)
15. Gilkey, P., Kirsten, K.: Stability theorems for chiral bag boundary conditions. Lett. Math. Phys. 73, 147–

163 (2005)
16. Herzlich, M.: The positive mass theorem for black holes revisited. J. Geom. Phys. 26, 97–111 (1998)
17. Hijazi, O.: A conformal lower bound for the smallest eigenvalue of the Dirac operator and Killing

spinors. Commun. Math. Phys. 25, 151–162 (1986)
18. Hijazi, O.: Première valeur propre de l’opérateur de Dirac et nombre de Yamabe. C. R. Acad. Sci. Paris

313, 865–868 (1991)
19. Hitchin, N.: Harmonic spinors. Adv. Math. 14, 1–55 (1974)
20. Hijazi, O., Montiel, S., Roldán, S.: Eigenvalue boundary problems for the Dirac operator. Commun. Math.

Phys. 231, 375–390 (2002)
21. Lott, J.: Eigenvalue bounds fot the Dirac operator. Pacific J. Math. 125, 117–126 (1986)
22. Lee, J.M., Parker, T.H.: The Yamabe problem. Bull. Am. Math. Soc., New Ser. 17, 37–91 (1987)
23. Raulot, S.: Aspect conforme de l’opérateur de Dirac sur une variété à bord. Ph.D. thesis, Université Henri

Poincaré, Nancy I (2006)
24. Raulot, S.: The Hijazi inequality on manifolds with boundary. J. Geom. Phys. 56, 2189–2202 (2006)
25. Raulot, S.: Green functions for the Dirac operator under local boundary conditions and applications,

Preprint I.E.C.N. (2007)

123


	On a spin conformal invariant on manifoldswith boundary
	Abstract
	1 Introduction
	2 Chiral bag boundary condition
	3 Variational characterization
	4 The case of the hemisphere
	5 A trivialization of the spinor bundle
	6 Manifolds of dimension n3
	6.1 Expansion of the metric
	6.2 The estimate

	7 The case of surfaces with boundary
	Acknowledgments


<<
  /ASCII85EncodePages false
  /AllowTransparency false
  /AutoPositionEPSFiles true
  /AutoRotatePages /None
  /Binding /Left
  /CalGrayProfile (None)
  /CalRGBProfile (sRGB IEC61966-2.1)
  /CalCMYKProfile (ISO Coated v2 300% \050ECI\051)
  /sRGBProfile (sRGB IEC61966-2.1)
  /CannotEmbedFontPolicy /Error
  /CompatibilityLevel 1.3
  /CompressObjects /Off
  /CompressPages true
  /ConvertImagesToIndexed true
  /PassThroughJPEGImages true
  /CreateJDFFile false
  /CreateJobTicket false
  /DefaultRenderingIntent /Perceptual
  /DetectBlends true
  /ColorConversionStrategy /sRGB
  /DoThumbnails true
  /EmbedAllFonts true
  /EmbedJobOptions true
  /DSCReportingLevel 0
  /SyntheticBoldness 1.00
  /EmitDSCWarnings false
  /EndPage -1
  /ImageMemory 524288
  /LockDistillerParams true
  /MaxSubsetPct 100
  /Optimize true
  /OPM 1
  /ParseDSCComments true
  /ParseDSCCommentsForDocInfo true
  /PreserveCopyPage true
  /PreserveEPSInfo true
  /PreserveHalftoneInfo false
  /PreserveOPIComments false
  /PreserveOverprintSettings true
  /StartPage 1
  /SubsetFonts false
  /TransferFunctionInfo /Apply
  /UCRandBGInfo /Preserve
  /UsePrologue false
  /ColorSettingsFile ()
  /AlwaysEmbed [ true
  ]
  /NeverEmbed [ true
  ]
  /AntiAliasColorImages false
  /DownsampleColorImages true
  /ColorImageDownsampleType /Bicubic
  /ColorImageResolution 150
  /ColorImageDepth -1
  /ColorImageDownsampleThreshold 1.50000
  /EncodeColorImages true
  /ColorImageFilter /DCTEncode
  /AutoFilterColorImages false
  /ColorImageAutoFilterStrategy /JPEG
  /ColorACSImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /ColorImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /JPEG2000ColorACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /JPEG2000ColorImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /AntiAliasGrayImages false
  /DownsampleGrayImages true
  /GrayImageDownsampleType /Bicubic
  /GrayImageResolution 150
  /GrayImageDepth -1
  /GrayImageDownsampleThreshold 1.50000
  /EncodeGrayImages true
  /GrayImageFilter /DCTEncode
  /AutoFilterGrayImages true
  /GrayImageAutoFilterStrategy /JPEG
  /GrayACSImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /GrayImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /JPEG2000GrayACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /JPEG2000GrayImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /AntiAliasMonoImages false
  /DownsampleMonoImages true
  /MonoImageDownsampleType /Bicubic
  /MonoImageResolution 600
  /MonoImageDepth -1
  /MonoImageDownsampleThreshold 1.50000
  /EncodeMonoImages true
  /MonoImageFilter /CCITTFaxEncode
  /MonoImageDict <<
    /K -1
  >>
  /AllowPSXObjects false
  /PDFX1aCheck false
  /PDFX3Check false
  /PDFXCompliantPDFOnly false
  /PDFXNoTrimBoxError true
  /PDFXTrimBoxToMediaBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXSetBleedBoxToMediaBox true
  /PDFXBleedBoxToTrimBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXOutputIntentProfile (None)
  /PDFXOutputCondition ()
  /PDFXRegistryName (http://www.color.org?)
  /PDFXTrapped /False

  /Description <<
    /ENU <>
    /DEU <>
  >>
>> setdistillerparams
<<
  /HWResolution [2400 2400]
  /PageSize [5952.756 8418.897]
>> setpagedevice


