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Abstract We present a computational study of the fluid
dynamics in healthy semicircular canals (SCCs) and the utri-
cle. The SCCs are the primary sensors for angular velocity
and are located in the vestibular part of the inner ear. The
SCCs are connected to the utricle that hosts the utricular
macula, a sensor for linear acceleration. The transduction of
angular motion is triggered by the motion of a fluid called
endolymph and by the interaction of this fluid with the sen-
sory structures of the SCC. In our computations, we observe
a vortical flow in the utricle and in the ampulla (the enlarged
terminal part of the SCCs) which can lead to flow velocities
in the utricle that are even higher than those in the SCCs.
This is a fundamentally new result which is in contrast to the
common belief that the fluid velocities in the utricle are negli-
gible from a physiological point of view. Moreover, we show
that the wall shear stresses in the utricle and the ampulla are
maximized at the positions of the sensory epithelia. Possible
physiological and clinical implications are discussed.

Keywords Vestibular system · Endolymph flow ·
Semicircular canals (SCC) · Utricular macula ·
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1 Introduction

The inner ear is carved into the temporal bone (bony lab-
yrinth) and hosts the structures responsible for the sense of
hearing (cochlea) and for the sense of balance (vestibular sys-
tem). The human vestibular system (Fig. 1) consists, bilat-
erally, of three sensors for angular velocity—the horizontal
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(HC), the anterior (AC), and the posterior (PC) semicircu-
lar canals (SCCs)—and two sensors for gravity and linear
acceleration—the utricular and the saccular otolith organs.
These biological sensors belong to a membranous duct (the
membranous labyrinth), which occupies part of the lumen
of the bony labyrinth (Curthoys et al. 1977) to which it is
rigidly fixed. The gap between the membranous wall and the
bone is filled with perilymph, while the membranous lumen
is filled with endolymph. Both fluids have mechanical prop-
erties similar to water (Steer et al. 1967). The SCCs are three
slender ducts spanning an angle of approximately 250◦ and
merging into a bigger chamber, the utricle, which hosts the
utricular otolith organ. All SCCs are plugged at one end by a
supple gelatinous structure called cupula. The section where
the cupula is situated has a larger cross-section than the rest
of the slender SCC and is called ampulla. A sensory structure,
the crista ampullaris, protrudes from the wall of the ampulla.
It is embedded into the base of the cupula and is populated
by innervated hair cells. During head rotations, the inertia
of the endolymph leads to a deflection of the cupula and the
embedded hair cell bundles. This is the origin of the afferent
signals leading to the sensation of angular motion.

The sensory epithelium in the utricle, the utricular macula,
occupies part of the utricular wall. It is a layered membrane
topped with dense calcium crystals, called otoconia, leaning
toward the endolymph space (Kachar et al. 1990). The oto-
conia are denser than the surrounding endolymph such that
linear accelerations can lead to relative movements of the
dense otoconia layer with respect to the skull. This deflects
the hair cell bundles embedded in the underlying elastic lay-
ers and triggers the neurological signal.

A more detailed introduction to the physiology and the
biomechanics of the vestibular system can be found in Grant
(1995) and Rabbitt et al. (2004). A recent review is given by
Kondrachuk et al. (2011).
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Fig. 1 The membranous labyrinth (blue) and the bony labyrinth (yel-
low) of the inner ear (adapted from Obrist et al. 2010, with permission
from Elsevier). The width of the membranous anterior (AC), posterior
(PC), and horizontal (HC) canals is exaggerated for better visibility. In
reality their diameter is only about 5 % of the diameter of the bony
canals (Curthoys et al. 1977)

1.1 Biomechanics of the SCCs

The gross behavior of a SCC can be modeled mathematically
as a band-pass filter, which is defined by the transfer function

V̂ / ˆ̇α ≈ − iωG

(iω + τ−1
c )(iω + τ−1

s )
(1)

with a constant G, a lower cut-off frequency τ−1
c and an upper

cut-off frequency τ−1
s . For head movements within this fre-

quency (ω) range, the cupula displacement V (to be defined
later) is proportional and in phase with the angular velocity
α̇ of the head in the plane of the SCC (V̂ and ˆ̇α indicate the
respective Laplace-transformed variables). Several models
of increasing complexity have been proposed to relate the
values of τc, τs , and G to the actual anatomy and physics
of the SCCs (Van Buskirk et al. 1976; Pardoe and Haughton
1979; Bernard 1982; Oman et al. 1987; Rabbitt and Damiano
1992; Damiano and Rabbitt 1996; Ifediba et al. 2007; Obrist
2008; Vega et al. 2008). All these models lead qualitatively
to similar results. It turns out that the “long” time constant
τc is related to the stiffness K of the cupula. In contrast, the
“short” time constant τs is mainly related to the lumen of the
slender duct and the viscosity of the endolymph. The volu-
metric gain |V̂ / ˆ̇α| increases with the cross-sectional area and
the major radius of the slender duct.

What we have discussed so far is usually referred to as
the macro-mechanics of the SCCs (Rabbitt et al. 2004) and
is limited to describing the endolymph flow in terms of bulk
flow rates. Such mean values are obtained by assuming a
Poiseuille-like flow a priori. A more detailed analysis has
been carried out by Damiano and Rabbitt (1996), where the
deflected shape of the cupula has been obtained under the
assumption of an axisymmetric flow profile. In the utricle,
the flow velocities are usually assumed to be significantly

smaller than in the SCCs such that they do not contribute
significantly to the physiology of the SCCs (Van Buskirk
1977) and the utricular otolith.

In the present work, we employ a numerical model for
studying the three-dimensional fluid dynamics in the SCCs
and the utricle in detail, and we will present flow patterns
in the ampulla and the utricle, which were not shown so
far. They lead to significantly higher flow velocities in the
proximity of the sensory epithelia than a Poiseuille-like flow.
This is relevant for the mechanotransduction. The relation-
ship between these flow patterns and the macroscopic fea-
tures of the anatomy is also studied.

2 Methods

The elasticity of the membranous duct is believed to play a
minor role during physiological head maneuvers (Yamauchi
et al. 2002). Therefore, the perilymph is neglected in our
simulations and the membranous labyrinth is modeled as a
rigid structure fixed to the skull and filled with endolymph.
The endolymph is treated as an incompressible Newtonian
fluid with mechanical properties similar to water (density
ρ = 1,000 kg/m3; viscosity µ = 0.001 Pa s). Here, we only
consider angular accelerations in the plane of a single canal.
The geometry of the labyrinth is simplified to a single SCC
connected with the utricle.

2.1 Governing equations

We observe the endolymph flow from a reference frame rotat-
ing with the membranous labyrinth, that is, fixed to the skull.
We model this flow as a creeping flow, because the estimated
Reynolds number (Re) is small,

Re = ρŪac/µ ≈ O(10−3)

where Ū ≈ O(10−5 m/s) is a typical velocity in the SCC
(e.g. Obrist 2008), and ac ≈ O(10−4 m) is the typical radius
of the canal lumen. We limit our simulations to head maneu-
vers at low to moderate frequencies (�1 Hz) such that we can
neglect the short time constant τs and the fast duct modes
described by Obrist (2008). Under these assumptions, the
governing equations for the endolymph flow are the Stokes
equations,

−∇ p(x) + µ∇2u(x) = f(x, t) (2a)

∇ · u(x) = 0 (2b)

with no-slip boundary conditions at the wall; t is the time, x =
(x1, x2, x3) are the coordinates, and p and u = (u1, u2, u3)

are the pressure and the velocity of the fluid, respectively. The
forcing term f = fα + fc is a superposition of fictitious forces
fα arising from the rotational acceleration and the force fc of
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the cupula acting on the fluid. Because Eq. (2) is linear, we
can express u by the linear superposition

u = uα + uc (3)

where uα and uc are computed independently by setting f =
fα and f = fc, respectively. Here, uα represents the flow
which is induced by the rotation of the head in a canal with
relaxed cupula (or no cupula) and uc is the flow induced by
the cupula.

The force fc is modeled as in previous works (e.g. Van
Buskirk et al. 1976; Oman et al. 1987) by introducing a time-
dependent pressure difference �P across the cupula. This
pressure is proportional to the volume V of fluid displaced
during a head maneuver,

�P(t) = −K V (t) (4)

where K is the stiffness of the cupula. The volumetric dis-
placement V (t) of the cupula can be computed by integrating
the flow rate at any cross-section Ac of the SCC with respect
to time,

V (t) =
t∫

0

∫∫

Ac

u · nc dA dt (5)

where nc is the normal vector on the surface Ac. Integral
(5) is solved numerically by means of Gauss quadrature
(Abramowitz and Stegun 1992) and explicit time integra-
tion. The volumetric displacement V (t) describes the macro-
mechanics of the cupula-endolymph system and dominates
the dynamics of the SCC.

The pressure difference (4) leads to the flow uc, which
turns out to be a Poiseuille-like flow proportional to the stiff-
ness K and the volumetric cupula displacement V (t). (See
Appendix A for an explicit approximate formula for uc in
function of an axially variable lumen in the SCC).

The force fα is explicitly related to the angular accelera-
tion α̈ (Appendix B),

fα(x, t) = ρα̈ × x (6)

with the center of rotation at the origin. The velocity field uα

is then computed numerically with the multilayer method of
fundamental solutions (multilayer MFS, Appendix C).

The appropriateness of the employed Stokes equations
was verified a posteriori by repeating some of the simula-
tions by a finite volume code (OpenFOAM). It solves the full
Navier-Stokes equations, including effects of unsteadiness
and a rotating reference frame (B. Grieser, private commu-
nication).

As we will show in the following, the present method is an
accurate description of the low-frequency cupula-endolymph
dynamics in SCCs.

3 Results

3.1 Endolymph flow during a head maneuver in the plane
of the horizontal canal

We apply our numerical model to a head movement, which
rotates the head in the plane of the horizontal canal (HC) by
120◦ in 3 s. To obtain a smooth acceleration pattern α̈, we
use the function chosen by Obrist et al. (2010),

α(t) =

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

0, t < 0s
2π

3×2187 (2187 − 20t7 − 210t6

−756t5 − 945t4), 0 s � t � 3s
2π
3 , t > 3s.

(7)

The resulting angular acceleration, angular velocity, and
angular position α of the head during the head maneuver
are shown in Fig. 2a.

For validation purposes, we show results that were
obtained by idealizing the SCC to a torus of major radius
3 mm and circular cross-sections of constant radius 0.16 mm.
The equation for the endolymph dynamics proposed by Van
Buskirk et al. (1976) can be adapted to this specific case by
setting the angle spanned by the utricle to zero and the angle
spanned by the slender duct to 2π . The resulting equations
were solved as described by Obrist (2008) to provide a ref-
erence solution. The cupula volume displacements obtained
from our numerical solution and the reference solution are
shown in Fig. 2b for K = 13 GPa/m3. These results dem-
onstrate the ability of our model to accurately predict the
low-frequency dynamics of the SCCs.

Next, we consider the geometrical model of the right HC
shown in Fig. 3. This geometry is symmetric with respect
to the (x1, x2)-plane and its cross-sections are approximated
by ellipses. The ellipticity of the cross-sections is defined
as

e = a2/a1, (8)

where a1 and a2 are the horizontal and vertical axes parallel
and perpendicular to the canal plane, respectively. If e > 1
the major axis is the vertical axis. The cross-sectional area
and ellipticity along the centerline (Fig. 4) are obtained by
interpolating and smoothing the anatomical data reported in
Figure 3 of Curthoys and Oman (1987). The actual relaxation
time of the cupula (τc) is under debate and could vary sig-
nificantly between patients. Therefore, the simulations were
repeated for several values of K leading to values of τc from
4.2 to 104 s. These values are motivated by data reported in
Grant and Van Buskirk (1976), Rabbitt et al. (2009), Selva
et al. (2009). The resulting cupula volume displacements
V (t) are plotted in Fig. 2c. The macro-mechanics of our
model is consistent with the results reported in the literature
(e.g. Van Buskirk et al. 1976; Pardoe and Haughton 1979;
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(c)

(b)

(a)

Fig. 2 (a) Head maneuver (solid line angular position α; dashed
line angular velocity α̇; dashed line with dot angular acceleration α̈).
Resulting cupular volume displacement V (t) against time (b) when
the geometry of the SCC is idealized to a torus with constant circular
cross-sections, major radius 3 mm and minor radius 0.16 mm (solid
line numerical model; multiplication symbol reference data from Van
Buskirk’s model), and (c) for a realistic geometry (cf. Fig. 3) and dif-
ferent values of the cupula time constants τc(s) and the cupula stiffness
K (GPa/m3) (dashed line τc = 4.2, K = 7.14; dotted line τc=6, K = 5;
solid line τc = 13, K = 2.3; dashed line with dot τc = 104, K = 0.288)

Bernard 1982; Oman et al. 1987; Rabbitt and Damiano 1992;
Damiano and Rabbitt 1996; Ifediba et al. 2007; Obrist 2008;
Vega et al. 2008). The volumetric displacement V is approx-
imately proportional to the angular velocity α̇ of the head.
The overshoot of the cupula at the end of the head maneu-
ver [described mathematically in Obrist (2008)] reflects the
mechanical adaptation of the cupula. Increasing the stiff-
ness K reduces the maximum cupula displacement slightly
(Fig. 2c, at t ≈ 1.5 s) and increases the cupula overshoot
at t = 3 s. Because the system is over-damped, the over-
shoot does not lead to oscillations of the cupula. Instead, it
decays exponentially to zero with relaxation time τc (Fig. 2c,
t > 3 s).

Fig. 3 Anatomical model of the HC with utricle (shaded surface) and
instantaneous velocity vectors (arrows) sampled along the major and
the minor axes of some cross-sections for a positive angular acceleration
α̈ > 0 in the plane of the canal
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Fig. 4 Cross-sectional area a (solid line) and ellipticity e (dotted line)
of the endolymphatic duct shown in Fig. 3 and cross-sectional area a
(bullets) from Curthoys and Oman (1987). θ is the azimuthal coordinate
of the duct centerline points

Furthermore, we observe a Poiseuille-like flow in the slen-
der part of the SCC, which is consistent with the models
available in the literature.

In the utricle and the ampulla (the enlarged regions of our
model labyrinth), the cross-sectional areas are one order of
magnitude larger than in the slender duct and the velocities do
not exhibit a parabolic profile. Instead, we observe an S-shape
velocity profile typical of a vortex (Fig. 5). With respect to a
rotating reference frame fixed to the skull, this vortex rotates
in the plane of the canal and leads to velocities in the utricle,
which are of the same order of magnitude as the velocities
in the slender duct, that is, O(10−5 m/s) for α̈ ≈ 100◦/s2.
This is a fundamentally new result and contradicts previous
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(a) (b) (c)

Fig. 5 Velocity field in plane x3 = 0 at (a) t = 0.8 s (flow regime
I; acceleration), (b) t = 1.8 s (flow regime II; deceleration), end (c)
t = 4 s (flow regime III; zero acceleration) for the head maneuver given

in Eq. (7) and plotted in Fig. 2a. The arrows indicate velocity vectors,
while the color shows the velocity magnitude in m/s. (τc = 16 s). The
big arrows at the center indicate the direction of head rotation

models predicting axisymmetric flows and lower velocities
in the enlarged regions of the labyrinth. The flow velocities
in the utricle predicted on the basis of a Poiseuille-like flow
would be approximately one order of magnitude smaller than
the actual velocities we observe.

During and after the head maneuver, we can recognize
three flow regimes: (I) a head-acceleration regime, (II) a
head-deceleration regime, and (III) a post-maneuver regime
(Fig. 5). During the head-acceleration regime I (0 s < t <

1.5 s), the endolymph in the slender duct and the vortex in the
enlarged regions flow opposite to the angular velocity of the
head; during the head-deceleration regime II (1.5 s < t <

3 s) the endolymph flow reverses direction such that the vor-
tex co-rotates with the head. At the end of the head maneuver,
the cupula volume displacement is non-zero because of the
overshoot discussed earlier. The elastic cupula returns then
slowly to its resting position, which induces a Poiseuille-like
positional flow in the whole fluid domain (flow regime III). It
turns out that the velocity uα induced by angular acceleration
is responsible for the observed vortex. No vortex is observed
during flow regime III because the positional flow is only due
to the elastic force of the cupula and uα is zero as α̈ = 0◦/s2.

It is worthwhile noting that the direction of the flow veloc-
ities close to the crista are the same whether one considers a
Poiseuille or an S-shape profile within the ampulla (Fig. 5).
However, the S-shape profile enhances the deflection of the
hair cell bundles embedded in the cupula, because the peak
velocity is higher and closer to the crista than for a Poiseu-
ille flow. Figure 6 shows that the displacement of a point on
the cupula close to the crista can be one order of magnitude
bigger for the S-profile.

We repeated the last simulation by modeling the cupula
as a solid wall. We still observe vortical flows just next to
the cupula, although the velocity at the cupula is obviously
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Fig. 6 Displacement of a point close to the crista (shown in Fig. 5)
against time. Results for the computed vortical S-profile (solid line)
and for a Poiseuille profile (dashed line) of equal flow rate (τc = 4.6 s)

zero. This suggests that the presence of the observed vortex
should be expected regardless of the cupula stiffness.

3.1.1 Shear stresses at the wall

The wall shear stresses caused by the viscous forces of the
endolymph flow in the enlarged part of the labyrinth are of
the same order of magnitude as in the slender canal. The
maximum value predicted on the basis of a Poiseuille flow
in the utricle would be an order of magnitude smaller.

A closer look at the shear stress distribution in the enlarged
region of the labyrinth suggests that the ellipticity of the
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Fig. 7 Shear stresses at the wall of the utricle and the horizontal
ampulla for a head acceleration in the plane of the HC. The values
are shown for α̈ = 120◦/s2

cross-section plays a fundamental role in the shear stress
distribution. During rotations in the plane of the HC, the
ellipticity of the utricle is such that the peak values of the
velocity profile are closer to the upper and lower parts of
the utricular wall than to the outer and inner walls. As a con-
sequence, we observe peak values of the wall shear stresses
at the upper and lower parts of the utricular wall rather than
at the outer and inner ones (Fig. 7). This result is remarkable,
since the utricular macula is positioned at the lower part of
the utricular wall. In the ampulla, the cross-sectional ellip-
ticity is closer to one such that the maximum is at the outer
wall of the ampulla where the crista is located.

If we compute the shear stresses in a plugged utricle
(obtained by closing the connections of the utricle with the
SCC), the results do not deviate significantly from the results
in the utricle in Fig. 7. Such a configuration is mechanically
equivalent to a rigid cupula and tells us that the stiffness of
the cupula and the geometry of the slender SCCs do not influ-
ence significantly the flow in the utricle. Therefore, we can
use this plugged utricle to estimate the wall shear stresses
induced by head rotations in planes orthogonal to the plane
of the HC (e.g., about the x1 or x2 axis).

The utricle in our geometry is oriented approximately
along the x1 axis and angular accelerations α̈ = (α̈, 0, 0)

and α̈ = (0, α̈, 0) mimic head rotations in the planes of
the PC and the AC, respectively. We observe a vortex in the
respective plane of rotation also for these two accelerations.
The resulting shear stresses are largest at the central region
of the flat utricular walls (Figs. 8, 9), that is, close to the
utricular macula. This suggests that the anatomy of the laby-
rinth is such that it maximizes the shear stresses induced by

Fig. 8 Shear stresses at the wall of the utricle for an angular accelera-
tion in the plane of the PC (α̈ = 120◦/s2)

Fig. 9 Shear stresses at the wall of the utricle for an angular accelera-
tion in the plane of the AC (α̈ = 120◦/s2)

endolymph flow at the sensory epithelia for accelerations in
any direction. The directions of the resulting shear stresses at
the macula depend on the plane of rotation. They are mainly
directed along the x2 axis for rotations in the (x2, x3)-plane
(Fig. 8) and along the x1 axis for rotations in the (x1, x3)-
plane (Fig. 9). For accelerations in the plane of the HC, the
direction of the shear stresses follows the S-shape pattern of
the vortex in the macula plane, such that different regions of
the macula experience shear stresses along different direc-
tions (Fig. 7). Note that results for specific values of α̈ can
be obtained by linear rescaling of the results in Figs. 7, 8,
and 9, which are given for a typical head acceleration of
α̈ = 120◦/s2.

3.2 Influence of the morphology of the utricle
on the endolymph flow velocities: a parametric study

In this section, we present results from a parametric study
on the influence of the morphology of the labyrinth on the
formation of the vortex. For this specific study, we neglect
the cupula (K = 0) and idealize the vestibular labyrinth
as a toroidal duct with constant radius of curvature Rscc =
3 mm. The cross-sectional area and ellipticity are parame-
trized as a function of the azimuthal coordinate θ . This ide-
alized geometry consists of two regions. A slender duct of
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Fig. 10 Type I geometries (circular cross-sections) for different ratios
of the utricular (au) and SCC (a0) cross-sectional areas: (a) au/a0 = 1,
(b) au/a0 = 4, and (c) au/a0 = 16. AB and C D are the horizontal and

vertical axes of the central utricular cross-section, respectively; E F is
the diameter of the slender duct. AB = C D = E F

√
au/a0

constant cross-sectional area a0 = 0.162π mm2 and ellip-
ticity e0 = 1 representing the slender part of the SCC, and
a second region spanning an angle β with increased cross-
sectional area and ellipticity eu(θ) representing the utricular
bulge (−β/2 ≤ θ ≤ β/2). The cross-sectional area is param-
etrized as follows

a(θ) =

⎧⎪⎨
⎪⎩

a0, −π ≤ θ < −β/2

c4θ
4 + c2θ

2 + c0 + a0, −β/2 ≤ θ < β/2

a0, β/2 ≤ θ < π

(9)

where c0 =au − a0, c2 =−2c0/(β/2)2, c4 =−c2/2/(β/2)2

and au is the area of the biggest cross-section in the utricular
region at θ = 0.

We introduce three families of geometries that differ from
each other only in the ellipticity of the utricular region eu :

Type I: All the cross-sections are circles (eu = 1 for all
θ ).

Type II: “Oblate utricle” (eu(θ) = a0/a(θ) < 1 for
−β/2 < θ < β/2). The vertical axes of the utric-
ular cross-sections equal the radius r0 of the slen-
der duct (r0 = √

a0/π ). Increasing au leads to a
“horizontal” expansion of the utricular bulge.

Type III: “Prolate utricle” (eu(θ) = a(θ)/a0 > 1 for
−β/2 < θ < β/2). The horizontal axes of the
utricular cross-sections equal the radius r0 of the
slender duct. Increasing au leads to a “vertical”
expansion of the utricular bulge (equivalent to
Type II but with the utricular region rotated by
90◦).

We first consider Type I geometries with β = 0.42π (Fig. 10)
and study how the flow profile in the utricular region changes
as a function of the ratio au/a0. When the SCC is approxi-
mated by a torus of constant cross-sectional area (au/a0 =
1), the flow profile (yellow curve in Fig. 11) is identical
at each cross-section and is well approximated by an axi-
symmetric parabolic flow. When we increase the utricular

(a)

(b) (c)

Fig. 11 Axial velocity u2 evaluated for α̈ = 120◦/s2 along the (a)
horizontal (AB) and (b) vertical (C D) axes of the cross-section at the
center of the utricular region (θ = 0) and (c) along the horizontal axis
(E F) of the opposite cross-section in the slender duct region (at θ = π ).
The zeros of the abscissae correspond to the center of the cross-section.
The results are obtained for different ratios of the utricular (au ) and
SCC (a0) cross-sectional areas (yellow au = a0, red au = 3a0, violet
au = 4a0, blue au = 6a0, green au = 8a0, black au = 16a0) of the
Type I geometry (cf. Fig. 10)

cross-section only a little, the flow velocities in the utricu-
lar region decrease significantly. If we continue to increase
the lumen of the utricular region, the flow profile becomes
asymmetric with respect of the vertical axis (Fig. 11a) and the
peak velocity moves toward the outer wall, while the veloc-
ities close to the inner wall decrease. For au/a0 � 4, these
velocities change direction, which leads to a vortex. When
the dimension of the utricular lumen is increased even further,
the velocities on the horizontal axis of the central utricular
cross-section increase, and we clearly recognize the S-shape
velocity profile typical of a vortex.
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Fig. 12 (a) Type I, (b) Type II, and (c) Type III geometries for a
ratio au/a0 = 4. AB and C D are the horizontal and vertical axes
of the central utricular cross-section, respectively; E F is the diameter

of the slender duct; eu = C D/AB is the resulting utricular ellipticity;
AB = C D = 2E F for the Type I geometry (a), C D = E F for the
Type II geometry (b), and AB = E F for the Type III geometry (c)

The velocity profile along the vertical axis of the utricular
cross-section (Fig. 11b) remains symmetric with respect to
the horizontal axis and the velocity magnitude decreases with
increasing au . Apparently, the observed vortex has a strongly
two-dimensional character in the plane of rotation. The flow
profiles in the slender duct (Fig. 11c) are well approximated
by a parabola. The flow velocities increase slightly with au

for small ratios au/a0. For bigger (more physiological) ratios
au/a0, however, the viscous forces acting on the endolymph
within the slender region become dominant and the flow
velocities in the slender canal stop increasing. This is con-
sistent with the result of Van Buskirk (1977): the flow in
the utricle (here a vortex) does not influence significantly the
flow in the canal. A reduction of the angle β spanned by
the utricular region leads to similar conclusions, but reduces
the velocities of the vortex.

Because the ellipticity of the cross-sections is a well-docu-
mented feature of the anatomy of the labyrinth (Curthoys and
Oman 1987), we now compare results obtained for the Type
I geometry to those of the Type II and Type III geometries
(Fig. 12). These geometries have the same cross-sectional
areas a(θ) along the centerline, but a different ellipticity of
the utricular region. The obtained flow profiles are compared
in Fig. 13 for β = 0.42π and au/a0 = 4. The maximum
velocities along the vertical axis of the central utricular cross-
section (Fig. 13b) and in the slender region (Fig. 13c) are
almost identical for the three geometries. The flow rate is not
influenced significantly by the ellipticity of the utricle. How-
ever, the ellipticity of the utricle influences significantly the
velocity profile along the horizontal axis of the central utric-
ular cross-section (Fig. 13a). The maximum velocity in the
utricular region is observed for the Type II geometry (e < 1)
for which the S-shape profile is most pronounced (strongest
vortex). In contrast, we do not observe any vortex for the Type
III geometry (e > 1), where the velocities in the utricle are
smaller and deviate only little from a parabolic profile. The
projection of a Type III geometry onto the plane of rotation
yields a two-dimensional slender annulus of constant cross-
sectional radius.This confirms the two-dimensional nature of

Fig. 13 Axial velocity u2 evaluated for α̈ = 120◦/s2 along the (a)
horizontal (AB) and (b) vertical (C D) axes of the cross-section at the
center of the utricular region (θ = 0) and (c) along the horizontal axis
(E F) of the opposite cross-section in the slender duct (at θ = π ). The
zeros of the abscissae correspond to the center of the cross-section. The
results are obtained for the Type I (dashed line with dot), Type II (solid
line), and Type III (dashed line) geometries with au/a0 = 4 (cf. Fig. 12)

the observed vortex. The flow patterns deviating significantly
from a parabolic profile are most favored by a utricular lumen
which exceeds the dimension of the slender duct in the plane
of rotation. Consistently, results from two-dimensional sim-
ulations (Boselli et al. 2009) led to good approximations of
the flow velocities in the canal.

An enlargement of the utricle in the plane perpendicular to
the SCC can enhance the velocities of the vortex if combined
with an enlargement of the utricle in the plane of rotation.
The widths of the utricular cross-sections for a Type I geom-
etry with au/a0 = 16 (Fig. 10c) and a Type II geometry
with au/a0 = 4 (Fig. 12b) are very similar, but the vertical
extent of the Type I geometry is much bigger, which leads
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Fig. 14 Velocity vectors (arrows) describing the velocity profiles in a
two-dimensional annulus (left), a disk (center), and an idealized one-
canal model (right). The flow velocities at the cross-section cutting
the center of the utricular disk (red arrows) are approximated as the

superposition of a Poiseuille-like flow and the vortex observed in the
disk. If the disk was associated to the ampulla, the crista would be at
the right-side of the disk

to a faster vortex (cf. Fig. 11 for au/a0 = 16 and Fig. 13 for
au/a0 = 4).

To show the influence of the cupula stiffness on these
results, we repeated some simulations with cupula stiffness-
es K corresponding to the range of values of τc reported in the
literature. It turns out that the influence of the cupula on the
flow profiles in the utricular bulge is negligible (uc � uα).

By comparing the above results and the available data on
the anatomy of the membranous labyrinth, we can be confi-
dent about the presence of the vortex in the enlarged part of
the labyrinth. The symmetry of the flow profile is broken as
soon as the dimension of the bigger chambers in the plane
of rotation exceeds the dimension of the narrow duct. We
observe a small vortex already for au/a0 = 4. The velocities
of the vortex increase with au/a0 (in contrast to a Poiseuille
flow for which the velocities decrease) and the typical cross-
sectional area of the utricle and the ampulla is one order
of magnitude bigger than in the slender duct. Therefore, we
expect the observed vortex to exist regardless of morpholog-
ical details not included in our model.

3.3 Heuristic model: an intuitive interpretation
of the vortical flow

The results of our simulations become more clear if we con-
sider the two-dimensional flow us in an accelerated disk
(Appendix D),

us(r) = α̈

8ν
(−r R2

u + r3)eθ ≡ useθ (10)

where ν = µ/ρ is the kinematic viscosity of the fluid, r is
the distance from the center of the disk, eθ is the unit vector
in the azimuthal direction and Ru is the radius of the disk.
Equation (10) is an exact solution of the Stokes equations
(2) with f = fα and describes a symmetric vortex concentric
with the disk. We connect this disk to an annulus of cross-sec-
tional radius ascc = 0.16 mm and major radius Rscc = 3 mm
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Fig. 15 Flow velocity u (solid lines) predicted by the heuristic model
for different ratios of the utricular and SCC cross-sectional radii
(Ru/ascc = 1, 1.71, 2.42, . . . , 6; ascc = 0.16 mm; α̈ = 120◦/s2). The
dashed line shows the position and the magnitude of the peak velocity
obtained increasing Ru/ascc. The results for this heuristic model should
be compared to the numerical results in Fig. 11

(Fig. 14). The disk and the annulus represent an idealized
utricle and SCC, respectively. The flow in the utricular disk
can then be approximated as the superposition of the vortical
flow (10) and a Poiseuille-like flow whose flow rate is equal
to the flow rate in the accelerated annulus (Appendix D). This
flow provides a heuristic model of the vortical flow observed
in our transient simulations.

Figure 15 shows the evolution of the flow profile in the
utricular disk of the idealized SCC in Fig. 14. The ratio
Ru/ascc is increased from 1 to 6. Initially, the velocities
decrease. But for Ru/ascc � 3, we observe the formation of
a vortex and the velocities increase with the dimension of the
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utricular disk. These qualitative results are consistent with the
numerical results reported in Fig. 11a for three-dimensional
geometries. For the sake of clarity, we point out that the heu-
ristic model is a substantial simplification of the labyrinth.
Its goal is to provide a basic explanation for the formation
of the vortical flow. It should not be used to explain the full
biology of angular motion transduction which requires the
introduction of a cupula and other important anatomical fea-
tures. To this end, one should instead refer to the numerical
model.

4 Discussion

The proposed numerical model for the endolymph flow
allows us to access not only the averaged quantities predicted
by analytical models, but also the local flow velocities in the
proximity of the sensory tissues.

We have limited our investigation to transient, low fre-
quencies head maneuvers and shown a vortical S-shape flow
profile in the utricle and the ampulla. On the one hand, this
vortex does not significantly influence the macro-mechan-
ics of the SCC and the resulting flow rate leads to a cupula
volume displacement consistent with previous investiga-
tions and experimental evidences. On the other hand, the
observed vortex represents a fundamentally new feature of
the endolymphatic flow: It leads to flow velocities in the
utricle/ampulla that can be higher than in the slender duct,
and it enhances the shear stresses at the utricular macula
and at the cristae ampullaris. These numerical results can-
not be accessed by state-of-the-art experiments, which are
typically based on indirect measurements, for example, the
firing rate of vestibular afferents. In this sense, our numer-
ical predictions—based on established, physical principles
and computational approaches—are a complement to such
experiments.

The presented results are robust with respect to the approx-
imations made for the governing equations as well as for the
geometry of the labyrinth. Our simulations have been vali-
dated by results computed independently by a finite volume
solver for the full Navier-Stokes equations (OpenFOAM).
The influence of the anatomy of the labyrinth on our results
has been studied in Sect. 3.2: The formation of the vor-
tex is induced by the macroscopic anatomical feature that
the enlarged lumen of the labyrinth exceeds the dimension
of the slender duct significantly. In humans, typical cross-
sectional area ratios au/a0 are approximately up to twenty-
five in the utricle and up to thirteen in the ampulla. For
these values and based on the data shown in Fig. 11, we
have to expect a vortex independently of other morphologi-
cal details.

In the remainder of the paper, we speculate on the clinical
and physiological implications of the observed vortex.

4.1 Physiological and clinical implications of the vortex in
the utricle

It is well known that mechanical signals are as important
as chemical ones during the growth of many living tissues
(e.g. Cowin 2004). We have shown in Sect. 3.1.1 that the
ellipticity of the utricular cross-sections leads to peak shear
stresses at the position of the macula for rotations in any
direction. These are one order of magnitude higher than the
values predicted for a parabolic flow profile. It would come
as no surprise if the local distribution of the hair cells was
related to the vortex.

The vortical flow, for example, could help to explain the
lack of otolith contribution to the vestibular ocular reflex dur-
ing off-vertical axis yaw head rotations reported by Bockisch
et al. (2005). For yaw rotations, the directions of the shear
stresses at the macula are not uniform because the vortex
rotates in the plane of the macula for angular accelerations in
the plane of the HC (Fig. 7). Possible afferent signals from
the different regions of the macula might then cancel each
other. The sensitivity threshold τmin for the shear stress on
the macula can be approximated from the magnitude of the
force per unit area induced by the smallest linear accelera-
tion amin ≈ 2 × 10−3 g that can be sensed by the macula,
where g is the gravitational acceleration (Peters 1969). A
rough approximation of τmin based on the values reported in
Rabbitt et al. (2004) is

τmin ≈ amin(ρo − ρ f )b ≈ 2 × 10−4 Pa

where b ≈ 30 µm is the thickness of the otoconial layer
and ρo and ρ f are the otoconial layer and endolymph densi-
ties. For an angular acceleration of 120◦/s2, we obtain wall
shear stresses at the macular region of up to approximately
7×10−4 Pa (Fig. 7). This value is slightly above the sensitiv-
ity threshold τmin. However, this is not sufficient to ground a
functional role of the vortical flows because this result sug-
gests that the contribution of the fluid to the otolith mechanics
is very small compared to the contribution of typical grav-
itational/inertial forces. It will be necessary to couple the
detailed fluid dynamics in the utricle to realistic models of
the otolith organ (e.g. Jaeger et al. (2002), which takes the
directionality of the hair cells into account) in order to bet-
ter understand a possible functional role of the vortex in the
macula response.

A vortical flow favors the response of the papilla neglecta

More intuitively than for the macula, a vortical flow would
favor the response of the papilla neglecta (PN), if present.
In many vertebrates, the PN occupies a small region of the
utricular wall in addition to the macula. It consists of a few
hair cells embedded in a short cupula (≈60 µm), which pro-
trudes into the utricular lumen. Brichta and Goldberg (1998)
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showed that the PN of the turtle responds to angular acceler-
ations and angular jerk. No otoconia are present on the PN
such that the forces leading to the mechanotransduction come
only from the endolymph velocity—which are enhanced by
the observed vortex. A PN has been observed also in some
human posterior ampullae, but its functionality is still under
debate (Brichta and Goldberg 1998).

The endolymph velocity increases under conditions of endo-
lymphatic hydrops

The parametric study Sect. 3.2 shows that an increase in
the dimension of the utricular region, for example, because
of a pressure increase of the endolymphatic compartment
(hydrops), will lead to an increase in the velocities in the
utricle. In contrast, the velocities would be reduced if there
was a Poiseuille-like flow.

4.2 A vortical flow may favor the mechanotransduction in
the ampulla

We now discuss some advantages in having a vortical flow,
rather than a Poiseuille flow, in the ampulla. To this end, we
define the SCC gain in terms of angular cupular displacement
at the crista (like in Damiano and Rabbitt 1996). This quan-
tity is intrinsically related to the transverse shear strain of the
hair bundles, which is the major mechanism responsible for
hair cell activation.

Our results suggest that a vortical flow may increase the
SCC gain: The asymmetric flow profile of the vortical flow
favors the displacement of the cupula closer to the crista
rather than at the center of the cupula. Moreover, the elliptic-
ity of the cupular cross-sections is such that the distribution
of the shear stresses at the wall of the ampulla shows max-
imum values at the outer equatorial region of the ampulla
where the crista is located.

Dohlman (1980) observed that animals with high sensitiv-
ity to vestibular stimuli have a cupular cross-sectional area
significantly bigger (e.g. 36 times for the owl) than the cross-
section of the slender duct. A bigger cupula helps to trans-
duce head rotations at very low frequencies by increasing τc

(τc ∝ 1/K and K decreases with the diameter of the cupula).
For a Poiseuille flow, a bigger cupula can also reduce the SCC
gain because of a reduced average cupula displacement (e.g.
Squires 2004). In contrast, a vortical flow has the potential
to preserve, or even increase the gain of the SCC for a big-
ger ampulla: In our simulations, angular acceleration leads
to velocity magnitudes in the proximity of the crista similar
to the velocities in the slender duct, even if the displacement
of the endolymph averaged over the cross-section is much
smaller. Moreover, increasing the cross-section of the cupula
increases the velocities in the proximity of the crista.

We also point out that an S-shape velocity profile allows
local deflections of the cupula even for a zero average-dis-
placement of the cupula. This favors the transduction in a
SCC even after complete surgical occlusion of the lumen, for
which the macro-mechanics of the SCC relies on the elastic-
ity of the membranous wall (Rabbitt et al. 1999, 2006).

At this point, we are only able to give qualitative results
on the deflected shape of the cupula. More conclusive results
will require a full coupling of the detailed fluid dynamics in
the ampulla with a more detailed model of the cupula (e.g.
Selva et al. 2009).

No vortex in positional flows

The observed vortex is induced by angular acceleration and
is not expected in “positional flows”, for example, during
benign paroxysmal positional vertigo symptoms in canalithi-
asis (Rajguru et al. 2004; Obrist and Hegemann 2008; Boselli
et al. 2010a) or mechanical indentation (Dickman and Cor-
reia 1989). We point out that this observation is not in contra-
diction with results on the mechanical indentation reported
by Rabbitt et al. (1995) for the toadfish. They could model
successfully the relationship between rotation and indenta-
tion by matching the average cross-sectional pressure for
the two different stimuli. Results from our parametric study
(cf. Figs. 11a, b; 4 � au/a0 � 10 in the toadfish) sug-
gests that including the vortical flow in their macro-mechan-
ical model would increase the cupula displacement and the
angular displacement at the crista up to a factor of five and
ten, respectively. A shift of the predictions in Rabbitt et al.
(1995) by a factor below ten would still lead to a good match
between predictions and measurements because of the sig-
nificant inter-afferent variability in the measured rotation-to-
indentation gain.

5 Concluding remarks

Our numerical computations predict a vortical flow in the
utricle and the ampulla when there is angular acceleration
(or deceleration). As a consequence, the common assumption
of axisymmetric flow profiles in the utricle and the ampulla
leads to a loss of essential information on the flow in the prox-
imity of the sensory epithelia. The predicted vortex depends
on typical macroscopic anatomical features of the labyrinth.
For the model used in our parametric study, the vortex is
observed when the dimension of the utricol/ampulla bulge
in the plane of rotation is at least two times bigger than
the diameter of the narrow part of the SCC (cf. Fig. 13).
The vortical flow maximizes the shear stresses at the sen-
sory epithelia and suggests a non-axisymmetric deflection of
the cupula. The presented results may serve to shed light on
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open physiological issues and be useful guidelines for future
studies on the mechanics of the vestibular system.
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Appendices

Appendix A: Flow uc due to the cupula

We approximate the cross-sections of the endolymph duct by
ellipses. Following the approach of Oman et al. (1987), we
have

uc(y, z, θ, t)≈8K V (t)/H(a1a2π)−1

[
1 −

(
z2

a2
2

+ y2

a2
1

)]
n (11)

where the local coordinates z(θ) and y(θ) are taken along
the semiaxes a1(θ) and a2(θ), respectively, n(θ) is the unit
vector normal to the surface of the cross-section, and θ is
the azimuthal position of the cross-section with respect to
the center of mass of the fluid domain. H is the hydraulic
resistance of the complete endolymphatic duct,

H ≡
π∫

−π

πa3
1a3

2

4µ(a2
1 + a2

2)
dθ. (12)

Appendix B: Derivation of fα

The most general expression for the fictitious force fα due to
inertia is (Kundu and Cohen 2002)

fα(x, t) = ρac + ρα̈ × x + ρα̇ × (α̇ × x) + 2ρα̇ × u (13)

where ac is the linear acceleration, α̈ the angular accelera-
tion and α̇ the angular velocity of the system, all measured
in an inertial reference frame. Without loss of generality, the
center of rotation is set at the origin. From left to right, the
terms in Eq. (13) represent: the inertial force arising from
ac, the force due to α̈, and the centrifugal and the Coriolis
forces due to α̇. The linear acceleration and the centrifugal
terms can be rewritten as the gradient of a scalar potential
function and eliminated from the right-hand side of Eq. (13)
by replacing p with the modified pressure

p∗ = p − ρ[ac + α̇ × (α̇ × x)] · x. (14)

Neglecting the Coriolis term, Eq. (13) is reduced to (6) which
depends only on the angular acceleration of the system. The
Coriolis term turns out to be negligible for the discussed head
maneuver (low velocities and low frequencies). This approx-
imation has also been validated by simulations including the

complete force (13) and computed by a finite volume solver
for the full Navier-Stokes equations (OpenFOAM).

Appendix C: Numerical solution of the endolymph flow

The velocity field uα is evaluated as the superposition of a
particular up and a homogeneous uh solution,

uα = up + uh . (15)

The particular solution up of (2) for fα(x, t) = ρα̈ × x is

up = α̈

8ν
r3eθ . (16)

It was derived by replacing u in the azimuthal component of
the momentum equation with the ansatz

up = u peθ = γ r3eθ , (17)

where γ is a constant, r is the radial coordinate, and eθ is the
unit vector in the azimuthal direction.

C.1 Homogeneous solution

The homogeneous solution uh has to satisfy Eq. (2) with
f = 0 and the boundary conditions

uh |∂Ω = −up|∂Ω (18)

where ∂Ω is the boundary of the fluid domain Ω . This
enforces the no-slip boundary conditions uα|∂Ω = 0. The
homogeneous solution uh cannot be derived analytically for a
general domain Ω . We solve it numerically by the MFS (Gol-
berg and Chen 1999; Young et al. 2006). The fundamental
solution of the Stokes equations is the Stokeslet (Pozrikidis
1992; Chwang and Wu 1975). A Stokeslet satisfies the equa-
tions everywhere except at its singularity (source point). We
find uh as the superposition of N Stokeslets with their sin-
gularities positioned outside the flow domain Ω ,

uh(x) =
N∑

k=1

S(x̂)wk (19)

where x are the Cartesian coordinates, x̂ = x − yk and yk

is the coordinate of the singularity of the kth Stokeslet; the
3 × 1 vectors wk are the strengths of the Stokeslets and S is
the Stokeslet tensor,

Si j (x̂) = 1

8πµ

[
1

r
δi j + x̂i x̂ j

r3

]
(20)

with r = |x̂|. The parameters wk are determined by enforc-
ing the boundary conditions at M collocation points on the
boundary ∂Ω . This leads to a linear system of equations,
which we solve in the sense of least squares. The source
points yk are positioned on multiple layers embracing the
surface ∂Ω with the help of the block greedy-QR algorithm
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Fig. 16 Collocation points (black dots) and source points (red dots)
used for the flow computation for the geometry introduced in Sect. 3.1
(cf. Fig. 3)

described by Boselli et al. (2010b). Figure 16 shows the posi-
tion of the collocation and source points used to approximate
uh on the fluid domain introduced in Sect. 3.1.

Appendix D: Exact solutions for a two-dimensional
annulus and a disk

The exact solution uscc = uscceθ of (2) with f = fα , for the
two-dimensional annulus in Fig. 14, is

uscc = α̈

8ν

[
r3 − 2r(R2

scc + a2
scc)

]
eθ

+ α̈

8ν

[
(Rscc + ascc)

2(Rscc − ascc)
2)

r

]
eθ , (21)

where r is the radial coordinate. This was derived analyti-
cally as a superposition of the particular solution (16), a two-
dimensional roton and a two-dimensional rotlet (Pozrikidis
1992; Chwang and Wu 1975). For physiological values of
ascc, (21) is well approximated by a parabola.

The exact flow field (10) for the disk of Fig. 14 was derived
as the superposition of the particular solution (16) and a
roton.
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