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Abstract In this paper, we propose a novel technique
for skull stripping of infant (neonatal) brain magnetic
resonance images using prior shape information within a
graph cut framework. Skull stripping plays an important
role in brain image analysis and is a major challenge
for neonatal brain images. Popular methods like the
brain surface extractor (BSE) and brain extraction tool
(BET) do not produce satisfactory results for neonatal
images due to poor tissue contrast, weak boundaries
between brain and non-brain regions, and low spatial
resolution. Inclusion of prior shape information helps in
accurate identification of brain and non-brain tissues.
Prior shape information is obtained from a set of la-
beled training images. The probability of a pixel be-
longing to the brain is obtained from the prior shape
mask and included in the penalty term of the cost
function. An extra smoothness term is based on gradient
information that helps identify the weak boundaries
between the brain and non-brain region. Experimental
results on real neonatal brain images show that com-
pared to BET, BSE, and other methods, our method
achieves superior segmentation performance for neonatal
brain images and comparable performance for adult brain
images.

Keywords Shape prior . Graph cuts . Neonatal . Brain .

MRI . Segmentation . Gradient

Introduction

Skull stripping is an important step in brain image analysis
and refers to the removal of the scalp, skull, dura, eyes, and
other extraneous regions. Tissue classification, registration,
volumetric analysis of the brain, and brain surface recon-
struction all depend upon accurate skull stripping. Any
accidental removal of brain tissues is damaging because it
cannot be reversed in later processing stages. Popular skull
stripping methods include region-based approaches [1, 2],
boundary-based techniques [3, 4], and hybrid methods [5,
6]. In brain image analysis terminology, brain extraction
refers to skull stripping, while brain segmentation refers
to classification of the brain into different tissues (e.g.,
white matter, WM; gray matter, GM; and cerebrospinal
fluid, CSF). In this paper, we propose a novel method
using graph cuts that incorporates prior shape information for
skull stripping of infant (neonatal) brain magnetic resonance
(MR) images.

Segmentation of neonatal brain MRI is important for the
study and treatment of brain injury and disorder due to
prematurity. Shortly after an infant is born, neurodevelop-
ment includes critically important maturational processes
which may be measured quantitatively by brain imaging.
Brain tissue volumes have been shown to change with age
[7]. In neonatal brain segmentation, tissue classes apart from
WM, GM, and CSF are identified to characterize brain
development. In such a scenario, accurate skull stripping
assumes increased significance.

Most of the skull stripping methods are designed to work
with T1-weighted images as it is the most popular modality
for brain MRI due to its superior contrast over other modal-
ities like T2 or FLAIR. Most state-of-the-art skull stripping
algorithms have been developed for adult brain MR images.
When used on neonatal images, these algorithms do not
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obtain the high segmentation accuracy of adult brain vol-
umes. Figure 1 shows an example image of adult and
neonatal brain MRI to illustrate their differences. Adult
brain MRI have a well-defined boundary between the brain
and skull, while in neonatal brain MRI, the brain and skull
are not easily separable. Unlike neonatal volumes, in adult
brain MRI, different tissues are quite clearly defined which
provides more information for accurate skull stripping.

Neonatal brain extraction has some unique challenges
compared to adult brain volumes. The neonatal data are
characterized by poor image quality due to their inherently
low spatial resolution, insufficient tissue contrast, and
ambiguous tissue intensity distributions [8]. Two very
popular skull stripping methods are the brain surface
extractor (BSE) [1] and the brain extraction tool (BET)
[3]. BSE uses a combination of anisotropic-diffusion
filters, Marr-Hildreth edge detectors, and morphological
operators to separate brain and non-brain tissues, but
needs parameter tuning for specific images. BET initial-
izes a spherical mesh around the center of gravity of the
brain and uses a deformable model. Internal and external
forces push the initial volume to the brain boundary.
BET is fast and relatively insensitive to parameter settings,
but can produce areas wrongly identified as the brain.
3dSkullStrip, part of the AFNI package [9], is a modified
version of BET. It is adapted to avoid segmentation of eyes
and ventricles, reduce leakage into the skull, and use data
outside the surface to guide its evolution. The watershed
algorithm (WAT) [2] is an intensity-based approach that relies
on preflooding, and the basin represents the brain. The hybrid

watershed algorithm (HWA) [6] which forms part of Free-
Surfer software [10] exhibits greater robustness than other
methods, by combining a watershed algorithm, a deformable
surface, and a probabilistic atlas. The watershed algorithm
makes an initial estimate of the mask by assuming connectiv-
ity of the white matter, and a statistical atlas is used to guide
the evolution of a smooth surface and refine the mask.

Other approaches to skull stripping segment the brain
using intensity thresholds followed by morphological oper-
ations to cut narrow connections between brain and non-
brain regions [11–13]. Such operations can only remove
very narrow connections (weakly connected regions). To
overcome this limitation, Sadananthan et al. [14] propose a
graph cut-based approach to position cuts for isolating and
removing dura. The method in [15] removes narrow con-
nections using distance transforms followed by watershed
algorithm (DWAT). In [4], active contours were used to fit
the brain where the curve is embedded in a higher dimen-
sional function and locally adapted to reduce sensitivity to
bias field. Zeng et al. [16] proposed a system of two level
sets whose zero level curves represent the inner and outer
boundaries of the cortex. Rehm et al. in [17] use a hierarchy
of masks from different models to form a consensus mask
for brain segmentation. A learning-based brain extraction
system (ROBEX) was introduced in [18] which combines a
discriminative and a generative model for brain extraction.
The discriminative model is a Random Forest classifier
trained to detect the brain boundary while the generative
model is a point distribution model to ensure a plausible
result. For a new image, the generative model is used to find

Fig. 1 Figures showing the difference between neonatal and adult
brain images through different slices. The top row shows adult brain
images while the second row shows neonatal images. Yellow arrows
show those regions in neonatal images which have poor contrast, lack

edge information, or ambiguous tissue information. Note that there is
no one-to-one correspondence between the images in the two rows and
are shown for illustration purposes
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the contour with the highest likelihood according to the
discriminative model. The contour is then refined using
graph cuts to obtain the final segmentation. In [19], a meth-
od is proposed for segmentation of pediatric brain tumors. It
combines probabilistic boosting trees (PBT) and lower-level
segmentation via graph cuts. Tu et al. in [20] propose a
method using PBTs for automated extraction of major sulci
from brain MRI.

In this paper, we propose a method for separating the
brain and non-brain from neonatal brain MR images. Graph
cuts are used to segment the 3D volume and also incorporate
prior shape information. The method in [14] first extracts a
rough estimate of the brain and uses graph cuts to refine the
segmentation. However, we use graph cuts to extract the
whole brain. Prior shape information is included from
labeled training data. This paper makes the following
contributions: (1) graph cuts are used exclusively for
brain extraction or skull stripping. (2) A simple approach is
proposed to include shape information with graph cuts by
constructing a prior shape atlas from manually labeled seg-
mentations. (3) Gradient information from labeled training
data is used to formulate the smoothness term which increases
segmentation accuracy. A description of our method is given
in “Materials and Methods.” Comparative results of our algo-
rithms with three methods, i.e., BET, BSE, and graph cut (GC)
[14], are presented in “Experiments and Results.” Finally, we
present a brief discussion (“Discussion” section) and conclu-
sion (“Conclusion” section).

Neonatal Brain Extraction

There are many works related to neonatal brain segmenta-
tion [21–23] which make use of conventional brain extrac-
tion tools (BSE or BET). However, neonatal brain extraction
has some unique challenges not observed in adult brain
MRI. As infants grow old, brain structures develop leading
to less complications in brain extraction. For example, neo-
natal brain MRI have low tissue contrast and low image
resolution. Consequently, even popular and freely available
software like BET and BSE fail to accurately extract the
brain. In spite of manual tuning of parameters, parts of the
skull are still left connected to the brain due to the weak
boundary between the brain and the skull. Neonatal MRI
have very low contrast-to-noise ratio posing difficulty in
segmenting regions exhibiting partial volume effect. Brain
segmentation methods like [8] are able to use BSE and BET
for brain extraction because their datasets consist of 1-year-
and 2-year-old brain images. In older infants, brain structure
is sufficiently formed for BET and BSE to give accurate
segmentation results. In our datasets, the maximum age of
the infants was 1 month where brain structures are not
properly formed, and low-level information alone does not
provide accurate extraction results.

Graph Cuts and Importance of Prior Shape Information

We choose to use graph cuts optimization because of its
following advantages:

1. Graph cuts can easily find the global optima of Markov
random field (MRF)-based energy function with two
labels [24]. MRF-based energy functions are suitable
for problems where the solution is represented as a set
of labels (e.g., segmentation). MRFs enable the inclu-
sion of context-dependent information from the pixel
neighborhood and allow for a regularized solution. This
ensures that neighboring pixels take similar segmenta-
tion labels and avoid isolated patches of incorrectly
labeled pixels. Since our segmentation had two labels
(brain and non-brain), graph cuts give a globally optimal
solution in quick time.

2. Graph cuts are not sensitive to the initialization of
labels. It gives a globally optimal result irrespective of
the initialization and does not get trapped in local min-
ima [24]. This provides a distinct advantage over level
sets.

Many knowledge-based algorithms have been developed
for neonatal brain image segmentation [8, 22, 25–28] under
the guidance of an atlas encoding prior knowledge of ana-
tomical structures, their spatial locations, shapes, and their
spatial relationships. Prastawa et al. [22] generate an atlas by
averaging three semi-automatic segmented neonatal brain
images registered with affine transformation. Song et al.
[28] built an unbiased atlas from nine out of ten neonates
in a leave-one-out manner with diffeomorphic flow regis-
tration. Xue et al. in [29] use multiple age-specific atlases in
an expectation-maximization framework for tissue segmen-
tation. In MRF energy functions, contextual information is
incorporated from the immediate neighborhood of a pixel.
As a result, incorporating shape information in graphs is a
challenging task because reliable shape information is
obtained from a set of points over a larger neighborhood.
The penalty term of the MRF energy is calculated for every
pixel while the smoothness term considers inter-pixel inter-
actions in the immediate neighborhood. Thus, the effective-
ness of smoothness cost in including prior shape information
is limited. The data penalty can be used for including prior
shape information but needs a lot of training data to construct
a generalized prior shape model.

The first works to use prior shape information in graph
cuts were [30, 31]. In [30], the zero level set function of a
shape template was used with the smoothness term to favor
a segmentation close to the prior shape. Slabaugh et al. in
[31] used an elliptical shape prior, under the assumption that
many objects can be modeled as ellipses. They apply many
iterations as a pre-initialized binary mask is updated to get
the final segmentation. Vu et al. [32] use a discrete version

804 J Digit Imaging (2012) 25:802–814



of shape distance functions to segment multiple objects,
which can be cumbersome. A flux-maximization approach
was used in [33], while in [34], the smoothness cost was
modified to include star shape priors. Although there are not
many works that use prior shape knowledge exclusively for
brain extraction, some methods have used shape information
to segment parts of the human brain like the corpus callosum
[30, 35] and cerebellum [36].

Materials and Methods

Overview of the Method

A schematic of the different stages of our method is given in
Fig. 2. The proposed algorithm can be divided into three
stages: (1) construct the prior shape model using labeled
training data; (2) determine the segmentation labels of each
pixel using intensity information and graph cut optimiza-
tion; and (3) using the previously obtained segmentation
labels as starting point, determine the final segmentation
labels using shape information and graph cuts. Each stage
comprises different substages, details of which are given
below.

Constructing Prior Mask

The acquired volumes were corrected for intensity inhomo-
geneities and affinely registered to a reference volume using
the FSL toolkit (http://www.fmrib.ox.ac.uk/fsl/). An atlas
prior is constructed by averaging over all the manually
labeled training masks which are binary images of value 1
(brain) and 0 (non-brain). The average mask indicates the
probability of a pixel belonging to the brain. Figure 3 shows
different slices from a typical prior shape volume. A leave-
one-out approach is used for testing 20 volumes where 19

volumes are used to construct the prior shape and the 20th
volume is used for testing. All possible combinations of 19
volumes were used to construct the atlas, and the remaining
volume was used for testing. Manual segmentations are
available for all 20 volumes.

Intensity-Based Segmentation

MRFs are suitable for discrete labeling problems, and graph
cuts can find the global optima of such MRF energy terms
[24]. The energy function of a second-order MRF is given as

EðLÞ ¼
X

s2P D Lsð Þ þ l
X

s;tð Þ2N V Ls; Ltð Þ; ð1Þ

where P denotes the set of pixels, Ls denotes the label of
pixel s □ P, and N is the set of neighboring pixel pairs. The
labels denote the segmentation class of a pixel (0 for back-
ground and 1 for object). The labels of the entire set of
pixels are denoted by L. D(Ls) is a unary data penalty
function derived from observed data and measures how well
label Ls fits pixel s. V is a pairwise interaction potential that
imposes smoothness and measures the cost of assigning
labels Ls and Lt to neighboring pixels s and t. 1 is a weight
that determines the relative contribution of the two terms.
Note that both D and V consist of two terms, each incorpo-
rating intensity and shape information.

From the atlas prior, we know the areas corresponding to
brain and non-brain tissues. Using this information and the
original training volumes, we determine the intensity distri-
butions of the brain and background. Since the brain area
consists of different tissues, a two-component Gaussian
mixture model (GMM) is used to model the intensity distri-
bution while a single Gaussian is used for the background.
Since all the volumes are normalized to have intensity
values between 0 and 1, this step eliminates the need for
manual selection of object and background seed points or

Fig. 2 Schematic diagram of
steps in our shape-based
segmentation method
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patches. The penalty value, defined as the negative of the
log-likelihood of its intensity, is

DI Lsð Þ ¼ � log Pr Is Lsjðð Þ; ð2Þ
where DI is the intensity penalty, Is is the intensity at pixel s,
Ls01/0 (object/background) is the label, and Pr is the like-
lihood of Is given the intensity distributions of Ls01/0. Pr is
obtained from the GMM modeling of intensities as de-
scribed above and is a popular choice of the penalty function
[24]. Note that for every pixel, there are two penalty values
corresponding to the two labels. The intensity smoothness
term VI assigns a low penalty at edge points based on the
intensity of neighboring pixel pairs and favors a piecewise
constant segmentation result. It is defined as

VI Ls; Ltð Þ ¼ e�
Is� Itð Þ2
2σ2 � 1

sk �tk ; Ls 6¼ Lt
0; Ls ¼ Lt

( )
; ð3Þ

Here, σ determines the intensity difference up to which
a region is considered as piecewise smooth. It is equal to
the average intensity difference in a neighborhood of pixel
s. ∥s− t∥ is the Euclidean distance between s and t. Once
the penalty values and interactions between different pixels
have been defined, their individual segmentation labels are
determined using graph cuts.

Shape Information

The prior shape (SP) incorporates shape knowledge into
the penalty function. Pixels inside the brain (higher-
intensity regions) have higher probability values. The
penalty for object label is low (equal to zero), and the

penalty for background label is high. Pixels in the
lower-intensity regions (not equal to zero) have lower
probability of being in brain region, and their corresponding
penalty for object label is greater than zero. The penalty
for pixels within the brain region of the shape prior is
defined as

Ds Ls ¼ 0ð Þ ¼ k1
Ds Ls ¼ 1ð Þ ¼ 1� SPðsÞð Þ � w1

ð4Þ

where k105 is a relatively high penalty value to not
favor that particular label. SP(s) is the probability value
of pixel s in the shape prior SP; w1 is a weight that
determines the penalty of the pixels. Pixels within the
innermost region of the shape prior will have SP(s)01
and therefore DS(Ls01)00 which is our objective. The
penalty values for other pixels are determined by the
weight w1. Pixels having zero probability value in SP
are always in the background for which the penalty
values are defined as

Ds Ls ¼ 0ð Þ ¼ 0
Ds Ls ¼ 1ð Þ ¼ k1

ð5Þ

Gradient Information

Another important aspect of our work is the formulation of
the smoothness penalty based on gradient information. We
observe that the boundary between the brain and skull is not
always accurately segmented using only intensity informa-
tion in the smoothness term. The gradient magnitude at the
brain–skull boundary can help us distinguish the brain from

Fig. 3 Different slices from the prior volume. A higher value indicates the region is common to a greater number of training volumes. The slices
are from one of the prior volumes constructed using a leave-one-out approach
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the skull. If the difference in gradient magnitude between two
neighboring pixels is greater than a threshold, then they belong
to different labels. Since we want the graph cut to separate
pixels from different regions, we assign low weight to their
connecting edges. On the other hand, a value lower than the
threshold indicates the same labels for the pixel pair, and their
connecting edge is given high weight. Thus, we define the
smoothness cost based on gradient information as follows:

VG Ls; Ltð Þ ¼ 0:2; gsj � gtj � gth
5; gsj � gtj < gth

� �
; ð6Þ

Here, gs and gt are the gradient magnitudes of pixel s and t,
respectively, gth is the gradient difference threshold which
determines whether two neighboring pixels are likely to take
the same labels based on gradient information. To determine
gth, we adopt the following steps. From the labeled training
masks, we extract pixel pairs lying on the brain boundary and
also their immediate neighbors which lie on the skull. The
difference in gradient magnitudes for these pixel pairs is
calculated. This step is repeated for all training volumes where
the gradient images have been normalized so that the maxi-
mum gradient magnitude is 1. The mean of the gradient
differences of neighboring pixel pairs was found to be 0.15,
and the maximum value was 0.25, and thus, gth00.15. To
reflect the total energy function, Eq. 1 can be rewritten as

EðLÞ ¼
X

s2P w2D1 Lsð Þ þ Ds Lsð Þ½ �

þl
X

s;tð Þ2N VI Ls; Ltð Þ þ Vs Ls; Ltð Þ½ �;

ð7Þ

where w200.6 decides the relative contribution of intensity
information to the penalty. 1 00.1 is the relative weighting
between the energy terms. The above energy is optimized
using graph cuts, and the output is the final segmentation
labeling for each pixel.

Optimization Using Graph Cuts

A schematic of the graph structure is shown in Fig. 4, where
an 8-neighborhood system is considered. Pixels are repre-
sented as nodes in a graph which consists of a set of directed
edges that connect two nodes. The optimum labeling is
obtained by a series of α-expansion moves that sever the edge
links in such a manner that the sum of weights of severed
edges is minimum. Details of graph construction and optimi-
zation can be found in [24]. The value of 1 (ref. Eq. 1) is such
that there is over segmentation of the brain area. This step is
necessary because of the following reasons:

1. The intensity distributions estimated initially are not
always accurate enough to model the entire brain vol-
ume. The segmented volume obtained from the above
step is used to update the intensity distributions of the
object and background.

2. Combining the updated intensity distributions with
shape information, the final results are more accurate
than using both shape and intensity information in the
first stage.

Evaluation

The segmentations from the automated algorithms are com-
pared with manual segmentations. Manual masks were traced
by a single trained expert on all slices of the brain volumes.
The expert had more than 7 years of experience in manually
segmenting brain images. This manual segmentation served as
the gold standard against which the performance of automated
algorithms was compared. Quantitative measures for segmen-
tation accuracy were determined according to the following
metrics:

Dice metric (DM):

DM ¼ 2 Mauto \Mmanualj j
Mautoj j þ Mmanualj j ¼

2TP

2TPþ FPþ FN
; ð8Þ

Jaccard index (JI):

JI ¼ Mauto \Mmanualj j
Mauto [Mmanualj j ¼

TP

TPþ FPþ FN
; ð9Þ

Sensitivity (Sen):

Sen ¼ Mauto \Mmanualj j
Mmanual

¼ TP

TPþ FN
; ð10Þ

Specificity (Spe):

Spe ¼ TN

TNþ FP
; ð11Þ

Fig. 4 Schematic of the graph structure with an 8-neighborhood
system
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False positive rate (Fpr):

Fpr ¼ TN

TNþ FP
; ð12Þ

where Mauto is the mask obtained from one of the automated
segmentation methods, Mmanual is the mask obtained by
manual segmentation, TP is the true positive, TN is the true
negative, FP is the false positive, and FN is the false nega-
tive. Specificity measures the fraction of pixels correctly
labeled as background, while Fpr gives an indication of
how many pixels identified as brain by the automatic method
were outside the manual mask.

Hausdorff distance DM gives a measure of how much the
actual manual segmentation was recovered by the automatic
segmentation. But the boundaries of the segmented regions
may be far apart. The Hausdorff distance (HD) aims to measure
the distance between the contours corresponding to different
segmentations.We follow the definition of HD as given in [37].
If two curves are represented as sets of points A0{a1, a2,…}
and B0{b1, b2,…}, where each ai and bi is an ordered pair of
the x and y coordinates of a point on the curve, the distance to
the closest point (DCP) for ai to the curve B is defined

d ai;Bð Þ ¼ mini bj � ai
�� �� ð13Þ

The HD is defined as the maximum of the DCPs between
the two curves [38].

HD A;Bð Þ ¼ max maxid ai;Bð Þ;maxjd bj;A
� �� �

i
: ð14Þ

Experiments and Results

We used 20 neonatal brain MR volumes for our experi-
ments. The average age of the neonates was 22±3 days
(maximum, 30 days). The data were acquired from a 3T
Siemens scanner. T2 images of 60 axial slices were obtained
with imaging parameters: T07,380 ms, TE0119 ms, flip
angle0150°, acquisition matrix0256×256, and resolution0
0.95×0.95×1 mm3. The volumes were made available after
the above steps. The parameter values are k105, w102, 10
0.1, and w200.6. For other datasets, different values may give
optimal results. The rationale behind the choice of parameters
is presented in “Influence of Parameters k1, w1, w2.” The
image acquisition process was in accordance with the institu-
tional guidelines and had prior approval of the appropriate
ethics committee.

Segmentation Accuracy for Simulated SNR Values

Different levels of noise were added to the dataset using the
imnoise function in MATLAB to simulate different signal-

to-noise ratio (SNR) values. The original SNR value of
images was in the range 35–46. Table 1 summarizes the
segmentation performance at different SNR values. With
the increase in added noise, DM decreases although
slightly. To test the similarity between the new segmen-
tation measures and those obtained from the original
images, we performed Student’s t test between the aver-
age DM values. With p>0.14, the values are statistically
similar. However, the Fpr increases by 0.8, and p00.04.
Since DM is a more reliable indicator of segmentation
performance, we can assume that our method is quite
robust to added noise.

Comparison with Other Methods

We compared the performance of our method (graph cut
using shape priors, GCSP) with four other brain extraction
techniques, BET [3], BSE [1], the HWA [6] available as
part of [10], and GC, the graph cut-based skull stripping
method of [14]. BET is used from the MIPAV software
package with the following parameters: 1,500 iterations,
depth011, image influence00.3, and stiffness00.3. BSE
was applied to the entire brain volume using BrainSuite09
(Laboratory of Neuroimaging, UCLA, CA, USA) with the
following parameters: diffusion iterations03, diffusion
constant025, edge constant00.064, and erosion size01
pixel. For GC, the default parameters were used, i.e.,
threshold036 and importance of intensity02.3. Default
values in [6] were used for HWA, i.e., preweight the input
image using atlas information00.82, use the basins merging
atlas information00.32, presize the preflooding height0
10%, use the preweighting for the template deformation0
true, use template deformation using atlas information0true,
use seed points using atlas information0 true. Segmentation
accuracy was determined by calculating the mean and stan-
dard deviations of the measures described in “Optimization
Using Graph Cuts.” To test for significant difference be-
tween the results of the automatic methods, we used a
paired Student’s t test with p values below 0.05 considered
significant.

The first row in Table 2 shows comparison of the
manual segmentation with the prior shape. The aim
behind this comparison was to show that the prior shape
is very different from the automated segmentations (as

Table 1 Average DM and FPR values for test volumes at different
SNR values

SNR values Dice metric FPR

Original SNR035–46 98.9 3.8

SNR010 98.1 4.0

SNR05 98.0 4.5

808 J Digit Imaging (2012) 25:802–814



observed from low DM and high HD values). Thus, in
no way does the prior bias the segmentations. It only
serves to give an idea of which pixels are likely to be
inside or outside the brain. Since the prior mask is
constructed from 19 volumes, there are many regions
within the mask which may correspond to non-brain
areas in the new volume. GCSPNG denotes our method
having no gradient-based smoothness term VG. GCSP
gives the best results due to the use of shape knowledge.
The shape prior gives valuable information based on which
the cost function was designed to achieve accurate segmen-
tation. Availability of labeled training data allows inclusion
of gradient information leading to an improvement in seg-
mentation accuracy. This increase in segmentation accura-
cy can be said to be significant, as the p value between
GCSP and GCSPNG is 0.04.

Table 3 shows the p values between the DM and HD
values of different methods. The first four rows show
the p values between the shape prior and different
automatic methods. With p values less than 0.01, the
obtained DM values are quite different from the prior shape.
The same is also true for HD values. The p values also indicate
that the segmentations of different methods are quite different,
except for BSE and BETwhich have very similar DM and HD
values.

Figures 5 and 6 show segmentation results for neona-
tal MRI. Figure 5 shows the results for GCSP, GCSPNG,

and GC. GC shows the least accurate segmentation as it
relies only on intensity information. As a result, areas
outside of the brain having similar intensity or weak
boundaries are also segmented leading to lower DM
values. In the absence of gradient information, GCSPNG
exhibits oversegmentation at the boundary between the
brain and skull. These areas are highlighted by yellow
arrows in Fig. 5. GCSP shows improved segmentation
accuracy due to the inclusion of gradient information.
Figure 6 shows the segmentation results using BET,
BSE, and HWA. These methods have been designed for
adult brain images and do not address specific challenges
of the neonatal brain MRI like weak gradients, ill-
defined structures, and low contrast-to-noise ratio. Thus,
their segmentation accuracy is lower than GCSP. This
highlights the importance of developing methods specif-
ically for neonatal brain images and also justifies the
importance of including shape and edge information in
the graph cut framework.

Influence of Parameters k1, w1, w2

Figure 7a shows the DM values for different values of k1.
When k1 is closer to zero, the DM values are lower. For k10
1 the penalty is almost equal to the penalty for the other
label (which has been set to zero). This indicates a soft
constraint on the pixel labels. Graph cut being a global
optimization technique assigns labels based on penalty and
smoothness costs. If the penalty corresponding to the two
labels has similar values, then the smoothness cost has a
greater role to play in final label assignment. Thus, it is
possible that some pixels may be assigned wrong labels. We
observe that for k1≤2, the DM values are low compared to
actual results. But for k1≥3, the DM values increase and
give the best results for k1>5 when no change in DM values
is observed. w1 determines the penalty for pixels within the
brain mask, except for the innermost pixels. The value of w1

should ensure that the penalty values are not very close to
k1, and at the same time, they are greater than zero. We find
a value of w102 to satisfy the above requirements and gives
the best results.

Table 2 Average quantitative
measures on neonatal images for
different automatic segmentation
methods. Values shown are
obtained using the “leave-one-
out” approach

DM (%) HD (mm) FPR (%) JI Spe (%) Sen (%)

Prior 90.3±0.9 6.4±3.5 21.3±3.5 82.3±0.7 91.7±1.3 98.5±0.9

GCSPNG 97.8±1.1 1.3±0.3 4.5±2.3 95.7±0.9 97.1±1.1 96.1±1.4

GCSP 98.9±0.4 0.9±0.2 3.8±1.9 97.8±0.5 98.8±0.7 98.1±1.1

GC 93.4±1.5 3.4±1.3 11.5±4.6 87.6±1.1 93.1±1.2 92.9±1.0

BET 96.1±1.8 1.9±0.5 7.3±2.5 92.5±1.9 96.0±1.2 97.2±1.4

BSE 95.1±1.7 2.2±0.4 8.6±3.2 90.7±1.6 92.7±1.4 94.2±1.3

HWA 97.2±1.5 1.5±0.5 5.1±2.2 94.0±0.8 96.6±1.1 97.1±1.2

Table 3 p values for
Dice metric and Haus-
dorff distance measures

p (GC-GCSPNG) is the
significance value be-
tween results of GC and
GCSPNG and so on for
other methods

DM HD

p (Pr-GCSPNG) <0.001 <0.001

p (Pr-GCSP) <0.001 <0.001

p (Pr-BET) <0.01 <0.01

p (Pr-BSE) <0.01 <0.01

p (GCSP-GC) 0.01 0.02

p (GCSP-BET) 0.02 <0.01

p (GCSP-HWA) 0.03 <0.01

p (GCSP-BSE) 0.01 <0.01

p (BSE-BET) 0.2 0.34
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w2 decides the relative contribution of DI to the total
penalty. If w2>0.9, then its values are high compared to
the shape penalty, and the final labels are influenced solely
by the intensity penalty. On the other hand, if w2<0.3, shape
penalty dominates and intensity penalty has no influence
on the final labels. w200.6 is empirically chosen (using
three datasets) to give the best results. As observed from
Fig. 7c, the DM values start from a low value for w2<0.3
(when DS dominates), increases, and remains steady for
0.3≤w2≤0.6, and then decreases for w2>0.6 (when DI dom-
inates). Note that the value of w2 will depend upon the
definitions of the terms DI and DS. If they are defined
differently, then optimal results may be obtained with
different values of w2. The values of k1, w1, and w2

were individually varied (keeping the other two parameters
fixed at their optimal values) and the corresponding seg-
mentation results obtained for different slices. Figure 7d–f
shows segmentation results for the slice shown in the first
column of Figs. 5 and 6. Two sets of results are shown for
each parameter where the values are greater and lesser than
the optimal values.

Figure 8 shows the average DM values for test datasets
when different numbers of training volumes are used to

construct the atlas prior. When the number of volumes is
less than eight, the DM values are less than 90 as the number
of training volumes is not sufficient to capture the change in
shape over all datasets. As we include more volumes to
construct the shape prior, there is an increase in the DM.
When the number of training volumes exceeds 13, the DM
values do not show a large increase, indicating that a
majority of the shape variations over the dataset have been
incorporated with the training volumes. This observation is
not limited to a specific combination of training volumes but is
true for all cases.

Results for Adult Brain Images

Figure 9 shows brain extraction results for three slices of adult
brain images. The dataset consists of 77 T1-weighted scans of
the cross-sectional MRI dataset of the OASIS project (http://
www.oasis-brains.org/). The population consists of 55 females
and 22 males, aged 51.64±24.67 years. Twenty subjects were
evaluated as “demented and probable Alzheimer’s disease.”
The scans were acquired on a 1.5T Siemens scanner with a
MP-RAGE sequence, TR/TE/TI/TD09.7/4.0/20/200 ms, flip
angle010°. Sagittal slices were acquired 1.5 mm apart with

Fig. 5 Comparative segmentation results. The first row shows results for $GCSP$, the second row shows results for $GCSP_{NG}$, and the third
row shows results for $GC$. Yellow arrows indicate areas of inaccurate segmentation
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in-plane resolution of 1 mm. The brain masks for this set
were not manually delineated; instead, the brain was seg-
mented with an in-house method based on registration to an
atlas. However, the output from the method was reviewed
by human experts before releasing the data, so the quality
of the masks is good enough at least to test the robustness
of a method. Despite this lack of exactitude, this dataset is
very valuable because it includes scans from a very diverse
population with a very wide age range as well as diseased
brains.

Results are shown for all the six previously mentioned
brain extraction algorithms. To construct the shape prior for
GCSP, we use the manual segmentations of ten volumes,
and these ten volumes were excluded from all experiments.
Except for GCSP, all other algorithms have been designed
specifically for adult brain images. As a result, all of them
show very high segmentation accuracy in terms of high DM
values (Table 4). In fact, there is not much to choose from
their respective performances. In the case of GCSP, the
segmentation accuracy is slightly lower than the other meth-
ods, but is still quite high. From Fig. 9, we see that in the
first row, GCSP results in oversegmentation at certain places.
However, the result for other slices is as good as the other

methods. Another interesting observation is that there is not
much difference in the results of GCSP and GCSPNG (p>0.1).
This indicates that the use of gradient information in smooth-
ness terms is not as critical for the adult brain as it is for
neonatal brain data.

Discussion

With the help of GCSP, we were unable to separate
parts of the skull in two datasets. Since the skull and
brain are connected by very weak gradients, it is difficult to
separate them in some slices. Although we include gradient
information in the smoothness constraint, there is no signifi-
cant change in segmentation accuracy for these volumes. This
is due to weak edges between brain and skull which the
training data are unable to account for. Thus, a more robust
approach is necessary to incorporate edge information.
Another limitation of our method is its reliance on train-
ing data. While our method still performs well with a
reduced number of training volumes (Fig. 8), a sufficient
number of labeled segmentation results may not always
be available for constructing the prior shape model. Our

Fig. 6 Comparative segmentation results. The first row shows results for BET, the second row shows results for BSE, and the third row shows
results for HWA. Yellow arrows indicate areas of inaccurate segmentation
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datasets were acquired from the same scanner. Consequently,
it was easier to build the prior shape model. We would like to
improve our method to fuse data from different scanners and
build a robust shape model.

For neonatal datasets, brain extraction methods designed
for adult brain MRI show inferior performance than our
method due to the absence of shape information (ref.
Table 2). Neonatal brain MRI does not provide very
significant edge information, which hampers the perfor-
mance of BSE and BET. Although GC is a graph cut-
based approach, it does not include shape knowledge in its

formulation. One important stage of GC is the estimation of an
initial mask by foreground seed identification and re-
gion growing. While foreground seed identification is
usually accurate, region growing may lead to an over-
segmented mask. Thus, the effectiveness of the narrow
connection removal step (which separates brain from
skull along the weak gradient) is reduced leading to
an inaccurate mask and hence lower DM values. Amongst
HWA, BET, BSE, and GC, HWA is the most robust and
accurate as it combines watershed segmentation with atlas
information. Information derived from the atlas is used to
refine the segmentation and thus achieve good segmentation
accuracy.

The quantitative results in Table 4 show that for adult
brain images, the segmentation results obtained using
GCSP are nearly as good as the other methods (BSE,
HWA, GC, and BET). This is despite the fact that our
method is not designed specifically for adult MRI. All
the other methods have been designed to specifically
extract adult brain images by making use of well-defined
boundaries and relationship between intensity distribu-
tions of different tissue types (which cannot be reliably
obtained for neonatal volumes). In the future, we aim to
adapt our algorithm for adult brain extraction by making
use of the information about different tissue intensity
distributions.

Fig. 7 Plots showing variation of DM values with different parame-
ters: a k1, b w1, and c w2. Segmentation results for different values of: d
k1, the green contour shows results for k101 and the cyan contour for
k104; e w1, the green contour shows results for w101:5 and the cyan

contour for w102:5; f w2, the green contour shows results for w200:1
and the cyan contour for w200:8. The slice is the same as shown in the
first column of Figs. 5 and 6. The red contour shows the manual
segmentations
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Fig. 8 DM values for varying volumes used to construct the atlas prior
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Conclusion

In this paper, we have proposed a novel shape prior seg-
mentation method using graph cuts for skull stripping in
neonatal brain MR images. The shape prior is constructed
from a set of labeled training images using a leave-one-out
approach. The shape prior is a probability map which gives
the probability of a pixel belonging to the brain. Neonatal
brain MR images pose difficulty in separating the boundary

between the brain and skull, which motivated us to use
gradient information in the smoothness cost for accurate
identification of brain boundary. Compared to popular
techniques like BET, BSE, and HWA, our method shows
higher segmentation accuracy (based on popular metrics)
due to the inclusion of prior shape information. In spite
of being designed for neonatal brain images, our method
also shows good segmentation accuracy for adult brain
images as well.

Fig. 9 Comparative segmentation results for adult brains. The first
column shows results for GCSP; the second column shows results for
GCSPNG; the third column shows results for GC; the fourth column

shows results for BET; the fifth column shows results for BSE; and the
sixth column shows results for HWA

Table 4 Average quantitative
measures on adult brain images
for different automatic
segmentation methods

Values shown are obtained using
the “leave-one-out” approach

DM (%) HD (mm) FPR (%) JI Spe (%) Sen (%)

Prior 89.1±1.0 9.2±2.9 25.6±4.1 80.3±0.9 90.2±1.9 97.2±1.2

GCSPNG 93.2±1.0 2.6±0.6 6.2±2.1 90.3±1.1 96.1±1.3 96.2±1.5

GCSP 94.1±0.7 2.2±1.0 5.7±1.6 88.9±0.9 96.5±0.9 97.3±0.6

GC 92.1±1.1 3.7±1.5 12.1±4.2 85.4±1.5 92.8±1.3 94.1±1.0

BET 95.8±1.6 1.5±2.6 3.9±1.9 91.9±2.3 96.9±1.5 97.9±1.1

BSE 94.8±1.3 1.6±0.8 4.2±2.1 90.1±1.8 94.1±1.9 96.1±1.2

HWA 96.1±1.1 1.3±0.3 3.2±1.5 92.5±1.2 97.1±1.1 97.8±0.9
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