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Abstract In this article, we describe the various sorts of American Parisian
options and propose valuation formulae. Although there is no closed-form
valuation for these products in the non-perpetual case, we have been able to
reformulate their price as a function of the exercise frontier. In the perpet-
ual case, closed-form solutions or approximations are obtained by relying on
excursion theory. We derive the Laplace transform of the first instant Brownian
motion reaches a positive level or, without interruption, spends a given amount
of time below zero. We perform a detailed comparison of perpetual standard,
barrier and Parisian options.
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1 Introduction

In most articles concerning Parisian options, it is assumed that these options
are of European type. Indeed, in [5] European Parisian options are defined
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and priced (see also [6]). Bernard et al. [3] developed a new inverse Laplace
transform method that is quick and appropriate to the pricing problem. Ave-
llaneda and Wu [1] obtained a lattice scheme for calculating the price and
sensitivities of such options. Costabile [7] provided a discrete time algorithm to
evaluate European Parisian options (with flat or exponential barriers). Fujita
and Miura [10] gave a new framework of barrier options to generalize Parisian
options and “delayed barrier options”.

However, in some papers, American Parisian options are also considered.
Haber et al. [17] presented an approach to valuing European and American
Parisian options using the numerical solution of a partial differential equation.
Wilmott [21] also developed a PDE approach for these options. Grau [15] com-
bined Monte Carlo simulations and PDE solvers (see also [16]) in order to price
European and American Parisian options.

The objective of this paper is to develop a probabilistic approach for the
pricing of American Parisian options. Even if the problem is complex, option
prices can be obtained as a function of the exercise boundary. When maturity
is infinite, the problem can, in most cases, be solved. Indeed, if the exercise
boundary can be derived (as a constant) then the price can be obtained. In
this paper, the analogies between the valuations of American (barrier) options
and of American Parisian barrier options are explored. It is well known that
American puts in the perpetual case (the so-called “Russian” options) can be
priced with a closed-form formula. We show that this is also true for perpetual
American Parisian puts. Possible approximations for long maturity American
Parisian options can therefore be obtained.

We believe there are two important situations where closed-form expressions
for American Parisian options can be used. First, there is real option analysis.
One of the original ideas for this paper came from real option analysis in a
duopoly where the optimal investment decision of one of the firms is repre-
sented with a Parisian option. This is along the lines of Gauthier [14] where the
Parisian feature allows for the representation of a lag between an investment
decision and its implementation. The other firm is for example more nimble
and has no significant delay, and its investment decision can be represented as a
simple barrier option (although with a higher entry cost). However, the smaller
firm would be aware of the larger firm’s strategy, and would therefore be in a
position to preempt that larger firm’s investment. As a result, the investment
decision for the smaller firm can be represented as an American Parisian option.
Obtaining a closed-form expression for the option’s value allows for easier com-
parative statics. The second context in which a closed-form expression—albeit
with simple assumptions concerning the dynamics of the underlying—is useful
is the valuation of related options using Monte Carlo analysis. Indeed, one pop-
ular approach in the industry is the use of control variates, which requires the
knowledge of a closed-form expression for some options in a limited context,
and enforces the equality of the formula-based valuation and the result of the
simulation. See for example [2] on the use of control variates to value look-
back options in a stochastic volatility model, applying the known closed-form
expression for the lookback option with a constant volatility.
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In this paper we focus purely on currency options, because we know that
even the simplest options have non-trivial exercise frontiers in the American
call case, and we shall be able to analyze correctly the behavior of the exercise
frontier in all cases.

This article is organized as follows. After the introduction in Sect. 1, Ameri-
can Parisian options are described and classified in Sect. 2. Put-call parity results
are also presented. In Sect. 3 the price of an American Parisian option is decom-
posed into two components, namely the price of the corresponding European
Parisian option and the American premium. By relying on Chesney et al. [5],
the first component is known. The second depends on the exercise boundary.
For perpetual options, in most cases, the exercise boundary can be derived and
prices of almost all types of American Parisian options can be obtained [as inte-
grals of European Parisian (binary) option values for “out” options]. However,
as shown in this section, in the case of perpetual American Parisian up-and-out
call options the exercise boundary is not a constant. Therefore in this case,
a closed-form solution cannot be obtained. In Sect. 4, by relying on [13] and
[14], the problem is tackled from a different angle. The abovementioned anal-
ogies are used in the perpetual case, and closed-form expressions are derived.
Concerning American Parisian down-and-out put (or similarly up-and-out call)
options, simplifying assumptions are made. The approach used in this section
is not directly connected with the decomposition results obtained in Sect. 3.
A new result concerning the first instant when Brownian motion either hits
a positive level or spends a certain time below zero is used in Sect. 4, and is
shown in the appendix. Finally in Sect. 5, a brief conclusion is given and Sect. 6
contains the Appendix.

2 American Parisian barrier options

With traditional barrier options, everything is suddenly decided when the under-
lying price reaches the barrier: the option is either cancelled or activated. With
a Parisian option, the underlying price has to spend a certain amount of time
(called the “window” of the Parisian option) consecutively above or below
the barrier. This makes it more difficult for a market player to manipulate the
underlying price and force the cancellation or activation of the option.

There are quite a few combinations of features that define simple barrier
options. We find the same variety in all the European Parisian barrier options,
and a fortiori in all American Parisian barrier options. Essentially, there are
eight types of barrier options corresponding to the combinations of up/down,
in/out and call/put. By adding American/European and Parisian/standard (i.e.
barrier) as additional combinations, we end up with a total of 32 products. For
example, in the remainder of this paper, we denote by Cui

AP the price of an
American Parisian up-and-in call. The price of a European Parisian down-and-
out call will be Cdo

EP. While it is true that Parisian options are more complex than
barrier options (there are closed-form solutions for barrier options, not for Pari-
sian options), the value of a European Parisian option at time t (before going
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through the barrier) still only depends on t and on the underlying’s value at that
time—like a simple barrier option. The difference is that when the underlying
is at the barrier, a simple barrier option’s value is either zero or the value of a
plain vanilla option, whereas in the case of a Parisian option, it is more complex.

2.1 Using symmetry

The first symmetry that comes to mind when analyzing options is the American
put-call symmetry that applies to the case of foreign exchange options. The
option to buy dollars versus Euros is an option to sell Euros versus dollars.
Note that this symmetry applies to American as well as European options (see
[18,8]) and also therefore to American Parisian and American barrier options
(see also [5]). Formally, for European or American options, this is expressed as

P (St, K, r, δ) = StKC (1/St, 1/K, δ, r) ,

where St is the exchange rate at a given time t, K is the strike price in the
corresponding unit and r (resp. δ) the domestic (resp. foreign) risk-free interest
rate. C and P stand respectively for call and put (European or American). For
American Parisian options, the put-call parity is expressed as

Pdj
AP (St, K, L1, D, r, δ, T)

= StKCuj
AP (1/St, 1/K, 1/L1, D, δ, r, T) , where j stands for o or i,

Puj
AP (St, K, L1, D, r, δ, T)

= StKCdj
AP (1/St, 1/K, 1/L1, D, δ, r, T) , where j stands for o or i,

where L1 and D are respectively the barrier and the window of the Parisian
option (see the definitions in the next section). The case of the American (non-
Parisian) barrier option corresponds to D = 0.

Standard European barrier options benefit from symmetry; for example, the
sum of an up-and-in option and an up-and-out option with the same strike, bar-
rier and maturity equals the plain vanilla option. However, this symmetry does
not apply in the case of American options; the exercise frontier would have to
be the same for the plain vanilla, the up-and-in and the up-and-out options. In
the next subsection, we discuss in more detail why this is not the case.

2.2 The American effect

Thanks to the put-call symmetry, we can choose to consider either calls or puts
in our analysis. We mostly concentrate on American options. Indeed, European
option prices (plain vanilla, barrier and Parisian) are known. Furthermore, as
already mentioned, barrier options correspond to a specific case of more general
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Parisian options, i.e. when the window is equal to zero. Therefore, in Sect. 3 we
only consider American Parisian calls. Instead of 32 possible options, we focus
on four cases corresponding to Cdo

AP, Cuo
AP, Cdi

AP and Cui
AP.

Let us first focus on the in/out features of barrier options (Parisian or stan-
dard). We know that in the case when there is no barrier, the American foreign
exchange call has a non-trivial exercise frontier that is higher than the strike
price and declines to the strike right before the option’s maturity. If there is an
“in” barrier, the option holder cannot do or decide anything before the option
is activated; and once the option is activated, it does not have a barrier any more
and is just a plain vanilla American call. The exercise frontier for an American
“in” barrier option (whether Parisian or standard, up or down) is therefore
the exercise frontier of the corresponding plain vanilla option, starting at the
activation time. Hence, as shown in Sect. 3, the valuation of the option is easier
in this case.

In the case of an “out” option, the situation is more complex than for an “in”
option because of possible interactions between the incentives to exercise and
the risk of losing the option. First, let us show that there is no in/out symme-
try in the case of an American exercise. Let us consider a standard American
up-and-out call where the barrier is higher than the strike price, but lower than
the exercise frontier of the corresponding plain vanilla option. The exercise
frontier for the up-and-out call is necessarily strictly below the barrier since at
the barrier the option becomes worthless. Therefore, the exercise frontier of the
up-and-out call is different from that of the plain vanilla option. Consequently,
the value of the plain vanilla American option is different (strictly higher) from
the sum of the “in” and “out” options.

For a call, the up-and-out case is more complex than the down-and-out. For
a put, it is the contrary. When the barrier is higher than the strike (for the up-
and-out call), the risk of being knocked out interacts strongly with the exercise
policy; it may become necessary to exercise the call, even sub-optimally, in order
to avoid being knocked out. In the case of a down-and-out call, approaching
the barrier does not trigger an early exercise of the call.

3 Decomposition techniques for American Parisian options

We assume that, under the risk-neutral probability Q , the exchange rate on
which our options are written solves the SDE

dSt

St
= (r − δ) dt + σ dWt, (3.1)

where St, r, δ, σ (Wt, t ≥ 0) are respectively the exchange rate at time t, the
domestic and foreign risk-free rates, the volatility, and a Q-Brownian motion.
We assume that δ > 0. We have St = xeσ(βt+Wt) , or St = xeσZt where S0 = x
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and Z is a drifted Brownian motion, i.e. (Zt = βt + Wt, t ≥ 0), with β = r−δ− σ2
2

σ
.

Let us now define the following functionals in terms of S or in terms of Z:

TL (S) = inf {t ≥ 0 : St = L} = Tl (Z) = inf {t ≥ 0 : Zt = l} ,

gL
t (S) = sup {u ∈ [0, t] : Su = L} = gl

t (Z) = sup {u ∈ [0, t] : Zu = l} ,

H+
L,D (S) = inf

{
t ≥ 0 :

(
t − gL

t (S)
)

≥ D, St ≥ L
}

= H+
l,D (Z) = inf

{
t ≥ 0 :

(
t − gl

t(Z)
)

≥ D, Zt ≥ l
}

,

H−
L,D (S) = inf

{
t ≥ 0 :

(
t − gL

t (S)
)

≥ D, St ≤ L
}

= H−
l,D (Z) = inf

{
t ≥ 0 :

(
t − gl

t(Z)
)

≥ D, Zt ≤ l
}

,

with l = ln(L/x)

σ
.

They are, respectively, the first instant a process hits a given level, the last instant
when the process was at a given level, and the two Parisian times: the first instant
when the process spends consecutively more than D units of time over or under
a given level. Notice that gh

t (S) is not a stopping time. When this random time
“happens” , there is no way to know immediately that is has just happened. We
write H+/−

L,D for H+/−
L,D (S).

3.1 The down-and-out Parisian call

Definition 1 An American down-and-out Parisian call option entitles its owner
to buy the underlying before the minimum of the maturity (which can be infinite)
and the first instant when the underlying price spends, without interruption, more
than D units of time under a given level L1 (the so-called Parisian time). If the
investor decides to exercise at the stopping time τ , the present value of the payoff
of the option is e−rτ (Sτ − K)+ Iτ<H−

L1,D
Iτ≤T, where T is the maturity and K the

strike price. We can consider that in most cases, we would have L1 ≤ K.

Proposition 1 The price of an American Parisian down-and-out call can be
decomposed as

Cdo
AP (x, T) = Cdo

EP (x, T)

+ δx

T∫

0

exp

(
−

(
r + β2

2

)
u
)

E

[
IZu�b̄u

Iu<H−
l1,D(Z) exp ((β + σ) Zu)

]
du

− rK

T∫

0

exp

(
−

(
r + β2

2

)
u
)

E

[
IZu�b̄u

Iu<H−
l1,D(Z) exp (βZu)

]
du,
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where β =
(

r − δ − σ 2

2

)

σ
, b̄u = ln S̄u

x

σ
, l1 = ln L1

x

σ
≤ 0 and where {S̄u, u ∈

[0, T]} is the exercise boundary. The two expectations are defined by relying on
the probability P under which (Zt = Wt +βt, t � 0), is a Brownian motion. This
decomposition can also be written as

Cdo
AP (x, T) = Cdo

EP (x, T) + δ

T∫

0

(
Cdo

EP(x, S̄u, u) +
(

S̄u − r
δ

K
)

BINCdo
EP

(
x, S̄u, u

))
du,

where Cdo
EP

(
x, S̄u, u

)
is the price of the European Parisian down-and-out call

option with maturity u, strike price S̄u, barrier L1 and window D. BINCdo
EP

(
x, S̄u, u

)
is the price of a Parisian binary call which generates at maturity a payoff of one
monetary unit if the underlying value is higher than the strike price and if the
first instant—when the underlying price spends, without interruption, more than
D units of time under the level L1—is higher than the maturity u. Otherwise, the
payoff is equal to zero.

Proof We first define the function

ft (x, v) = exp (−r (v − t)) Cdo
AP (x, T − v) .

We plan to write the price of the option as a function of the underlying’s price,
and to apply stochastic calculus techniques. By applying Itô’s formula, we obtain

ft (ST , T) = exp (−r (T − t)) Cdo
AP (ST , 0)

= Cdo
AP (St, T−t)+

T∫

t

L
(
exp

(−r (u − t)
)
Cdo

AP (Su, T − u)
)

du

+
T∫

t

exp (−r (u − t))
∂Cdo

AP

∂x
(Su, T − u) σSudWu, (3.2)

where the differential operator L, the infinitesimal generator of the diffusion S,
is defined by

L = 1
2
σ 2S2 ∂2

∂x2 + (r − δ) S
∂

∂x
+ ∂

∂u
.

The second derivative is understood in a weak sense, as the operator is applied
to functions that are not twice differentiable, but are differences of convex
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functions. Taking expectations and recognizing the third term to be a martin-
gale, we obtain

E

[
exp (−r (T − t)) Cdo

AP (ST , 0)

∣∣∣Ft

]
(3.3)

=Cdo
AP (St, T − t)+E




T∫

t

L
(
exp

(− r (u− t)
)
Cdo

AP (Su, T−u)
)

du|Ft


 .

To clarify our notations, we have written in the above equation L (f (u)) instead
of Lf (u). We keep the same notation in the remainder of the paper. Let us now
assume that t = 0.

We know the value of the option at certain times or at certain levels,
and exploit that through the infinitesimal generator. When the option is
neither cancelled or exercised, that is in the so-called continuation region, we
have

L
(

exp
( − r (u − t)

)
Cdo

AP (Su, T − u)
)

= 0.

When the option is exercised, its value is S − K, S being the underlying value
at that time. In the case of the down-and-out option, we know that SH−

L1,D
≤ K,

whenever the Parisian time is triggered, so there is no interest in exercising

the option. So L
(

exp (−ru) Cdo
AP (Su, T − u)

)
is non-zero only on

{
Su ≥ S̄u

} ∩{
u < H−

L1,D

}
where

(
S̄u, u � 0

)
is the exercise boundary for the call, i.e.

S̄u = inf
{

y � 0 : y − K = Cdo
AP (y, T − u)

}
. (3.4)

So in these cases, we have Cdo
AP (Su, T − u) = Su − K. Using the definition of

the generator and (3.4), we see that the call price is given by

Cdo
AP (x, T) = E

[
exp (−rT) (ST − K)+ IH−

L1,D>T

]

−E




T∫

0

e−ru (rK − δSu) ISu�S̄u
Iu<H−

L1,D
du


 . (3.5)

The first term on the right-hand side is the price Cdo
EP of a European Parisian

down-and-out call option. The valuation of such options is presented in [5].
Equation (3.5) can be rewritten as
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Cdo
AP (x, T) = Cdo

EP (x, T)+δ

T∫

0

exp (−ru) E

[
SuI

βu+Wu� ln(S̄u/S0)

σ

Iu<H−
L1,D

]
du

−rK

T∫

0

exp (−ru) E

[
I
βu+Wu� ln(S̄u/S0)

σ

Iu<H−
L1,D

]
du. (3.6)

By introducing a new probability P under which (Zt = Wt + βt, t � 0), is a
Brownian motion and by relying on Girsanov’s theorem, the first decomposi-
tion of Proposition 1 is obtained. The decomposition technique used in order
to derive this result is similar to the approach followed by Gao et al. [11] in the
non-Parisian case. Furthermore, (3.5) yields

Cdo
AP (x, T) = Cdo

EP (x, T) + δ

T∫

0

E
[
e−ru

(
Su − r

δ
K

)
ISu�S̄u

IH−
L1,D>u

]
du. (3.7)

The expectation on the right-hand side can be written as

E
[
e−ru

(
Su − r

δ
K

)
ISu�S̄u

IH−
L1,D>u

]

= e−ruE
[(

Su − S̄u
)
ISu�S̄u

IH−
L1,D>u

]
+

(
S̄u − r

δ
K

)
e−ruP(Su � S̄u, H−

L1,D >u).

(3.8)

By definition, the first term on the right-hand side of (3.8) is, at time zero, the
price Cdo

EP

(
x, S̄u, u

)
of the European Parisian down-and-out call option with

maturity u, strike price S̄u, barrier L1 and window D. The second term is the
value of

(
S̄u − r

δ
K

)
(this term is positive because S̄u � sup( r

δ
K, K) ∀u) Parisian

binary calls defined in Proposition 1. The value of such an option, denoted
BINCdo

EP
(
x, S̄u, u

)
, is therefore equal to the opposite of the derivative of the

European Parisian option with respect to the strike (see [9]). Hence the second
decomposition of Proposition 1 is obtained, with

BINCdo
EP

(
x, S̄u, u

) = −dCdo
EP

(
x, S̄u, u

)

dS̄u
. (3.9)

It is possible to compute the Laplace transform of the binary call (see [5] in the
case of the Laplace transform of the Delta of the European Parisian option).

��

The perpetual case
In the perpetual case the following proposition is obtained.
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Proposition 2 The price of a perpetual American Parisian down-and-out call is
given by

Cdo
AP (x) = δ

+∞∫

0

(
Cdo

EP (x, LC, u) +
(

LC − r
δ

K
)

BINCdo
EP (x, LC, u)

)
du

=
(

1 − �
( − √

(2r + β2)D
)

�
(√

(2r + β2)D
) exp

(
2l1

√
2r + β2

))

× 1

σ
√

2r + β2

(
x

LC

)θ (
δLC

θ − 1
− r

θ
K

)
with θ = −β + √

2r + β2

σ
,

where the exercise boundary LC is obtained by relying on the equation

LC − K =
(

1−�
(−√

(2r + β2)D
)

�
(√

(2r + β2)D
)

(
L1

LC

)2
√

2r+β2/σ) 1

σ
√

2r + β2

(
δLC

θ−1
− r

θ
K

)

and where

�(z)=
+∞∫

0

x exp

(
zx − x2

2

)
dx = 1 + z

√
2π exp

(
z2

2

)
N(z).

Proof Let us first consider the exercise policy in the perpetual case. As shown
by Mordecki [19] for standard American options (in the case of diffusions
with jumps), one can consider only stopping times which are hitting times, i.e.
stopping times of the form

TL = inf{t � 0 : St � L}.

In other words the exercise boundary is flat. Let us denote it by LC. The argu-
ment in [19] can easily be extended to standard American down-and-out barrier
options and to American Parisian down-and-out call options. Hence, by taking
T → ∞ in Proposition 1, the first decomposition of Proposition 2 is obtained.
Cdo

AP (x) stands for Cdo
AP (x, +∞). Indeed, the price of the European Parisian

option disappears because

lim
T→∞ Cdo

EP (x, T) � lim
T→∞ CE (x, T) = 0, ∀δ > 0,

where CE (x, T) is the price of the standard European currency option, given
by Garman and Kohlhagen [12]. The exercise boundary LC is then obtained as

LC = inf
{
y � 0 : Cdo

AP (y) = y − K
}
.
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This means that in the exercise region, the value of the option is equal to its
intrinsic value. By assuming that x = LC in the first decomposition of Proposi-
tion 2, we obtain

LC−K=δ

+∞∫

0

(
Cdo

EP (LC, LC, u)+
(
LC− r

δ
K
)

BINCdo
EP

(
LC, LC, u

))
du. (3.10)

As shown in Appendix A, these results can be further simplified and the full
proposition is obtained. ��

The case of an already started excursion
In this case, we assume that, at time zero, the excursion has already started

(see [5]). The impact of such a situation on the value of the option is in fact very
simple; either the underlying price hits the barrier back again quickly enough
in the remaining time, or it does not. If it does not, the option is cancelled at the
Parisisan time. So the option’s value will be the value starting from the barrier
level weighted by the probability that the underlying price hits it before it is too
late.

More specifically, let us assume that the excursion started u units of time
ago, where u < D. In this context, the Parisian option price has now three
arguments: the initial value x of the underlying, time T to maturity and u. Then,
if the price does not go back up to L1 before D − u units of time, the option will
be cancelled. At time zero, the underlying price x has to be under L1 since the
excursion has started. So we can consider TL1 , the hitting time of the barrier. If
the price hits the barrier before D − u units of time, we revert to the previous
case again and the price of the option is known. It is Cdo

AP

(
L1, T − TL1 , 0

)
. So,

Cdo
AP (x, T, u) = Ex

[
ITL1≤D−ue−rTL1 Cdo

AP
(
L1, T − TL1 , 0

)]

=
D−u∫

0

Px
(
TL1 ∈ ds

)
e−rsCdo

AP (L1, T − s, 0) (3.11)

and

Cdo
AP (x, +∞, u) = Ex

[
ITL1≤D−ue−rTL1

]
Cdo

AP (L1) ,

where Cdo
AP (L1, T − s, 0) = Cdo

AP (L1, T − s) is given by Proposition 1. In addi-

tion, the term Ex

[
ITL1≤D−ue−rTL1

]
is known, since it depends solely on the law

of TL1 (S). We have

Ex

[
ITL1≤D−ue−rTL1

]
= E

[
ITl1

(Z)≤D−ue−rTl1
(Z)

]
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for Zt = Wt + βt, t � 0, and when x > L1 (i.e. l1 < 0, where l1 is defined in
Proposition 1). Using [4, p. 223], we obtain

Ex

[
ITL1≤D−ue−rTL1

]
=

D−u∫

0

|l1|√
2πs

3
2

e−rs− 1
2s (l1−βs)2

ds.

3.2 The up-and-out Parisian call

Definition 2 An American up-and-out Parisian call option entitles its owner to
buy the underlying before the minimum of the maturity and the first instant
when the underlying price spends, without interruption, more than D units of
time over a given level L1 (the so-called Parisian time). If the investor decides to
exercise at the stopping time τ , the present value of the payoff of the option is
e−rτ (Sτ − K)+ Iτ<H+

L1,D
Iτ≤T, where T is the maturity and K the strike price.

Proposition 3 The price of an American Parisian up-and-out call option can be
decomposed as

Cuo
AP (x, T) = Cuo

EP (x, T)+
T∫

0

exp

(
−

(
r + β2

2

)
u
)

× E

[
IZu≥b̄u

Iu<H+
l1,D(Z)

(
δx exp(σZu) − rK

)
eβZu

]
du,

where β, b̄u and l1 are defined in Proposition 1 and where {S̄u, u ∈ [0, T]} is
the exercise boundary. The expectation is defined by relying on the probability P

under which Zt = Wt +βt, t � 0, is a Brownian motion. This decomposition can
also be written as

Cuo
AP (x, T) = Cuo

EP (x, T)+δ

T∫

0

(
Cuo

EP(x, S̄u, u)+
(

S̄u− r
δ

K
)

BINCuo
EP

(
x, S̄u, u

))
du.

Proof By relying on the argument used for the down-and-out call, this proposi-
tion can be straightforwardly obtained. Indeed, we know that

L (
exp (−ru) Cuo

AP (Su, T − u)
)

is non-zero only on
{
Su � S̄u

}
and

{
u<H+

L1,D

}
;

so L(
exp (−ru) Cuo

AP (Su, T − u)
) = e−ru (rK − δSu) I{

Su≥S̄u
}∩

{
u<H+

L1,D

} and the

result is obtained. ��
It is worthwhile to look further at this exercise boundary. When the exer-

cise boundary of the standard American call is higher than the barrier L1, S̄
is defined only when the underlying value Su is higher than L1. In these cases
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S̄u depends not only on time u, but also on gL1
u (S), the last instant when the

process S was at level L1. As long as S remains above L1 , the exercise bound-
ary is defined on the interval [gL1

u (S) , gL1
u (S) + D]. This exercise boundary is a

decreasing function of time and reaches L1 at time gL1
u (S) + D. Indeed, if the

process remains above the barrier L1, the option should be exercised before
time gL1

u (S) + D, otherwise it will be knocked out.
If the underlying value does not reach the exercise boundary before time

gL1
u (S) + D, this implies that the underlying has reached L1 from above before

this time. The exercise boundary will be activated the next time that the under-
lying reaches the barrier L1 from below. When the exercise boundary of the
standard American call is smaller than the barrier L1, then S̄ is this exercise
boundary.

This description of the exercise is also true in the perpetual case. When the
exercise boundary of the standard American call is higher than the barrier L1,
the exercise boundary S̄ is not a constant. Otherwise, S̄ is equal to this exercise
boundary. It therefore does not appear to be directly possible to calculate the
value of the American Parisian up-and-out call option in the perpetual case
with a closed-form expression. The main issue is that in some cases, the exer-
cise boundary is not a constant. This is because even in the perpetual case, the
window of the Parisian option generates a finite maturity. Indeed, the option
can be knocked out if the Parisian time is reached. We shall see in Sect. 4 (in
the equivalent case of the down-and-out put) how we can address this problem,
by simplifying our assumptions.

3.3 The “in” Parisian call

As previously mentioned, with an “in” barrier, the option holder cannot do or
decide anything before the option is activated; once the option is activated, it
no longer has a barrier and is just a plain vanilla call. Therefore

Cdi
AP (x, T) = E

[
exp

( − rH−
L1,D

)
IH−

L1,D�TCA

(
SH−

L1,D
, T − H−

L1,D

)]

=
T∫

0

exp(−ru)CA(Su, T − u)Q
(
H−

L1,D ∈ du
)
.

In the perpetual case, this gives

Cdi
AP (x) = E

[
exp

(
−rH−

L1,D

) ]
E

[
CA

(
SH−

L1,D

)]
.

Indeed, the random variables H−
l1,D (Z) and ZH−

l1,D(Z) are independent, and the

law of ZH−
l1,D(Z) and the Laplace transform of H−

L1,D are given by (see [5])
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P
(

ZH−
l1,D(Z) ∈ dy

)
= dy

D Iy<l1(l1 − y) exp

(
− (y−l1)2

2D

)
,

E

[
(exp

(
−λ2

2 H−
L1,D

)]
= exp(l1λ)

�
(
λ
√

D
) ,

(3.12)

where the function � is given in Proposition 2.
The value of the standard American option is also known; it is CA (x) =

(LC − K)
(

x
LC

)θ

, where θ is given in Proposition 2. The exercise boundary of

the call is the constant LC = θ
θ−1 K.

When the American Parisian call is activated, its exercise boundary is
also LC. Therefore when the expectation is defined by relying on the
probability P under which (Zt = Wt + βt, t � 0), is a Brownian motion,
then

Cdi
AP (x) = E

[
exp

(
−
(

r + β2

2

)
H−

L1,D

)]
E

[
e
βZH−

l1,D(Z)
CA

(
xe

σZH−
l1,D(Z)

)]

= xθ
exp

(
l1
√

2r + β2
)

�
(√

(2r + β2)D
) (LC − K)

Lθ
C

l1∫

−∞
e(β+σθ)yP

(
ZH−

l1,D(Z) ∈ dy
)

.

For American Parisian barrier calls, i.e. when the window D is zero,

Cdi
AP (x) = CA (L1) E[ exp

(−rTL1

)].

Along the same lines for the American Parisian up-and-in call, we obtain the
formula

Cui
AP (x, T) =

T∫

0

exp (−ru) CA (Su, T − u) Q
(
H+

L1,D ∈ du
)
.

In the perpetual case,

Cui
AP (x) = E

[
exp

(
−(

r + β2

2

)
H+

L1,D

)]
E

[
e
βZH+

l1,D(Z)
CA

(
xe

σZH+
l1,D(Z)

)]
.

By symmetry, the Laplace transform of the Parisian time H+
L1,D is known. Hence,

Cui
AP (x) = exp

( − l1
√

2r + β2
)

�
(√

(2r + β2)D
)


xθ

(
LC − K)

Lθ
C

lC∫

l1

e(β+σθ)yP
(
ZH+

l1,D(Z) ∈ dy
)

+
+∞∫

lC

eβy(xeσy − K)P
(
ZH+

l1,D(Z) ∈ dy
)


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with LC > L1, and where lC = ln(LC/x)/σ and

P
(

ZH+
l1,D(Z) ∈ dy

)
= dy

D
Iy>l1(y − l1) exp

(
− (y − l1)2

2D

)
.

Indeed, if ZH+
l1,D(Z) > lC, i.e., if SH+

L1,D
> LC, then the American Parisian up-

and-in call should be exercised at the first time it is knocked in, i.e. at time
H+

L1,D.

4 Analogies between American (barrier) and American Parisian
barrier options

In the non-perpetual case, it is unfortunately impossible to derive closed-form
formulae. The perpetual case is therefore the only way we can perform some
qualitative analysis of American Parisian options. Let us now tackle the prob-
lem from a different angle than in the last section and consider the perpetual
case directly. Basically, we shall manipulate Laplace transforms of stopping
times, combined with the position of the Brownian motion at these times. This
approach is not directly connected with Propositions 1 and 2 and is mainly based
on the fourth chapter of [13].

We carry out our analysis by starting with the simplest case, namely non-
Parisian, non-barrier options. The put case is now considered (the results can
be directly used in the case of a non-dividend paying stock, δ = 0). We show
how the value of an American put can be derived with a purely probabilistic
approach. Then we deal with American non-Parisian perpetual barrier puts,
and finally treat the Parisian case. We focus only on up-and-out and down-and-
out puts. Indeed, as shown in Sect. 3, “in” American option prices can be quite
easily derived. The new approach used in this section generates an approxima-
tion for the option price in the difficult down-and-out put case (or similarly in
the up-and-in call case studied in Sect. 3).

4.1 The American perpetual put and the American perpetual barrier put

The value of a perpetual American put is known. However, we state it here to
illustrate the approach—where expected discounted payoffs are computed for
a given exercise boundary—which we follow with more complex options later
on. The well-known result is

Proposition 4 The value of the standard American perpetual put is the supremum
over all possible optimal levels L of the expected discounted cash flows under the
risk-neutral probability, i.e. PA (x) = supL E

[
e−rTL (K − L)

]
. This value can be

calculated and we have PA (x) = (K − LP)
(

LP
x

)ξ

, with ξ = β+
√

2r+β2

σ
, and the

exercise boundary of the put is LP = ξ
ξ+1 K.
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Proof Let us first calculate the value of the option as a function of the exer-
cise frontier. We note that TL (S) = Tl (Z), where Z is the drifted Brownian
motion starting from zero, and where l = 1

σ
ln L

x and β = 1
σ

(
r − δ − σ 2

2

)
. In

consequence, we can apply Girsanov’s theorem at that stopping time and we
have

Ex

[
e−rTL (K − L)

]
= (K − L) E0

[
eβl−

(
r+ β2

2

)
Tl(Z)

]
= (K − L)

(
L
x

)ξ

. (4.1)

To determine the optimal L, we just solve ∂
∂L

(
(K − L)

(
L
x

)ξ
)

= 0. We find

that LP = ξ
ξ+1 K solves this equation. ��

Up-and-out and down-and-out
The up-and-out case is the most complex case from a formulation perspec-

tive. An American down-and-out put is relatively trivial. If the barrier is lower
than the optimal exercise level in the non-barrier case, then the barrier does
not change anything, and the exercise should be at LP = ξ

ξ+1 K. If on the con-
trary the barrier is higher, then the option should be exercised right before the
barrier. With an up-and-out, the dynamics will be different. The risk of losing
the option if S goes up will make it optimal to exercise the option at a higher
threshold than ξ

ξ+1 K. The following result is obtained.

Proposition 5 The value of the perpetual up-and-out American put with the
barrier at L1 verifies

Puo
A (x)=sup

L
Ex

[
e−rTL (K−L)ITL<TL1

]
=(K−LP)

(
L1
x

)γ −
(

L1
x

)−γ

(
L1
LP

)γ −
(

L1
LP

)−γ

(
LP

x

) β
σ

,

with γ = 1
σ

√
2ρ, ρ = r + β2

2 , and where LP solves

∂

∂L


(K − L)

(
L1
x

)γ −
(

L1
x

)−γ

(
L1
L

)γ −
(

L1
L

)−γ

(
L
x

) β
σ


=0.

Proof The argument relies on Brownian hitting times. We follow the same
approach as in the previous proof. Note that we always assume L1 ≥ x ≥ L.
We write, applying Girsanov’s theorem at TL,

Ex

[
e−rTL (K − L) ITL<TL1

]
= (K − L) E0

[
elβ−ρTlITl<Tl1

]
,
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where l1 = 1
σ

ln L1
x . Now, it is well known (see [4, p. 163] for example) that

Ea

[
e−rT0IT0≤Ty

]
=

sinh
(
(y − a)

√
2r

)

sinh
(

y
√

2r
)

for a Brownian motion. Applying this result, we obtain

Ex

[
e−rTLITL<TL1

]
=

(
L1
x

)γ −
(

L1
x

)−γ

(
L1
L

)γ −
(

L1
L

)−γ

(
L
x

) β
σ

. (4.2)

From (4.2), Proposition 5 is obtained. ��

Note that when L1 approaches infinity (the barrier becomes less and less
likely to be reached), then the ratio in (4.2) converges to

(L
x

)ξ given in
(4.1).

In the case of a down-and-out put, the value can be written the same way but
it is simplified; exercise is optimal just before the barrier, unless the barrier is
beyond the optimum level. Hence,

Pdo
A (x) = sup

L
Ex

[
e−rTL∨L1 (K − L ∨ L1)

]

= K
ξ + 1

(
Kξ

x (ξ + 1)

)ξ

IL1<
ξ

ξ+1 K + (K − L1)

(
L1

x

)ξ

IL1≥ ξ
ξ+1 K.

4.2 The perpetual American Parisian put

In this section we derive closed-form expressions for the value of the perpetual
American Parisian options, given a constant exercise frontier. Unfortunately the
complexity of the expressions prevents us from finding a closed form expression
for the exercise frontier itself; we can only write the equation it should solve.
We use the results shown in Appendix B regarding the Laplace transforms of
H+

D ∧Ta and H−
D ∧Ta. These results generalize the analysis of the Parisian stop-

ping time from [5]. The Parisian case is more complex than the simple barriers
because at the Parisian time the underlying price can be anywhere above the
barrier (or below, for a “down” option).

The Parisian up-and-out put
As mentioned in Sect. 3 for the call, the exercise boundary is constant.

Proposition 6 The value of the perpetual American Parisian up-and-out put
option with the barrier at L1 verifies
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Puo
AP (x) = sup

L
Ex

[
e−rTL (K − L) ITL<H+

L1,D

]

= sup
L




(K − L)

(
L
x

) β
σ




(
L1
x

)γ −
(

L1
x

)−γ

(
L1
L

)γ −
(

L1
L

)−γ
+ E

F

(
L
x

)γ −
(

L
x

)−γ

(
L
L1

)γ −
(

L
L1

)−γ







,

with

E = 2
√

πDρeρD

((
L1

L

)−γ

− �
(
−√

2ρD
))

+
((

L1

L

)γ

−
(

L1

L

)−γ
)

×
(
�

(√
2ρD

)
− �

(
−√

2ρD
))

,

F = 2
√

πDρeρD

(
1 − �

(
−√

2ρD
)(

L1

L

)−γ
)

+�
(√

2ρD
)((

L1

L

)γ

−
(

L1

L

)−γ
)((

L1

L

)−γ

− �
(
−√

2ρD
))

and with γ = 1
σ

√
2ρ, ρ = r + β2

2 , L1 ≥ K and the function � given in
Proposition 2.

Let us note the decomposition of this value as a function of the non-Parisian
option. For a given exercise frontier L (but not necessarily at the optimum), the
value of the Parisian option reads

ES0

[
e−rTL (K − L) ITL<H+

L1,D

]
= ES0

[
e−rTL (K − L) ITL<TL1

]

+ES0

[
e−rTL (K − L) ITL1≤TL<H+

L1,D

]
.

For a given exercise policy, the Parisian option is worth at least the value of
the simple barrier option, plus a term that depends on what happens once the

barrier has been hit. Note that here ES0

[
e−rTL (K − L) ITL<TL1

]
is not equal to

Puo
A (x) since the optimal exercise will not necessarily be the same in the Parisian

and non-Parisian cases.

Proof of Proposition 6 To obtain this option’s value, we need to calculate

Ex

[
e−rTL (K − L) ITL<H+

L1,D

]
. In fact, we rather calculate the purely Parisian

term Ex

[
e−rTL (K − L) ITL1≤TL<H+

L1,D

]
and obtain the incremental value of the

Parisian option over the non-Parisian option, for a given exercise frontier.We
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have, by applying the strong Markov property of Brownian motion at TL1 ,
that

Ex

[
e−rTL (K − L) ITL1≤TL<H+

L1,D

]
= Ex

[
e−rTL1 ITL1≤TL

]

× EL1

[
e−rTL (K − L) ITL<H+

L1,D

]
.

Using Girsanov’s theorem at time TL, we obtain

EL1

[
e−rTL (K − L) ITL<H+

L1,D

]
= (K − L)

(
L
x

) β
σ

E

[
e−(r+ β2

2 )TlITl<H+
D

]
, (4.3)

where H+
D stands for H+

0,D. We know that the last factor in (4.3) can be calcu-
lated; Theorem 1 in Appendix B gives the desired result. Note that the theorem
is actually given for H−

D and Ta, where a is positive. Here, we are in the opposite
situation, so we simply need to apply the theorem to the Brownian motion −W

instead of W. We have, with l = 1
σ

ln L
x and ρ = r + β2

2 ,

E

[
e−ρTlITl<H+

D

]
= 1

el
√

2ρ − �
(−√

2ρD
)

×
(

1 − �
(
−√

2ρD
) √

πDρeρD + sinh
(
l
√

2ρ
)

√
πDρeρD−l

√
2ρ + sinh

(
l
√

2ρ
)
�

(√
2ρD

)
)

.

After a few simplifications, we obtain E

[
e−ρTlITl<H+

D

]
= E

F with E and F defined

in the proposition. Now, putting the pieces back together we have

Ex

[
e−rTL (K − L) ITL1≤TL<H+

L1,D

]
= E

F

(
L
x

)γ −
(

L
x

)−γ

(
L
L1

)γ −
(

L
L1

)−γ

× (K − L)

(
L1

x

) β
σ
(

L
L1

) β
σ

. ��

The Parisian down-and-out put
Because of the asymmetry of the up-and-down Parisian options, the down-

and-out is very different from the up-and-out. As for up-and-out barrier calls
(see Sect. 3), we cannot write a closed-form expression for this option. As with
the non-Parisian case, if the barrier is lower than the optimal entry level in
the non-Parisian, non-barrier case, then the results are trivial. However, if the
barrier is higher, the optimal exercise frontier is complicated (see the equiv-
alent case of the up-and-out Parisian call). As a simplification of the exercise
frontier, we propose to use the first instant where either the underlying reaches
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the Parisian time or hits a certain constant level lower than the barrier. Exercise
takes place at the optimal level or right before the Parisian time. This way, the
simplified exercise frontier is “square”, being hit either as a function of time, or
as a function of the level. With this simplification regarding the exercise frontier,
we have the following

Proposition 7 The value of the perpetual down-and-out American Parisian put
option is approximated as follows

Pdo
AP (x) ≈ sup

L
Ex

[
e
−rH−

L1,D∧TL

(
K − SH−

L1,D∧TL

)]

= sup
L

(
L1

x

)√
2σ−2ρ

[
(1 − AB) (K − L) +

(
ea

√
2ρB − 1

)
K (f )

]

ea
√

2ρ − A

for L1 � K, with ρ = r + β2

2 , a = 1
σ

ln L
L1

, f (z) = eβz (K − L1eσz), and where A,
B and K (f ) are defined at the end of Appendix B.

The latter decomposition is different from the one in the up-and-out case.
The first part is the value attached to exercising when the process has reached
the optimal level, while the second is the value of exercising right before the
Parisian time, D units of time after the excursion below L1 started.

If the exercise price is below the Parisian threshold L1, it is not always opti-
mal to exercise the option at the Parisian time. In that case, if the Parisian time
happens before the optimal exercise barrier is hit, then depending on whether
the underlying is below the strike price, the option is either exercised or not.

Proof The proof is a direct application of the main result (Theorem 1) from
[14]. ��

5 Conclusion

In this article, the problem of American Parisian option pricing is tackled. A
probabilistic approach is proposed. Just as for the standard American option
context, pricing formulas depend on the exercise boundary. In the perpetual
case, exercise boundaries and therefore prices can be derived or approximated.

Appendix A: Simplifying the perpetual case

The first integral on the right-hand side of the second decomposition given in
Proposition 1 can be rewritten as follows (see the Subsect. 2.1). We have
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+∞∫

0

Cdo
EP (x, LC, u) du =

+∞∫

0

exp

(
−

(
r + β2

2

)
u
)

∗CE (x, LC, u) du

−
+∞∫

0

exp

(
−

(
r + β2

2

)
u
)

∗Cdi
EP (x, LC, u) du, (A.1)

where CE (x, LC, u) is the price of the standard European currency option (given
by [12]) with strike price LC and maturity u. Moreover,

∗CE (x, LC, u) = exp

((
r + β2

2

)
u
)

CE (x, LC, u)

= E

[(
x exp (σZu) − LC

)+ exp (βZu)
]

(A.2)

and

∗Cdi
EP (x, LC, u) = exp

((
r + β2

2

)
u
)

Cdi
EP (x, LC, u)

= E

[
IH−

l1,D(Z)�u

(
x exp (σZu) − LC

)+ exp (βZu)

]
. (A.3)

All the expectations in Appendix A, including those on the right-hand sides
of (A.2) and (A.3), are computed by relying on the probability P under which
(Zt = Wt + βt, t � 0), is a Brownian motion.

Let us first consider the second integral on the right-hand side of (A.1).
From [5],

+∞∫

0

exp

(
−

(
r + β2

2

)
u
)

∗Cdi
EP (x, LC, u) du

=
+∞∫

0

du exp

(
−

(
r + β2

2

)
u
) +∞∫

−∞
dyfx(y)hl1(u, y),

where β and l1 are defined in Proposition 1,

fx(y) = exp (βy)
(
x exp (σy) − LC

)+ (A.4)

and

hl1(u, y) =
+∞∫

−∞
E


IH−

l1,D(Z)�u

exp
(

− (l1−z−y)2

2(u−H−
l1,D(Z))

)

√
2π(u − H−

l1,D(Z))


 ν(dz),
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and where ν(dz) denotes the law of ZH−
l1,D(Z) from (3.12). Hence,

+∞∫

0

exp

(
−

(
r + β2

2

)
u
)

∗Cdi
EP (x, LC, u) du

=
+∞∫

lC

dyfx(y)

+∞∫

0

du exp

(
−

(
r + β2

2

)
u
)

hl1(u, y), (A.5)

where lC = ln(LC/x)/σ . The Laplace transform of hl1(., y) is known (see [5]).
Indeed, if LC > L1 (this is the case because LC > K � L1), we have

+∞∫

0

exp

(
−

(
r + β2

2

)
u
)

hl1(u, y)du

= �
( − √

(2r + β2)D
)

�
(√

(2r + β2)D
) exp

(
(2l1 − y)

√
2r + β2

)
√

2r + β2
for y > lC,

where the function � is given in Proposition 2. Therefore by definition of the
function fx given in (A.4),

+∞∫

0

exp

(
−

(
r + β2

2

)
u
)

∗Cdi
EP (x, LC, u) du

= �
( − √

(2r + β2)D
)

�
(√

(2r + β2)D
) exp

(
2l1

√
2r + β2

)
√

2r + β2
(A.6)

×

 x√

2r + β2 − β − σ

(
x

LC

)
√

2r+β2−β−σ

σ − LC√
2r+β2 − β

(
x

LC

)
√

2r+β2−β

σ


 .

Indeed it is straightforward to show that β + σ − √
2r + β2 < 0, ∀δ > 0.

The Laplace transform of ∗CE (x, LC, u) can be obtained by relying on (A.7)
with D = l1 = 0. Hence, (A.1) can be rewritten as

+∞∫

0

Cdo
EP (x, LC, u) du =

(
x

LC

)
√

2r+β2−β

σ

LC

(
1√

2r + β2 − β − σ
− 1√

2r + β2 − β

)

×
(

1 − �
( −

√
(2r + β2)D

)

�
(√

(2r + β2)D
) exp

(
2l1

√
2r + β2

)) 1√
2r + β2

. (A.7)

Concerning the second integral of the decomposition given in Proposition 2,
we have
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+∞∫

0

BINCdo
EP (x, LC, u) du = −

∂

(+∞∫
0

Cdo
EP (x, LC, u) du

)

∂LC

=
(√

2r + β2 − β

σ
− 1

)(
1√

2r + β2 − β − σ
− 1√

2r + β2 − β

)
(A.8)

×
(

x
LC

)
√

2r+β2−β

σ


1−

�
(
−√

(2r + β2)D
)

�
(√

(2r + β2)D
) exp

(
2l1

√
2r+ β2

)
 1√

2r + β2
.

Finally, by relying on (A.7) and (A.9), the first decomposition of Proposition 2
can be rewritten as

Cdo
AP (x) =

(
1 − �

( − √
(2r + β2)D

)

�
(√

(2r + β2)D
) exp

(
2l1

√
2r + β2

))
1√

2r + β2

×
(

1√
2r + β2 − β − σ

− 1√
2r + β2 − β

)(
x

LC

)
√

2r+β2−β

σ

×δ

(
LC +

(
LC − r

δ
K

)(√
2r + β2 − β

σ
− 1

))
. (A.9)

By relying on the definition of θ , the option value given in Proposition 2 is
derived. By setting x = LC in this option value, the last result of Proposition 2
is obtained. ��

Using again the definition of θ , this result in the case of the standard Ameri-
can option (L1 → 0) reads

LC − K = 1
σ(θσ + β)

(
δLC

θ − 1
− r

θ
K

)
.

Hence, by the definition of β and by relying on the fact that θ is the positive
root of the equation σ 2

2 y2 + βσy − r = 0, the well-known result LC = θ
θ−1 K is

obtained.

Appendix B: Passage times and excursions

The study of the perpetual case for American Parisian options boils down to the
study of the stopping times H+

D ∧ Ta and H−
D ∧ Ta with a > 0. In the first case,

this is the first instant when a positive excursion reaches a or lasts for more than
D. In the second case, it is the first instant when a negative excursion lasts more
than D or a positive excursion reaches a. Intuitively, the second case should be
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simpler than the first one, since we can separate the positive excursions from
the negative ones.

We shall see that, indeed, the resulting formulas are much less cumbersome.
The study of some of the characteristics of H+

D ∧ Ta was carried out in [14]. To
perform the same analysis on H−

D ∧ Ta, we have to adapt the approach devel-
oped in that paper. In fact, the calculation is slightly simpler in this case. We
consider in detail the problem raised by the down-and-out call, or similarly the
up-and-out put, that involves H−

D ∧ Ta.

The Down-and-out call or the Up-and-out put: H−
D ∧ Ta

We follow a similar approach to that in the proof given in [14]. We first give
our result.

Theorem 1 We have the following relationships for a standard Brownian motion
B, a positive number ρ, a positive level a, and a measurable function bounded
below f :

E

[
e−ρTaIH−

D≥Ta

]
= 1 − �

(−√
2ρD

)
X

ea
√

2ρ − �
(−√

2ρD
) ,

E

[
e−ρH−

DIH−
D≤Ta

f
(

WH−
D

)]
=

1 − �
(
−α

√
D

)
X

eαa − �
(
−α

√
D

)
+∞∫

0

f
(
−αz

√
D

)
ze− z2

2 dz

with �(y) = 1 + √
2πye

y2
2 N (y) and X =

√
πDρeρD+sinh(a

√
2ρ)√

πDρeρD−a
√

2ρ+sinh(a
√

2ρ)�(
√

2ρD)
.

To show this result, we use excursion theory and some of the results of [5].

Lemma 1 For all α, we have

E

[
e− α2

2 TaIH−
D≥Ta

]
=

1 − �
(
−α

√
D

)
E

[
e− α2

2 H−
D∧Ta

]

eαa − �
(
−α

√
D

) .

Proof Studying such a problem it is natural to try and use exponential martin-
gale properties. First we write

E

[
e−ρH−

D∧Ta
]

= E

[
e−ρTaIH−

D≥Ta

]
+ E

[
e−ρH−

DIH−
D≤Ta

]
. (B.1)

Let us now define the exponential martingale (Mt = exp
(
αWt − α2

2 t
)

, t ≥ 0),

for any real α. If we apply Doob’s martingale stopping theorem, we obtain

1 = E

[
e
αWH−

D∧Ta
− α2

2 H−
D∧Ta

]
=E

[
e
αWH−

D
− α2

2 H−
D

IH−
D≤Ta

]
+ eαaE

[
e− α2

2 TaIH−
D≥Ta

]
.
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We know that H−
D and (Wt) for g

(
H−

D

) ≤ t ≤ H−
D are independent, and as a

consequence, WH−
D

and supg
(
H−

D

)≤t≤H−
D

Wt are independent of H−
D. So, we can

write

E

[
e
αWH−

D
− α2

2 H−
D

IH−
D≤Ta

]
= E

[
e
αWH−

D

]
E

[
e− α2

2 H−
DIH−

D≤Ta

]
.

However, we know that the trajectory
(
Wt, g

(
H−

D

) ≤ t ≤ H−
D

)
is a Brownian

meander m, and by scaling

(
Wt, g

(
H−

D

) ≤ t ≤ H−
D

) =
(
−√

Dmu, 0 ≤ u ≤ 1
)

in law.

Consequently, E
[

e
αWH−

D

]
= E

[
e−α

√
Dm1

]
= �

(
−α

√
D

)
. Gathering the results,

we have

1 = �
(
−α

√
D

)
E

[
e− α2

2 H−
DIH−

D≤Ta

]
+ eαaE

[
e− α2

2 TaIH−
D≥Ta

]
. (B.2)

This gives a second relationship between the quantities we are interested in.
When combining this with (B.1), we get the result stated in the lemma. ��

In the preceding argument, we use the fact that WH−
D

is independent from

H−
D and IH−

D≤Ta
. We can use this to write

E

[
e−ρH−

DIH−
D≤Ta

f
(

WH−
D

)]
= E

[
e−ρH−

DIH−
D≤Ta

] +∞∫

0

f
(
−αz

√
D

)
ze− z2

2 dz.

Besides, the term E

[
e−ρH−

DIH−
D≤Ta

]
can be calculated by using (B.2 ) and (B.1).

We obtain

E

[
e−ρH−

DIH−
D≤Ta

]
=

1 − eαaE

[
e− α2

2 H−
D∧Ta

]

�
(
−α

√
D

)
− eαa

.

To show the theorem, we simply have to calculate E

[
e−ρH−

D∧Ta
]
.

Lemma 2 For all positive ρ, we have

E

[
e−ρH−

D∧Ta
]

= 1 − ρ

∫
n (dε)

V(ε)∫
0

dv e−ρv
(
Iεv>0Isupu≤v εu≤a + Iεv≤0Iv<D

)

∫
n (dε)

(
1 − e−ρV(ε)

(
Iε≤0IV(ε)<D + Iε>0Isup0≤u≤V(ε) εu<a

))

where n is Itô’s excursion measure.
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Proof The stopping time we are interested in is τ = H−
D ∧ Ta, and we write

E




∞∫

0

e−ρtIτ≥tdt


 = 1

ρ

(
1 − E

[
e−ρτ

])
,

so

E
[
e−ρτ

] = 1 − ρE




∞∫

0

e−ρtIτ≥tdt


 .

We define τs as the inverse of the local time process (the notation τs is conven-
tional for this process); in other words, τs = inf {u : Lu = s} increases only when
the Brownian motion is at zero. We also define the longest negative excursion
up to a time τs− as

l− (τs−) = sup {l ≥ 0 : ∃u ≤ s, (τu − τu−) = l, eu ≤ 0} ,

and we introduce the highest level reached by an excursion up to time τs−
defined by

h+ (τs−) = sup

{
h ≥ 0 : ∃u ≤ s, sup

τu−≤v≤τu

eu (v) = l, eu ≥ 0

}
,

where e is the excursion process (see for example [20] for a description of the
excursion process). These random variables can also be defined up to the last
zero as

l− (gt) = sup {(ds − gs) : gt ≥ s ≥ 0, Ws ≤ 0} ,

h+ (gt) = sup {Ws : gt ≥ s ≥ 0, Ws ≥ 0} .

V will be used to denote the length of an excursion, that is, V (es) = τs − τs−.
Now, let us note that we have the following equalities of events:

(τ > t) = {
D > l− (gt)

} ∩
(
{Wt ≥ 0} ∪ ({Wt < 0} ∩ {t − gt < D})

)

∩{h+ (gt) < a} ∩
(

{Wt ≤ 0} ∪
(

{Wt > 0} ∩ { sup
gt≤u≤t

Wu ≤ a}
))

.

The equation above states simply that τ > t is equivalent to saying that “the
longest negative excursion, up to the last zero before t, is shorter than D, and
the highest excursion up to that time is smaller than a” and “since gt, either the
Brownian motion went up but its maximum has not reached a, or it went down
and D units of time have not yet passed.” So,
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∞∫

0

E
[
e−ρtIτ≤t

]
dt = E

∞∫

0

e−ρtIl−(gt)<D
(
IWt<0It−gt<D + IWt≥0

)

× Ih+(gt)<a

(
IWt>0Isupgt≤u≤t Wu≤a + IWt≤0

)
dt.

Let us recall the following balayage theory result, which can be found for exam-
ple in [22]. For two functionals F1 and F2,

E




∞∫

0

e−ρtF1 (Bu, u ≤ gt) F2 (Bu, gt ≤ u ≤ t) dt




= E




∞∫

0

e−ρτs−F1 (Bu, u ≤ τs−) ds




∫
n (dε)

V(ε)∫

0

dv e−ρvF2 (εu, u ≤ v) .

Applying the result to the problem at hand, we get

E

∞∫

0

e−ρtIl−(gt)<D
(
IWt<0It−gt<D+IWt≥0

)
Ih+(gt)<a

(
IWt>0Isupgt≤u≤t Wu≤a+IWt≤0

)
dt

= E




∞∫

0

e−ρτsIl−(τs)<DIh+(τs)<ads




×
∫

n (dε)

V(ε)∫

0

dv e−ρv (
Iεv<0Iv<D + Iεv≥0

) (
Iεv>0Isupu≤v εu≤a + Iεv≤0

)
.

We now turn to the computation of the path integral in the expression above.
We are interested in E

[∫ ∞
0 e−ρτsIl−(τs)<DIh+(τs)<ads

]
. We start with

e−ρτsIl−(τs)<DIh+(τs)<a

= 1 +
∑

0≤u≤s

(
e−ρτuIl−(τu)<DIh+(τu)<a − e−ρτu−Il−(τu−)<DIh+(τu−)<a

)
.

But we also easily obtain that

{
l− (τu) < D

} ∩ {
h+ (τu) < a

}

= {
l− (τu−) < D

} ∩
(

{eu ≥ 0} ∪ ( {eu < 0} ∩ {τu − τu− < D} )
)

∩ {
h+ (τu−) < a

} ∩
(

{eu ≤ 0} ∪
(

{eu > 0} ∩ {
sup

τu−≤v≤τu

eu (v) < a
}))

.
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Hence,

e−ρτsIl−(τs)<DIh+(τs)<a

= 1 +
∑

0≤u≤s

e−ρτu−Il−(τu−)<DIh+(τu−)<a

×
(

e−ρV(es)
(
Ieu≥0 + Ieu<0Iτu−τu−<D

) (
Ieu≤0 + Ieu>0Isupτu−≤v≤τu eu(v)<a

)
−1

)
.

Taking the expectation and applying the compensation formula yields

E
[
e−ρτsIl−(τs)<DIh+(τs)<a

]

= 1 + E




s∫

0

e−ρτu−Il−(τs)<DIh+(τs)<adu




×
∫

n (dε)
(

e−ρV(ε)
(
Iε≥0+Iε<0IV(ε)<D

) (
Iε≤0+Iε>0Isup0≤u≤V(ε) εu<a

)
− 1

)
.

If we define ϕD (s) = E
[
e−ρτsIl−(τs)<DIh+(τs)<a

]
, then we have

E
[∫ ∞

0 e−ρτsIl−(τs)<DIh+(τs)<ads
] =

∞∫
0

ϕD (s) ds, and

ϕD (s) = 1 +
∫

n (dε)

(
e−ρV(ε)

(
Iε≥0 + Iε<0IV(ε)<D

) (
Iε≤0 + Iε>0Isup0≤u≤V(ε) εu<a

)
−1

) s∫

0

ϕD (u) du.

Solving the differential equation and rewriting the entire expression directly
gives the result stated in Lemma 2. ��

We now turn to the actual calculation of these integrals. We summarize the
result as follows.

Lemma 3 For all positive ρ,

E
[
e−ρτ

] =
√

πDρeρD + sinh
(
a
√

2ρ
)

√
πDρeρD−a

√
2ρ + sinh

(
a
√

2ρ
) (

1 + 2
√

πDρeρDN (√
2ρD

)) .

Proof To compute these integrals, we have to use the “law” under Itô’s measure
of the supremum and the length of an excursion. We use Williams’ and Itô’s
description of n. Williams’ description states that n

(
supu≤V(ε) εu ∈ dm

) = dm
m2 ,

and that the excursion path conditionally on m is composed of two
Bessel-3 processes put back to back between 0 and their hitting times of m.
Itô’s description of the measure n is based on the excursion’s length and says
that n (V (ε) ∈ dv) = dv√

2πv3
. Conditional on this length, the excursion path is a
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Bessel-3 bridge. In fact, we simply use Itô’s law of the excursion length. First,
let us see how these laws intervene in our problem. For the denominator,

∫
n (dε)

(
1 − e−ρV(ε)

(
Iε≤0IV(ε)<D + Iε>0Isup0≤u≤V(ε) εu<a

))

=
∫

n (dε) Iε≤0

(
1 − e−ρV(ε)IV(ε)<D

)

+
∫

n (dε) Iε>0

(
1−e−ρV(ε)Isup0≤u≤V(ε) εu<a

)
(B.3)

and for the numerator,

∫
n (dε)

V(ε)∫

0

dv e−ρv
(
Iεv>0Isupu≤v εu≤a + Iεv≤0Iv<D

)

=
∫

n (dε)

V(ε)∫

0

dv e−ρvIεv>0Isupu≤v εu≤a+
∫

n (dε)

V(ε)∫

0

dv e−ρvIv<DIεv≤0. (B.4)

Note that restricting the integrals over positive or negative excursions just
divides them by 2. Since these restrictions appear in all expressions, both in the
numerator and denominator, we simplify them. We have

∫
n (dε)

V(ε)∫

0

dv e−ρvIsupu≤v εu≤a =
∫

n (dε)

V(ε)∫

0

dv e−ρvITa(ε)<v

= 1
ρ

∫
n (dε)

(
1 − e−ρ(V(ε)∧Ta(ε))

)

and, following exactly the same reasoning,

∫
n (dε)

V(ε)∫

0

dv e−ρvIv<D =
∫

n (dε)

V(ε)∧D∫

0

dv e−ρv

= 1
ρ

∫
n (dε)

(
1 − e−ρ(V(ε)∧D)

)
.

Therefore, (B.4) (multiplied by 2) can be rewritten as

1
ρ

∫
n (dε)

(
1 − e−ρ(V(ε)∧Ta(ε))

)
+ 1

ρ

∫
n (dε)

(
1 − e−ρ(V(ε)∧D)

)
.

These expressions can be calculated using Williams’ description of Itô’s mea-
sure. Let us note that, conditional on the maximum of the excursion m, the law
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of the life length V is the sum of two independent hitting times Tm (R) for a
Bessel(3) process. We have

Ta (ε) ∧ V (ε) = (
Tm (R) + Tm

(
R′)) Im<a + Ta (R) Im≥a in law

for an independent Bessel(3) process R′. From [4, p. 339, formula 2.0.1] we get

Ea
[
e− α2

2 Th(R)
]

for a Bessel(3) process R starting from a, with h ≥ a. Taking the
limit as a goes to zero, we have

E0

[
e− α2

2 Th(R)

]
= αh

sinh (αh)
.

We obtain for (B.3) (times 2) the expression

∫
n (dε)

(
1 − e−ρV(ε)IV(ε)<D

)
+

∫
n (dε)

(
1−e−ρV(ε)Isup0≤u≤V(ε) εu<a

)

= 2√
2πD

+
D∫

0

dv√
2πv3

(
1 − e−ρv) + 1

a
+

a∫

0

dm
m2

(
1 − E

(3)
0

[
e−ρ(Tm+T ′

m)
])

.

(B.5)

However, E
(3)
0

[
e−ρ(Tm+T ′

m)
]

=
(
E

(3)
0

[
e−ρT2m(R)

])2 = 2ρm2

sinh2(m
√

2ρ)
, so

a∫

0

dm
m2

(
1 − E

(3)
0

[
e−ρ(Tm+T ′

m)
])

= √
2ρ − 1

a
− 4ρ

√
2ρ

(
1 − e2a

√
2ρ

) . (B.6)

Consequently, (B.5) can be written as

2√
2πD

+
D∫

0

dv√
2πv3

(
1 − e−ρv) + √

2ρ − 4ρ
√

2ρ
(

1 − e2a
√

2ρ
) .

Let us now turn to the numerator. We have (using B.6)

1
ρ

∫
n (dε)

(
1 − e−ρ(V(ε)∧Ta(ε))

)
+ 1

ρ

∫
n (dε)

(
1 − e−ρ(V(ε)∧D)

)

= 1
ρ


√

2ρ − 4ρ
√

2ρ
(

1 − e2a
√

2ρ
)

 − 1

ρ

∞∫

a

dm
m2

a
√

2ρ

sinh
(
a
√

2ρ
)

+ 1
ρ

D∫

0

dv√
2πv3

(
1 − e−ρv) +

(
1 − e−ρD

)

ρ

∞∫

D

dv√
2πv3

.
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Now, we can gather all the terms and the result stated in Lemma 3 is obtained.
��

Combining our results, Theorem 1 is finally proved.
Based on Lemma 3, we can quickly see that τ behaves like Ta when D is very

large, and like H−
D when a is large, in agreement with the result of [5].

The up-and-out call or the down-and-out put: H+
D ∧ Ta

In the case of the up-and-out call or down-and-out put [14] gives a closed form

expression for E

[
e−ρTaIH+

D≥Ta

]
, E

[
e−ρH+

DIH+
D≤Ta

f
(

WH+
D

)]
, and

E

[
e−ρTa∧H+

D f
(

WTa∧H+
D

)]
. In the result, the following quantities are used:

K (f ) =
∑
k∈Z

a√
D∫

0

dzf
(

z
√

D
)(

z + 2ka√
D

)
exp

(
−1

2

(
z + 2ka√

D

)2
)

,

A =
∑

k∈Z

a√
D∫

0
dz

(
z + 2ka√

D

)
exp

(√
2ρDz − 1

2

(
z + 2ka√

D

)2
)

2
∑

k∈Z
exp

(
− 2k2a2

D

) (
1 − exp

(
− (4k+1)a2

2D

)) ,

B = 1 −

a∫
0

dm
m2

(
1 − E

(3)
0

[
e−ρ(Tm+T ′

m)∧D
])

a∫
0

dm
m2

(
1 − E

(3)
0

[
e−ρ(Tm+T ′

m)ITm+T ′
m<D

])
+ 1

a + √
2ρ

−

∞∫
0

dv√
2πv3

(
1 − e−ρv

) + 1
a

(
1 − E

(3)
0

[
e−ρTa∧D

])

a∫
0

dm
m2

(
1 − E

(3)
0

[
e−ρ(Tm+T ′

m)ITm+T ′
m<D

])
+ 1

a + √
2ρ

.
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