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Abstract Tensegrity structures are lightweight structures

composed of cables in tension and struts in compression.

Since tensegrity systems exhibit geometrically nonlinear

behavior, finding optimal structural designs is difficult.

This paper focuses on the use of stochastic search for the

design of tensegrity systems. A pedestrian bridge made of

square hollow-rope tensegrity ring modules is studied. Two

design methods are compared in this paper. Both methods

aim to find the minimal cost solution. The first method

approximates current practice in design offices. More

specifically, parametric analysis that is similar to a gradi-

ent-based optimization is used to identify good designs.

Parametric studies are executed for each system parameter

in order to identify its influence on response. The second

method uses a stochastic search strategy called probabi-

listic global search Lausanne. Both methods provide fea-

sible configurations that meet civil engineering criteria of

safety and serviceability. Parametric studies also help in

defining search parameters such as appropriate penalty

costs to enforce constraints while optimizing using sto-

chastic search. Traditional design methods are useful to

gain an understanding of structural behavior. However, due

to the many local minima in the solution space, stochastic

search strategies find better solutions than parametric

studies.

Keywords Tensegrity � Bridge � Structural design �
Optimization � Stochastic search

1 Introduction

Tensegrity structures are spatial structural systems that

contain tensile and compression elements. They are com-

posed of struts and cables with reticulated connections.

Thus, tensegrity structures are a subclass of cable structures

with the important property that tensile forces are not

anchored [1]. Their stability is based on a self-equilibrated

self-stress state. Although, tensegrity systems have been

studied since 1961 [2], the most complete definition was

given by Motro in 2003 [3]: ‘‘A tensegrity system is a

system in stable self-equilibrated state comprising a dis-

continuous set of compressed components inside a contin-

uum of tensioned components’’. These two sets of

components combine to form a stable system when an initial

self-stress is imposed. Researchers have now broadened the

domain of tensegrity systems to include those that have

continuous compression members. Continuous compression

members increase the bending stiffness of the system [4].

Tensegrity structures are relatively lightweight systems

compared with other structural systems that offer the same

load-bearing capacity. Their ability to respond by distrib-

uting the effect of loading into many members makes

tensegrity structures economical in terms of material cost.

Therefore, tensegrity systems have potential to be good

structural systems for bridges. Additionally, tensegrity

structures can integrate multiple functions for the same

elements. For example, cables are loaded elements that can

also be used in an active control system [5–7].

While tensegrity systems offer many structural and

functional benefits, they are seldom used in practice due to
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complexities in analysis, design and fabrication. The

analysis of tensegrity systems should take into account the

following factors, which are either neglected or absent in

common civil engineering structures such as frames and

trusses.

• A form-finding step is necessary to identify the initial

topology of a tensegrity structure on the basis of an

initial self-equilibrated self-stress. This step may

involve analytical or experimental methods. Form-

finding methods have been extensively studied; a

review of methods can be found in [5]. These methods

may also be used for analysis. Masic et al. [6] proposed

a systematic procedure for form-finding that includes

design considerations such as element strength.

• Tensegrity action involves large displacements and

therefore, an accurate analysis of these systems usually

requires consideration of geometrical nonlinearity.

• Tensegrity systems have closely coupled behavior [7]:

the behavior of the structure cannot be predicted from

analyzing the behavior of individual components.

• Tensegrity structures may be kinematically indeter-

minate.

Since the analysis of tensegrity systems is not straight-

forward and only a few tensegrity structures have been

constructed, no generally agreed guidelines for design

exist. Previous studies on simple tensegrity structures have

revealed the importance of many parameters such as the

level of self-stress or the rigidity ratio between struts and

cables [8]. For example, self-stress levels may be adjusted

to increase load-bearing capacity [2]. Quirant et al. [9]

proposed a design procedure for tensegrity grids and

applied it for the construction of a double layer tensegrity

grid covering a surface of 81 m2. This procedure has,

however, not been generalized for other applications.

In practice, an iterative approach similar to a gradient-

based search is employed for design. The method begins

with a trial solution and then design parameters are mod-

ified depending upon constraint violations to arrive at a

feasible solution. For example, engineers designing

tensegrity systems may gradually increment the areas of

struts and cables to meet the force requirements. However,

additional criteria such as the elimination of slack cables

can make it significantly difficult to find a feasible solution.

The adjustments to design parameters are based upon the

influence of parameters that are contained in objectives and

constraints. The assumption is that the search space has a

single minimum cost solution and individually adjusting

the design parameters leads to this minimum. However,

this assumption is seldom valid as design spaces have

multiple local minima. Gradient-based search often results

in solutions that are only locally optimal. Also, it is often of

interest to generate a number of good designs so that

designers can select preferred solutions using design cri-

teria that are not modeled explicitly in the objective

function.

Researchers [10] have studied extensively the use of

stochastic optimization methods such as genetic algorithms

and simulated annealing to find the global minimum for the

design of structural systems such as frames [11, 12] and

trusses [13, 14]. However, very little research has exam-

ined the use of these optimization methods for the design of

tensegrity systems. Tensegrity structures involve a higher

level of complexity due to their nonlinear behavior and can

benefit from the use of design optimization [15]. Finding

optimal member sizes for struts and cables such that the

structure satisfies all design criteria is difficult. Stochastic

search explores the search space by generating and testing

many solutions to find good solutions [16]. Paul et al. [17]

proposed an algorithm using genetic algorithms for the

determination of connectivity patterns, which lead to stable

tensegrity systems. However, their algorithm is primarily

for form-finding and can be computationally expensive due

to the number of solutions that need to be evaluated.

In this paper, a pedestrian bridge composed of tensegrity

ring modules is designed using two methods. The first

method simulates traditional design through parametric

analyses, while the second uses a direct stochastic search

called probabilistic global search Lausanne (PGSL). PGSL

is a stochastic sampling method for global optimization

that has been shown to give better performance than other

stochastic optimization methods for engineering tasks such

as configuration, diagnosis and control [16, 18–20].

2 Tensegrity ring modules

Tensegrity ring modules are elementary tensegrity systems

that first appeared in Anthony Pugh’s book ‘‘An introduc-

tion to tensegrity’’ [2]. Their design involves a circuit of

compressed components that enhances bending stiffness

[4]. Ring modules have also been shown to be deployable.

Due to these features, assemblies of tensegrity ring mod-

ules are potentially viable structural systems for bridges.

Tensegrity ring modules are easy to conceive [21]. The

modules studied in this paper are created using the proce-

dure below.

a. For a n-sided polygonal cell the first step is the

construction of a straight prism with n-sided polygonal

bases. This prism is used only for developing the

topology of the module and is not a part of the module.

b. Diagonal struts are added to all rectangular faces of the

cell. Rotational symmetry about the vertical axis

passing through the centers of top and bottom faces

of the prism is required as shown in Fig. 1a.
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c. Additional nodes referred to as x-nodes are now added.

Consider a circumscribing circle that is midway

between the top and bottom faces of the prism. In this

study, x-nodes are chosen on the middle of the arc

corresponding to each face of the cell. Each of these

nodes is then connected to two base nodes, one each

at the top and bottom faces of the prism, by adding

two new struts, called non-diagonal struts (Fig. 1b). As

in the previous step, base nodes are chosen such that

the resulting strut arrangement ensures rotational

symmetry.

d. Tensegrity rings contain cables that can be separated

into two sets: the layer cables and the x-cables. The

layer cables connect the nodes at the top and bottom

prism faces (Fig. 1c).

e. The x-cables are positioned around the module

connecting the x-nodes with the four nodes of each

rectangular face of the prism (Fig. 1d).

3 Hollow-rope pedestrian bridge

Tensegrity ring modules can be assembled together to form

a structural system resembling a hollow rope. In this study,

the system is used for a pedestrian bridge. Four identical

modules are connected base to base to span a bridge. A

peculiarity of these modules is that multiple compression

elements (struts) meet at a single node.

For a given geometry, these modules can be character-

ized by three parameters [21]: their length L, their outer

diameter D and their thickness t (Fig. 2). These parameters

are sufficient to define a hollow tube containing all ele-

ments of the tensegrity ring. The length L is the total

stretched length of the module. The outer diameter D is the

diameter of the circle circumscribing the base of the

module. The thickness t corresponds to the difference

between the outer diameter D and the inner diameter d. The

inner diameter d is the diameter of the central hollow

space. This space is used for traversing the bridge.

Several polygonal geometries are possible for the ring

module. A square geometry is chosen in this study (Fig. 3).

In this topology, each diagonal strut is the third side of a

triangular circuit formed by two non-diagonal struts start-

ing from a node on the face opposite to the diagonal. In

total a square module contains four triangular circuits. This

geometry is similar to the one originally proposed by Pugh

[2, 21].

Tensegrity systems are characterized by a number of

infinitesimal mechanisms and a number of independent

states of self-stress for a specific pre-stressed configuration.

Fig. 1 Conception of a square tensegrity ring module: a diagonal struts, b non-diagonal struts, c layer cables and d x-cables

Fig. 2 Parameters characterizing ring modules: side view (left) and

front view (right)

Fig. 3 The square ring module
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Self-stress states stiffen the structure and stabilize infini-

tesimal mechanisms. Both the number of infinitesimal

mechanisms and the number of independent states of self-

stress can be determined through a singular value decom-

position of the equilibrium matrix [22, 23]. Only six

kinematic constraints are considered in the equilibrium-

matrix study in order to avoid rigid body displacements.

The square module studied in this paper has one infini-

tesimal mechanism and seven independent self-stress

states. For six kinematic constraints on displacements, the

bridge has 31 elementary self-stress states and one infini-

tesimal mechanism.

4 Design specifications

A pedestrian bridge composed of tensegrity ring modules is

required to be over a highway in the region of Lausanne,

Switzerland. A span of 20 m and a distance from the

ground of 3 m are assumed. The bridge geometry is chosen

such that it has the minimum internal space required for

two pedestrians to walk side-by-side (Fig. 4). This space

can be represented by a rectangle with a height of 2.5 m

and a width of 1.3 m. The bridge is composed of four

identical tensegrity modules. Each tensegrity ring module

for the bridge is assumed to be 5 m long. Symmetry about

midspan is obtained by mirroring two modules about plane

Z–Z (Fig. 4).

Using the method presented in Sect. 2, various geome-

tries can be generated. The following geometry is found to

satisfy the requirement for an internal space of

1.3 m 9 2.5 m:

a. length of layer cable = 520.0 cm

b. length of x-cable = 376.4 cm

c. length of diagonal strut = 721.4 cm

d. length of non-diagonal strut = 724.0 cm

The above member dimensions are constant for the

whole study. The cables and the struts of the bridge are

assumed to be made of steel. Nodes at both extremities of

the structure are fixed in all three directions.

The bridge is required to meet the norms for safety and

serviceability specified by the Swiss codes SIA 260 and

263 [24, 25]. Safety criteria ensure that there is sufficient

strength to avoid failure and instabilities. Buckling strength

governs the design of struts. The buckling strength Nk of

struts is given by:

Nk ¼ vk

fyA

1:05
ð1Þ

vk is the reduction factor for buckling, fy is the yield strength

and A is the cross-section area of the cable. A slenderness

limit is also specified for the struts. The slenderness ratio kk

should be less than 200. Cable cross-sections are governed by

tensile strength requirements. The available tensile strength

T is calculated using the following formula:

T ¼ fyA

1:05
ð2Þ

fy is the yield strength in kN/cm2 and A is the cross-section

of the cable in cm2.

Serviceability criteria ensure that the structure is able to

accomplish its function. For a bridge limits on vertical

displacements are prescribed for functionality, comfort and

appearance. All three criteria are evaluated in terms of the

length of the bridge. The functionality and appearance

criteria are the most limiting with acceptable displacements

less than length/700. The three criteria are evaluated at the

two bottom nodes at midspan as the largest displacements

are observed at these nodes. Another constraint that affects

the bridge design is the ratio between the diameter and the

thickness for tubular struts. This ratio must be less than 50

to avoid local instabilities.

Two independent live load models are employed for a

pedestrian bridge: one with a uniform load and another

with a concentrated center load. The values of vertical

loads (dead load and service load) and their corresponding

load factors are shown in Table 1. Load factors are used to

accommodate uncertainties in load values and modeling

assumptions.

These loads are applied on a walking path that is com-

posed of a steel deck. The deck transmits the loads to the

four base nodes of each module. The walking path is 1.3 m

Fig. 4 Tensegrity square bridge

Table 1 Loads on the structure

Load on the

structure

Load factor Value

Concentrated load Uniform load

Dead load 1.35 1.35 c = 78.5 kN/m3

Service load

Concentrated 1.50 0.00 15 kN

Uniform 0.00 1.50 4 kN/m2
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wide and 20 m long. Considering the above loads and

partial factors the uniform load model produces the largest

displacements at midspan and the largest forces in the

members. Thus, it is taken to be the critical load model for

the design of the structure. For the dimensions of this

structure and the critical load model with the respective

partial factors, nodal forces of 12 kN are estimated at the

bottom nodes of both extremities and 24 kN are estimated

at the intermediate bottom nodes.

The structure is analyzed using the dynamic relaxation

method with kinematic damping. Dynamic relaxation is an

iterative method that traces the motion of the structure from

the moment of loading using an analogy of damped vibra-

tion [26]. Due to the presence of fictitious damping, the

structure reaches static equilibrium. The dynamic relaxation

method is advantageous for geometrically nonlinear and

flexible structures since it does not require the inversion of

the stiffness matrix and also determines loaded geometry

and element stresses in one step. Dynamic relaxation may

also be used to determine the number of infinitesimal

mechanisms and the number of independent states of self-

stress for the tensegrity bridge. The bridge has 48 self-stress

states and no infinitesimal mechanisms when all boundary

nodes are blocked (Fig. 4). Consequently, the structure is

statically indeterminate and kinematically determinate.

5 Cost model

In this study, a cost model is used that reflects the total cost

C of assembling the whole structure. This model includes

two parts: the cost of elements cs and the cost of joints cj.

C ¼ cs þ cj ð3Þ

The cost of elements can be further separated into the

cost of struts (cs,s) and the cost of cables (cs,c). Struts are

made out of steel hollow tubes. Data obtained from local

steel construction companies indicate that the price of

hollow tubes varies according to its diameter and its

thickness. The following linear equation has been obtained

using linear regression on this data for calculating the cost

of hollow tubes:

cs;s ¼ 74:84 � As ð4Þ

cs,c is the cost per unit length in CHF/m and As is the area

of the cross-section in cm2. For cables, the cost varies with

cross-section area and length. The following equation

relating cost per unit length to the area has been obtained

using regression:

cs;c ¼ 67:34 � A0:712
c ð5Þ

cs,c is the cost in CHF/m and Ac is the area of the cross-

section in cm2.

The second component in Eq. 3 and potentially, the

most important factor affecting the total cost of the struc-

ture, is the cost of the joints. In steel construction joints are

very expensive details that may determine other aspects of

the design of a structure. In this study, only a single

topology is analyzed. Therefore, the number of joints and

hence, the cost of joints is assumed to remain constant for

all design solutions.

6 Design using parametric analysis

and traditional design

Engineers generally adopt an iterative approach that is

similar to a gradient-based search to design structures. The

initial design often violates design constraints. Depending

upon the nature of constraint violations, larger member

sizes are used and then verified for other criteria. Such an

approach is simulated using parametric studies. Parametric

studies are conducted to understand the individual influ-

ence of each variable on the responses related to the design

constraints. The goal is to identify the optimal direction,

similar to the steepest slope in a gradient-based search. The

effects of parameters on the vertical displacement at mid-

span and the maximum compressive force are evaluated.

The vertical displacement at midspan reflects serviceability

criteria, while the maximum compressive force is related to

failure due to buckling. The vertical displacement is

maximum at the two lower nodes at midspan named A

and B (Fig. 5).

Maximum compressive forces are determined in struts X

and Y. Strut X refers to a diagonal strut in each of the two

outer modules, while Y is a non-diagonal strut in each of

the two central modules. These two elements have the

highest internal compressive forces.

Fig. 5 View from section Z–Z (Fig. 4)
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The influence of the following five parameters on ver-

tical deflection and maximum compressive force is

examined:

• cross-section area of x-cables

• cross-section area of layer cables

• cross-section area of struts

• self-stress

• ratio between the stiffness of struts and cables (varying

the Young’s modulus of struts).

For all the parametric studies, a base design configura-

tion is assumed. The values for this configuration are

inspired from previous research [27–29]. The parameter of

interest is alone varied while the values for other parame-

ters are left unchanged from the base configuration. Spe-

cifically, the parameter of interest is incremented in steps

and two responses, displacement at midspan and maximum

compressive force, are evaluated. Details of the base con-

figuration are given in Table 2.

The parametric analysis reveals that the cross-sectional

area of the x-cables is the parameter with the most influ-

ence on the vertical displacement (Fig. 6). Doubling the

cross-section area of these cables significantly increases

the total rigidity of the system and thus decreases vertical

displacements. Figure 6 shows also that areas of layer

cables have little influence on vertical displacements.

However, when the cross-sectional area of struts is

increased displacements initially decrease and then

remain almost constant (Fig. 7). Figure 8 shows that

increasing the level of self-stress initially increases the

rigidity of the structure by a small amount. However, for

large values of self-stress, there is almost no change in

vertical displacement.

The influence of the ratio between the stiffness of bars

and cables on vertical displacements is shown in Fig. 9.

The plot shows that the decrease in vertical displacement is

negligible for values of the ratio greater than 0.2. Values

for the stiffness ratio between bars and cables should thus

be approximately situated within 0.1 and 0.2 for a good

design tradeoff with respect to displacements.

The magnitudes of the vertical displacements at the two

nodes at midspan are different in all figures. This means

that the structure twists. This behavior is explained by the

asymmetric geometry of the structure. Asymmetry is

caused by the helical circuits created by the arrangement

of the diagonal struts around the longitudinal axis of the

bridge. The torsional behavior decreases when the cross-

section area of the x-cables is increased (Fig. 6). On the

other hand, it increases with the cross-sectional area of the

layer cables (Fig. 6).

Increasing the cross-sectional area of both x-cables and

layer cables decreases the ratio of maximum compressive

force to buckling strength (Fig. 10). However, adjusting

the cross-section area of x-cables is preferable since forces

are more uniformly distributed among the struts. Figure 11

reflects Euler’s law that the ratio of maximum compressive

force to buckling strength decreases exponentially with

increases in the cross-sectional area of struts.

A feasible configuration is found using trends from the

parametric analyses. Values for the parameters are modi-

fied in steps to meet the design constraints. The first

parameter that is modified is the area of the x-cables.

Table 2 Details of the base square module

Struts X-cables Layer cables

A (cm2) 11.10 0.28 0.28

E (kN/cm2) 21,000 11,500 11,500
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Fig. 6 Influence of the cross-

sectional area of x-cables and

layer cables on the vertical

displacement at midspan
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Fig. 7 Influence of the cross-sectional area of struts on the vertical

displacement at midspan
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A value for the area of the x-cables is found for which both

vertical displacements and tensile strength constraints are

satisfied. The next variable considered is the area of the

struts. A tube with sufficient cross-section area and second

moment of area is chosen such that it avoids the instability

due to buckling. Finally, self-stress is introduced in order to

eliminate slack cables and increase slightly the stiffness of

the structure. At every step of the procedure the dynamic

relaxation method is used to analyze the bridge. The details

of the final solution are given in Table 3.

The dead load of the structure is 51 kN. The level of

self-stress in terms of the elongation in length is 0.40 cm

for layer cables and 0.36 cm for x-cables. Based on the cost

model the material cost for this bridge configuration (joints

not included) is estimated to be 89,700 CHF.

7 Design optimization through stochastic search

Structural design is an inverse (abductive) task in which

engineers search for solutions given required functionality

and behavior. Parametric studies are an engineering

approach for obtaining design solutions as there is seldom

any closed form mathematical expression for determining
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Table 3 Design found using parametric analyses

Characteristic Struts Layer cables X-cables

L (cm) 723.95 519.60 376.10

D (cm) 10.16 1.90 2.25

A (cm2) 15.20 3.00 4.00

E (kN/cm2) 21,000 11,500 11,500
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designs directly from specified structural behavior. The

design that is proposed by parametric studies satisfies all

design constraints. However, this solution may not be an

optimal solution. It may simply be a local minimum in a

very large and complex solution space. Plots from para-

metric studies show the influence of a single parameter

only. Implicitly the assumption in parametric studies is that

the general trends are valid even when the initial design

configuration is altered. This assumption is often false.

Global optimization techniques, such as stochastic

search, are powerful techniques for complex engineering

tasks. They find solutions that have a greater chance of

being the global minimum than solutions provided by

parametric analysis. Another advantage is objectives can be

altered easily within the search procedure to study effects

of different requirements and priorities.

The method used for stochastic search and optimization

here is PGSL. The principal assumption of this method is

that sets of near-optimal solutions will be found near sets of

good solutions [18]. The PGSL algorithm is based on a

probability density function that is iteratively modified so

that more exhaustive searches are made in regions of good

solutions. This method has been successfully used to

reduce cost in timber housing design [20].

The first step is to identify the parameters to be included

in the algorithm. The following six parameters are included

in this study:

1. area of layer cables (0.05; 10 cm2)

2. area of x-cables (0.05; 10 cm2)

3. outer diameter of tubular struts (2; 14 cm)

4. diameter to thickness ratio of tubular struts (5; 50)

5. self-stress in layer cables (0; 1 cm)

6. self-stress in x-cables (0; 1 cm)

The above variables are mutually independent and they

have an important impact on the performance of the sys-

tem. The numbers within rectangular brackets beside each

parameter indicate lower and upper bounds of possible

values. For self-stress, the numbers in brackets correspond

to elongations in the respective cables. In this study, ele-

ment topology and span of the bridge are assumed to be

fixed.

The struts have a tubular cross-section and hence there

are two parameters associated with their section charac-

teristics: the outer diameter and the thickness. Since there

is an upper bound on the slenderness limit, there is a

dependency between these two parameters. Therefore, this

limit is explicitly modeled by including the slenderness

ratio as a parameter and constraining it to be less than 200.

For this study, the objective function consists of two

components: (1) the cost (C) of the structure including

joints as given in Eq. 3, and (2) penalty costs (P) that

account for each constraint violation.

OF ¼ C þ P ð6Þ

There is often a trade-off between the two components

of the objective function. For example, decrease in the cost

C may result in constraint violations and increase the value

of the objective function through the penalty function P.

The penalties for the violation of constraints are calcu-

lated as the additional costs that are likely to be incurred to

force the solution to satisfy the constraints. There are four

penalty components as described in Eq. 7.

P ¼ Pd þ Pt þ Pc þ Psc ð7Þ

The penalty cost Pd corresponds to the cost that is

estimated to reduce displacements so that the solution

satisfies displacement criteria. Pt and Pc correspond to the

penalty costs that are estimated to make the design solution

satisfy the tensile and compressive stress limits. An

additional penalty Psc is considered to avoid slack cables

in the structure.

Parametric studies have shown that the x-cables are the

most important load-bearing component in the structure.

Thus, Pd is calculated as the cost corresponding to the

additional x-cable area required to reduce vertical dis-

placements to the allowable limit. From the parametric

study (Fig. 6) on the variation of vertical displacement (d)

in relation to the area of x-cables (A), the following

equation is obtained:

A ¼ 5:16 � d�1:23 ð8Þ

While Fig. 6 is exact only for a parametric study using

the solution given in Table 2, the same general trend is also

observed for other solutions. Therefore, this penalty, which

is only an approximation of the cost required to

compensate excess displacement is valid.

For a given solution with vertical displacement d, Pd is

calculated using Eq. 9.

Pd ¼
0; if d\d0 ¼ 2:85 cm

CðA0Þ � CðAÞ; if d[ d0

(
ð9Þ

A0 is the estimated minimum cross-sectional area that is

required to keep vertical displacements under the allowable

limit d0. A is the cross-section area corresponding to the

evaluated vertical displacement d. A and A0 are calculated

using Eq. 8. Equation 5 is used to determine the cost for a

given area.

The penalty costs for excessive stress are also estimated.

If tensile stresses exceed the tensile capacity of the cables,

a penalty cost is estimated for the additional cable area

required to take the calculated force according to Eq. 5. For

the struts, if compressive stresses exceed their buckling

strength, a penalty cost is estimated for the additional area

necessary to prevent buckling using Eq. 4.
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Probabilistic global search Lausanne requires upper and

lower limits for each input parameter. It samples values for

each parameter within these bounds. PGSL provides con-

sistently good results for a number of evaluations greater

than 4,000. The details of the minimum cost solution

obtained using PGSL are given in Table 4. This value may

not correspond exactly to the global optimum since this is

identified precisely only through the evaluation of all

possible solutions.

The dead load of the structure is 31.25 kN. The level of

self-stress in terms of the elongation in length is 0.55 cm

for layer cables and 0.30 cm for x-cables. Based on the cost

model the material cost for this bridge configuration (joints

not included) is estimated to be 53,300 CHF. Table 5

presents results from 10 PGSL runs. It shows that PGSL

consistently finds solutions that are less expensive than the

solution found using parametric study.

Table 6 gives the minimum, the maximum and the

average values for solution parameters from the 10 PGSL

runs. It also shows the standard deviation for each

parameter.

Table 6 shows that the diameter of struts is the param-

eter with the smallest standard deviation. Other parameters

such as the cross-section area of x-cables and layer cables

have a larger variability than the diameter. Finally,

although values for design parameters vary significantly

between PGSL runs, the costs of the final solutions remain

consistently close to CHF 55,000. Figure 12 shows the

convergence to the best solution in a sample run of PGSL.

8 Discussion

The two design methods studied in this paper result in

feasible solutions that meet the design criteria. However,

the solution from parametric studies is more expensive

compared with the solution obtained using PGSL. Solu-

tions are compared in Table 7.

The PGSL solution has the advantage of being lighter.

The vertical displacement at midspan is, however, larger

for the PGSL solution. The best solution using PGSL has a

Table 4 Final solution generated by PGSL

Characteristic Struts Layer cables X-cables

L (cm) 723.95 519.45 376.13

D (cm) 11.21 1.60 1.90

A (cm2) 1,020 2.21 3.00

E (kN/cm2) 21,000 11,500 11,500

Table 5 Solutions from 10 PGSL runs

Run Area of layer

cable (cm2)

Area of

x-cable

(cm2)

Diameter

of strut

(cm)

Diameter

to thickness

ratio

Cost

(CHF)

1 2.41 4.00 11.20 47.38 55,400

2 2.32 5.89 11.02 46.71 60,500

3 2.21 3.00 11.21 46.94 53,300

4 3.55 4.09 11.28 47.39 57,300

5 2.28 3.95 11.25 47.95 55,000

6 3.05 4.10 11.17 47.59 55,900

7 2.10 3.90 11.34 48.64 54,700

8 2.00 3.32 11.21 47.12 53,600

9 2.78 3.14 11.27 48.14 53,700

10 2.64 3.84 11.18 48.74 54,000

Table 6 Summary of results from PGSL

Characteristic Minimum

value

Maximum

value

Average

value

(n = 10)

Standard

deviation

Area of layer cable

(cm2)

2.00 3.05 2.72 0.72

Area of x-cable (cm2) 3.01 5.89 3.93 0.58

Diameter of struts (cm) 11.02 11.34 11.21 0.10

Diameter to thickness

ratio

46.71 48.64 47.66 0.67

Cost (CHF) 53,300 60,500 55,300 2,100
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250'000

0 500 1000 1500 2000 2500 3000 3500 4000
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Fig. 12 Plot showing PGSL convergence in terms of the cost of the

best solution found after evaluating each sample

Table 7 Comparison of the solutions resulting from use of the two

methods

Study Stochastic search Parametric analyses

Cost (CHF) 53,300 89,700

Dead Load (kN) 31.25 51

Avg. Disp. (cm) 0.86 0.78

Slenderness ratio 186 211
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cost that is 40% lower than the cost of the solution resulting

from parametric analyses.

Another observation is that solutions generated using

PGSL usually have cross-section properties that are not

readily available in practice. There are two solutions for

such situations: requesting a special order or choosing

sections closest to the ones proposed by PGSL. A special

order will, however, increase the cost of the structure. On

the other hand, changing member sizes to nearest standard

sections can result in the violation of a constraint as solu-

tions from PGSL may be sensitive to the parameters. Such

shortcomings can be overcome if design parameters are

modeled as discrete variables.

The performance of PGSL over parametric analyses can

be explained considering parametric plots for two starting

solutions. Plots in Fig. 13 show the influence of the cross-

sectional area of struts on the average vertical displacement

at midspan for two configurations. Configuration I uses the

following parameter values: Alayer cables = 4.00 cm2 and

Ax-cables = 6.00 cm2; for configuration II: Alayer cables =

1.00 cm2 and Ax-cables = 2.00 cm2. Both configurations

show similar trends: the vertical displacement first

decreases, reaches a minimum and then increases. How-

ever, the minimum occurs at different points for the two

cases and the gradients of the curves also vary. For the first

configuration, the minimum corresponds to a strut section

of approximately 12 cm2, while for the second it is found at

approximately 5 cm2. Plots from parametric studies reflect

only a small part of a large solution domain. Parametric

analyses remain valid. However, they may not lead to near-

optimal solutions for tensegrity systems especially if

the configurations are not similar. On the contrary, PGSL

samples all design parameters and is not dependent on

the starting solution. Therefore, it avoids local minima

and the chances of finding the true global optimum are

increased.

Probabilistic global search Lausanne finds a better

solution than parametric study for the following reasons:

1. Stochastic search is a global search method while

parametric studies evaluate only a part of the solution

space. PGSL samples the entire solution space and

gradually focuses around regions with good solutions.

However, parametric studies utilize gradients and their

performance is determined by the initial trial solution.

2. An important difference between the two methods is

that self-stress is modeled as a variable in the

stochastic search, while a constant self-stress is

considered for parametric design. Finding a feasible

solution using parametric studies is difficult when

including self-stress as a parameter.

3. Solutions from stochastic search attempt to satisfy all

design constraints. On the other hand, solutions from

parametric study tightly satisfy only the buckling

constraint while staying well under the limits for

displacement and tensile strength.

Examination of the system behavior reveals character-

istics of the two continuous circuits of diagonal struts that

run across the span. These circuits may carry tensile

stresses greater than 30 N/mm2. Consequently, such stres-

ses may increase the cost of joints. Stochastic search can

also be used for finding solutions such that the struts carry

little or no tension, thereby allowing for less expensive

joints. In this case, an additional constraint is added to the

problem. The solutions found for tensionless struts require

the area of both cables to be increased by large amounts

(4.5–7.0 cm2) and hence include a large increase in the

material cost. It also leads to high values for the maximum

compressive stresses in the struts. Therefore, such solutions

can only be justified when the saving in joint costs are

substantial.

9 Conclusions

This paper focuses on the use of stochastic search for the

design with minimum cost of a pedestrian bridge made of

square hollow-rope tensegrity ring modules. Two design

methods are compared with the aim of finding the minimal

cost solution. The first method attempts to simulate the

practice in design offices using parametric analyses. The

second method uses PGSL, a stochastic search algorithm.

The challenge of designing a tensegrity structure for min-

imum cost is combinatorial. Therefore, millions of possi-

bilities exist. Erection costs are assumed to be the same for

all solutions, and life cycle costing is not included in this

study.
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Fig. 13 Trends for two configurations with the same cross-sectional

area of struts, configuration I: Alayer cables = 4.00 cm2, Ax-cables =

6.00 cm2; configuration II: Alayer cables = 1.00 cm2, Ax-cables =

2.00 cm2
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The conclusions from this study are as follows:

• Results from parametric analyses show that certain

cables (x-cables) are the fundamental load-bearing

elements in these tensegrity bridges. Their stiffness has

the largest effect on maximum compressive forces and

vertical displacements.

• Both parametric analysis and stochastic search generate

designs that satisfy safety and serviceability criteria.

• The best solution using stochastic search has a cost that

is 40% lower than that of the solution from parametric

analysis.

• Parametric analyses are useful to obtain a broad

understanding of the influence of each parameter.

Results from parametric studies can also help in

defining effective penalty costs for enforcing con-

straints during global optimization.

• Stochastic search can support what-if analyses as

engineers can easily modify objective function to

accommodate additional constraints. For example,

results show that dead weight increases significantly

when tensionless struts are required.

These results underline the complexity of the design of

tensegrity structures and the efficiency of advanced com-

puting methods. Work in progress includes studies of more

elaborate cost models and a representation that models

design parameters as discrete variables. Additionally, a

prototype of the tensegrity bridge will be built and studied

experimentally.
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