
Introduction

Until recently, conventional MRI allowed visualisation
of the myelination of the white matter through signal
intensity changes on T1- and T2-weighted images.
Assessing myelination is of interest for better diagnosis
and understanding of inborn errors of metabolisms,
developmental delay and demyelinating diseases.
Understanding normal brain water diffusion has served
as a template for investigation of neurological diseases.
Diffusion-tensor imaging (DTI) characterises the spatial
properties of molecular diffusion [1, 2]. Beside cerebral
ischaemia, DTI has found applications in a wide range
of clinical situations and in developmental studies [3, 4,
5]. Its application to the central nervous system has
revealed that diffusion of water in white matter is
anisotropic, probably due to the ordered structure of
axons and myelin sheaths [6, 7]. The magnitude of dif-
fusion and preferential orientation can be quantified,
providing insights into white-matter microstructure.

Imaging of newborns and infants has demonstrated
higher apparent diffusion coefficients (ADC) and less
anisotropy than in adults [8, 9]. Early changes in ADC
and anisotropy (even before changes in signal on T1- and
T2- weighted images take place) are supposed to repre-
sent changes in premyelination before histological or
MRI evidence of myelination and the role of the sodium-
channel pump has been emphasised [10, 11, 12]. Later
changes during infancy and childhood are attributed to
decreasing water content and progression of myelination
[13]. Some important diffusion-tensor derived measures,
such as indices of diffusion anisotropy, are highly sensi-
tive to the signal-to-noise ratio (SNR) of the input data
[14] and signal averaging is therefore usually required.
On the other hand, fibre-tracking or ‘‘tractography’’,
which aims to reconstruct white matter tracts in three
dimensions by following the path of greatest diffu-
sion—the direction which parallels the eigenvector with
the largest eigenvalue—depends on accurate estimation
of the orientation of the intravoxel tensor. This requires
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an optimal SNR and the highest possible spatial resolu-
tion but implies very long acquisition times. Full brain
coverage with acquisition times between 15 and 40 min
have been reported [15, 16]. These very long times restrict
the introduction of this technique to clinical routine. Our
aim was to elaborate an age-related timetable of changes
in the isotropic diffusion coefficient (D’) and fractional
anisotropy (FA) in the cerebral white matter from nor-
mal neonates to adults and for this purpose a diffusion-
tensor method was optimised for higher SNR and spatial
resolution in a clinically reasonable time.

Materials and methods

We reviewed children referred for neuroimaging. Inclusion criteria
were normal brain imaging including DTI, no signs of neurological
dysfunction, no deficits and no developmental delay. Patients
with known organic brain disorders were excluded. We studied
52 patients (30 boys, 22 girls, age 1 day–16 years, median
5.5 years, mean 6.6 years) (Table 1). No child was examined more
than once. The studies were performed with the approval of the
institutional ethics committee.

All MRI was performed at 2.0 tesla, with a 30 mT/m gradient
system. Diffusion-weighted imaging (DWI) was performed with a
multislice single-shot diffusion-weighted spin-echo echoplanar
(EPI) sequence: TR 5900 TE 102 ms, field of view 256·256 mm2,
whole brain coverage with 19–30 4 mm contiguous slices, depending
on patient size. Raw data size was 128·68 (70% k-space covering).
Raw data were corrected for sampling errors (regridding) and
reconstructed to 128·128. Diffusion encoding was along 60 direc-
tions evenly distributed over a sphere. Diffusion weighting was
optimised according to Jones et al. [17], i.e. only one measurement
with high diffusion weighting was made for each of the 60 diffusion-
encoding gradient directions and six were made with low diffusion
weighting; the effective b was approximately 1500 s/mm2.

To optimise the temporal performance of the gradients, the
standard EPI sequence was modified as follows. The ramp times of
the diffusion-encoding gradients were set to 1 ms, with slew rates
within safety values; gradients were positioned asymmetrically
around the refocusing radiofrequency pulse to obtain maximal
diffusion weighting in the shortest echo time; and we found
empirically that by moderately reducing the amplitude of the EPI
readout gradients, by setting a minimal field of view at 256 mm, the
gradient performance allows multislice DWI with a shorter TE,
giving a higher SNR, and a minimal pause between EPI shots of
40 ms; this was a prerequisite for whole-brain coverage in the
above mentioned TR. As a result of these improvements, SNR in

the raw images was increased by about 50% relative to standard
DWI sequences with the same diffusion weighting and was typically
around 68 (white matter, b 0 image without averaging) and 20 (b
1500 s/mm2, same location). Total acquisition time was approxi-
mately 6.5 min. The images were corrected for eddy current-
induced geometrical distortions (magnification, translation and
shear) according to the modified procedure of Bastin and Armitage
[18]. The b matrix was calculated numerically including all imaging-
and diffusion-encoding gradients.

Diffusion tensor components were computed pixel-by-pixel and
diagonalised to find the fibre directions, using homemade routines
developed on Matlab. Exact calibration of the gradient amplitudes
and verification of the quantitative diffusion measurements was on
a water-filled phantom. After calibration the coincidence between
the diffusion constants measured for different diffusion-encoding
directions was in a good agreement with temperature-compensated
data for diffusion constants in water [19]. FA maps in the water
phantom showed that the anisotropy index was below noise level
and around zero.

All maps were reviewed by two radiologists (JFLS and EM).
Using homemade software, we obtained D’ and FA from the DTI
in left and right anatomical regions after placing manually selected
ROI in the following white-matter areas: the crus of the pons
(Pons); crus cerebri (Crus); posterior limb of internal capsule
(PLIC); centrum semiovale (CSO); frontal, parietal, temporal and
occipital white matter (FWM, PWM, TWM, OWM); and the genu
and splenium of the corpus callosum (GCC, SCC).

D’ and FA were derived from the left and right ROI and
averaged in each patient. Graphs of D’ and FA versus age in all
regions were fitted empirically with multiexponential regression,
using mono- and biexponential functions. The Levenberg-Marqu-
ardt least-squares minimisation was used to determine the best-fit
values of the nonlinear model parameters and their standard errors.
The decision between bi- and mono-exponential fit was made in a
manner similar that described by Mukherjee et al. [20]. The v2

values were calculated for the mono-and biexponential regression
model and the F-test was used to compare the v2 statistics and
determine the model which best fits the data.

Results

For all ROI, D’ was highest in newborns (0–2 months)
and lowest in adolescents (>144 months) while FA
followed an opposite course, being lowest in newborns
and highest in adolescents. We divided white-matter
regions into three groups: corticospinal tracts (Pons,
Crus, PLIC, CSO), deep white matter (FWM, PWM,
OWM, TWM) and corpus callosum (GCC, SCC)
(Fig. 1). In all patients, right and left D’ and FA of
symmetrical ROI showed very good agreement.

In the neonatal period, corticospinal tracts showed the
lowest D’ of all white matter regions, varying from
0.99·10)3 mm2/s±0.02 in Pons to 1.39·10)3 mm2/s
±0.08 in CSO (Table 2a). There was a continuous
decrease in D’, best described by a monoexponential
regression function for Crus and PLIC. Biexponential
regression provided a significant improvement in data
fitting for CSO with only low significance for Pons
(Table 3a, b). Adult values were reached at 36–48 months.

The four deep white-matter regions showed a parallel
time course. All the showed the highest D’ at birth (FWM
1.56·10)3 mm2/s±0.13, OWM1.46·10)3 mm2/s±0.15).

Table 1 Age of 52 children studied

Age (months) Children

0–2 4
2–4 2
4–12 3
12–24 3
24–36 3
36–48 6
48–96 10
96–144 12
>144 9
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All four slopes showed a significant improvement in data
fitting with a biexponential regression, and adult values
were reached slightly earlier than in the corticospinal
tract, at 24–36 months. D’ time-course values for the
GCC and SCC showed parallel slopes best fitted with a
monoexponential regression function. Adult values were
reached at 24–36 months, showing almost no difference

(GCC 0.78·10)3 mm2/s±0.20; SCC D’=0.75·10)3

mm2/s±0.18). The GCC showed higher D’ than the
splenium at all ages (neonatal GCC 1.53)3 mm2/s±0.21;
neonatal SCC 1.44·10)3mm2/s ±0.24).

The highest neonatal FA was found in the corpus
callosum (GCC 0.38±0.08; SCC 0.42±0.07). Corti-
cospinal tracts showed intermediate values at birth
varying from 0.18±0.01 (Pons) to 0.45±0.04 (PLIC).
The lowest neonatal FA was in the deep WM, with
values varying from 0.14±0.04 (FWM) to 0.20±0.05
(TWM) (Table 2b). Highly organised, compact fibre
bundles such as Crus and PLIC showed significantly
higher values than CSO and Pons. Monoexponential

Fig. 1 Scatter plots showing isotropic diffusion coefficient (D’)
(left) and fractional anisotropy (FA) (right) versus age, in the genu
of the corpus callosum (top), the posterior limb of the internal
capsule (middle) and frontal white matter (bottom). dotted lines
95% confidence limits dashed lines 95% prediction limits
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regression function provided the best fit for GCC and
SCC and for TWM, OWM, while biexponential
regression was the best fit for FWM, PWM, Crus, CSO
(low significance) and Pons (Table 3a, b). Adult values
for the GCC and SCC were reached at 24–36 months
with slightly higher values in the SCC (0.76±0.1) than
in the GCC (0.70±0.12). FA in SCC was higher than
in GCC at all ages. In all deep white-matter areas
(Fig. 1), a small but continued late increase in anisot-
ropy was seen with maximal FA 0.45±0.1 for PWM,
OWM and TWM in the oldest patients (12–16 years).
FA in FWM was constantly lower than in the other
three deep white-matter areas with a less pronounced
increase in the final age band.

Discussion

Diagnostic MRI has to be performed in a limited time
and therefore previously reported DTI studies lasting
45 min or more are not suitable for clinical applications.
We present a DTI sequence that has been optimised in
order to get accurate estimation of diffusion parameters
in a reasonable time. Echoplanar DWI is fast and allows
whole brain coverage. There is an increasing need for
high-quality EPI, especially should white-matter tract
reconstruction be needed, implying thinner ( £ 4 mm)
slices and eddy-current correction. We made DT mea-
surements along 60 directions instead of averaging
measurements along the minimum six diffusion direc-
tions, increasing the accuracy of the orientation esti-
mation of the DT and leading to a better estimation of
diffusion anisotropy [17]. We assumed monoexponential
diffusion decay and therefore only a single high b along
each direction was measured. Accurate DT analysis
should include correction of the image distortions due to
residual eddy currents, which arise from switching of
gradients. Modern methods of hard- and software
compensation are very effective and eddy-current effects
do not usually play a role. However, EPI is very sensitive
to all magnetic field inhomogeneity and therefore even
very low eddy currents cause significant (up to several
pixels) shift, shear and scaling of EPI images along the
phase-encoding direction [21, 22]. Variable eddy cur-
rents arise from different diffusion-encoding gradients
causing variable distortions of EPI. This typically pro-
duces a high-signal halo on DTI. On the other hand,
such distortions cause blurring of all DTI parametric
maps and result in faulty estimation of D’ and FA. We
chose the FA index, as it maps diffusion anisotropy with
the greatest detail and highest SNR [23]. Our data
compare favourably with previously published data on
DTI of the white matter in childhood [5, 9, 13, 20, 24,
25]. However, these studies were based on indirect DT
and anisotropy estimation, making direct comparison
with our results difficult (Table 4).

The difference between anisotropic and isotropic
diffusion can be used to highlight white-matter tracts,
assess their integrity and monitor the development of the
normal brain. Previous studies performed in preterm
and term newborns have shown that, as the brain
matures, there is a gradual decline in the mean diffusion
and an increase in anisotropy in the white matter, be-
lieved to be largely related to the process of myelination
[4, 9, 25]. During the laying down of the myelin sheath,
water is extruded from the extracellular space resulting
in a relative increase in the fraction of intracellular water.

Table 4 Nonlinear regression parameters for age dependence of D’
and FA, fitted to y0+A1exp(-ageinmonths/t1)+A2exp(-agein-
months/t2)]

Region Para-
meter

D’ fit FA fit

Pons Y0 0.53 (0.29) 0.51 (0.03)
A1 0.30 (0.07) )0.28 (0.03)
t1 2.31 (1.23) 60.96 (18.25)
A2 0.23 (0.25) Not applicable
t2 181.30 (385.40) Not applicable

Crus Y0 0.75 (0.02) 0.83 (0.10)
A1 0.43 (0.04) )0.30 (0.05)
t1 19.65 (4.47) 3.32 (1.09)
A2 Not applicable )0.28 (0.08)
t2 Not applicable 130.48(101.45)

Posterior limb
internal capsule

Y0 0.67 (0.01) 0.71 (0.01)
A1 0.43 (0.03) )0.28 (0.03)
t1 4.97 (0.86) 5.08 (1.10)

Centrum semiovale Y0 0.65 (0.02) 0.53 (0.01)
A1 0.64 (0.06) –0.16 (0.05)
t1 3.32 (0.64) 2.50 (1.55)
A2 0.20 (0.05) )0.19 (0.05)
t2 42.41 (19.25) 28.73 (8.82)

Frontal white matter Y0 0.68 (0.07) 0.42 (0.02)
A1 0.79 (0.06) )0.19 (0.03)
t1 4.33 (0.64) 4.35 (1.40)
A2 0.19 (0.05) )0.12 (0.02)
t2 97.40 (96.28) 72.86 (44.05)

Parietal white matter Y0 0.66 (0.07) 0.66 (0.51)
A1 0.76 (0.07) )0.20 (0.03)
t1 5.26 (1.00) 6.12 (2.33)
A2 0.17 (0.05) )0.32 (0.48)
t2 87.53 (104.21) 317.90 (706.96)

Temporal white matter Y0 0.76 (0.02) 0.47 (0.01)
A1 0.56 (0.07) )0.25 (0.01)
t1 3.58 (0.82) 31.47 (4.65)
A2 0.22 (0.06) Not applicable
t2 46.57 (21.64) Not applicable

Occipital white matter Y0 0.56 (0.30) 0.47 (0.01)
A1 0.70 (0.04) )0.25 (0.02)
t1 4.44 (0.53) 37.88 (7.04)
A2 0.29 (0.27) Not applicable
t2 235.73 (377.24) Not applicable

Genu of corpus
callosum

Y0 0.79 (0.01) 0.71 (0.01)
A1 0.78 (0.03) )0.35 (0.02)
t1 10.56 (1.19) 14.02 (1.90)

Splenium of corpus
callosum

Y0 0.77 (0.01) 0.74 (0.01)
A1 0.69 (0.04) )0.35 (0.02)
t1 9.06 (1.31) 8.33 (1.41)

Not applicable: monoexponential fit statistically favoured
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Myelin also impairs the exchange of water molecules
across the cell membrane. As the intracellular structures
and cell membrane limit the movement of intracellular
water, the relative decrease in extracellular water results
in a relative decrease of D’ in myelinated white matter.
In addition, because of cell structure, the movement of
intracellular water is restricted perpendicular to the
length of the axon rather than parallel to it, causing a
proportional increase in FA (Fig. 2a, b) [8, 11, 12].
Experimental studies have shown that intact membranes
are the primary determinant of anisotropic water diffu-
sion in nerve fibres and that myelination only can
modulate the degree of anisotropy [26].

We have shown a hierarchy of tissue types, catego-
rising the white matter into commissural, projection and
association fibres [27]. This is even more marked when
considering FA rather than D’. At birth, the highest FA
was seen in the corpus callosum, which belongs to the
commissural fibres. The genu and splenium follow a
nonidentical but strictly parallel course for FA and D’,
the splenium consistently showing higher FA and lower
D’, consistent with an earlier stage of myelination. Both
regions reached adult values during the third year of
life, with the splenium still showing slightly higher FA,
whereas D’ values were almost identical. In the corti-
cospinal tracts, which are projection fibres, PLIC
and Crus had higher FA than CSO and Pons. The

observation that vasogenic oedema preferentially
spreads into projection fibres in mild cases and into
commissural fibres only in severe cases, suggests that FA
may correlate with resistance to spread of fluid, possibly
owing to dependence on common histological structural
features of white matter, as fibre-packing density, mye-
lination, order and/or directional coherence [27]. The
association fibre areas in the deep white matter of
frontal, temporal, parietal and occipital lobes had the
lowest FA in newborns (Fig. 3a). Despite very different
FA of association and commissural fibre areas, their D’
are almost identical during whole brain maturation.
Adult D’ values were reached for all fibre types at
approximately the end of the second year (Fig. 3). In
deep white matter, the time-course for FA and D’ is
different. D’ values are almost identical during matura-
tion in all four regions but FA was clearly distinct and
following a parallel course. TWM and OWM show a
clearly higher FA than PWM and FWM at birth and
during the entire maturation process. Adult FA of
FWM is even lower than in the other three regions,
reflecting the fact that myelination of the frontal lobe
occurs last. Moreover, there are no early organised
myelinated white-matter tracts which produce higher
FA values, as in the OWM, i.e., the visual pathways. We
observed a small but continued increase in anisotropy
and fall in diffusion in FWM until late childhood and
adolescence, unlike all other areas, but consistent with
previous studies [5], reflecting continued myelination
and/or organisation of the FWM and associative path-
ways well into adolescence. Whether these processes
parallel the ongoing acquisition of skills and achieve-
ment of cognitive milestones is the subject of further
investigation.

Fig. 2a, b Axial FA maps. a through the cerebral peduncle and
temporal lobes (a–e), basal ganglia (f–j) and centrum semiovale/
corona radiata (k–o) in five children, showing the development of
FA. b Examples of the manually selected regions of interest in the
left frontal white matter (top left), left side of the genus of the
corpus callosum (top right), left occipital (bottom left), and
temporal (bottom right) white matter
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Fig. 3a–c Time course of D’ and FA in deep white matter, corpus
callosum and corticospinal tracts. F, P T OWM frontal, parietal,
temporal and occipital white matter G, SCC genu and splenium of
corpus callosum CI internal capsule Crus crus cerebri COS centrum
semiovale
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We found that monoexponential functions reliably
expressed the age-dependency of D’ for the commissural
(GCC, SCC) and projection fibres (PLIC, Crus), whereas
a biexponential function gave the most accurate fitting
for deep association fibres (Table 3). Two exceptions are
identified: for the projection-fibre areas CSO and Pons a
biexponential fit (strong correlation for CSO, weak for
Pons) was the best algorithm, probably due to a loss of
compactness as the corticospinal tracts fan out in the
corona radiata and more intense fibre crossing takes
place, especially in the pons.

The fast exponential component of the maturational
decline in the magnitude of water diffusion D’ might be
linked to the decreasing amount of extracellular space or
to increasing concentration of intracellular macromole-
cules [24]. On the other hand, a plausible mechanism for
the slow component of D’ decay might be an ongoing

reduction in the total water content of the brain, which
decreases by 14%–18% from birth to adulthood [13].
The monoexponential D’ decay of the projectional fibres
in the PLIC and the commissural fibres of the corpus
callosum might be explained by the densely packed fibre
bundles and the small extracellular space (Table 3)
There was not as much consistency regarding the best-fit
algorithms for FA as with D’. Densely packed projec-
tional fibres, like the PLIC, or commissural fibres like
GCC and SCC did maintain a monoexponential rise in
FA.

This study provides a normative database of brain
white-matter development from neonates to early ado-
lescence. Appreciation of the normal changes in D’ and
FA with age is important when interpreting DTI, par-
ticularly in cases of global ischaemia or white-matter
degenerative disease.
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