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Abstract Many causes can be at the origin of hip osteo-
arthritis (e.g., cam/pincer impingements), but the exact
pathogenesis for idiopathic osteoarthritis has not yet been
clearly delineated. The aim of the present work is to analyze
the consequences of repetitive extreme hip motion on the
labrum cartilage. Our hypothesis is that extreme movements
can induce excessive labral deformations and lead to early
arthritis. To verify this hypothesis, an optical motion capture
system is used to estimate the kinematics of patient-specific
hip joint, while soft tissue artifacts are reduced with an effec-
tive correction method. Subsequently, a physical simulation
system is used during motion to compute accurate labral de-
formations and to assess the global pressure of the labrum,
as well as any local pressure excess that may be physiologi-
cally damageable. Results show that peak contact pressures
occur at extreme hip flexion/abduction and that the pressure
distribution corresponds with radiologically observed dam-
age zones in the labrum.
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1 Introduction

Osteoarthritis (OA) affects the hip joint and is a common
problem for many people. This pathogenesis can be caused
by femoroacetabular impingements (FAI) that occur when
there is an abnormal contact between the proximal femur
and the acetabular rim [19]. Generally, two basic mecha-
nisms of impingement can be distinguished (Fig. 1): the cam
FAI caused by a non-spherical femoral head and the pincer
FAI due to acetabular overcoverage. These morphological
abnormalities induce degenerative lesions of the cartilages
and, more specifically, lesions of the superior labrum [43].

Although the mechanism of degeneration in the cam/
pincer FAI hip is well understood, the exact pathogenesis
for idiopathic OA has not yet been clearly delineated. In-
deed, changes in the movement and alignment of the hip
(e.g., subluxation) can be other potential causes of early OA.
In particular, athletes seem to present a higher risk of de-
veloping arthritis due to repetitive and extreme movements
performed during their daily exercises [6, 35, 40]. To detect
arthrogenous activities, a clinical study with 30 professional
ballet dancers is being conducted. The aim of this study is to
verify if repetitive extreme motion could be a factor of joint
degeneration through excessive labral deformations.

To pursue this goal, an optical motion capture system
is used to obtain bone poses of patient-specific hip joint
3D models, reconstructed from magnetic resonance imag-
ing (MRI) data. The major drawback with this system is the
soft tissue deformation due to muscle contractions, causing
markers movements with respect to the underlying bones.
Thus, rigid motion of the bony segments cannot be ro-
bustly estimated. To solve this issue, we propose a correction
method combining nonlinear optimization and joint motion
constraints, and allowing some shifts at the joint. The esti-
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Fig. 1 Top: Reduced head-neck offset of cam FAI: non-spherical head
abuts the acetabular rim. Down: Excessive overcoverage of the femoral
head by acetabulum in pincer FAI, causing abutment against the ac-
etabular rim

mation of the hip kinematics was successfully validated with
data collected from a dynamic MRI protocol.

Subsequently, a fast functional joint model is used to sim-
ulate the mechanical behavior of the soft tissues during mo-
tion. To this end, we have developed a physical simulation
system that aims at computing accurately the deformations
of the cartilage during the joint motion, estimated from the
optical capture system. The goal is to compute precisely the
strain and stress, in order to assess the global pressure of
the labrum, as well as any local pressure excess that may be
physiologically damageable.

Finally, simulation results are presented for one dancer
and for various extreme dancing movements, and are com-
pared with the radiological analysis of patient’s MR images.
Moreover, a morphological analysis is performed using stan-
dard measurements (e.g., femoral alpha neck angle, acetabu-
lar depth and version), typically used to diagnose cam/pincer
FAI. Since our hypothesis is that the hip OA is not only the
result of cam/pincer FAI, the prevalence of the subject’s hip
joint must be evaluated, in order to confirm that repetitive
extreme motion may lead to labral microtrauma.

2 Related works

To derive the motion of the skeleton, various methods with
direct access to the bone (e.g., intra-cortical pins [5, 33], ex-
ternal fixators [11], percutaneous trackers [30, 39], fluoro-
scopy [20, 50]) have been proposed. These techniques are

robust, but they are strongly invasive and impede natural
motion patterns. Therefore, the optical motion capture sys-
tem appears as a non-invasive solution for studying the kine-
matics of the joint, allowing the recording of a large range of
motion. However, the internal bone remains inaccessible and
the resulting estimations are embedded with soft tissue arti-
facts (STA). Displacements of individual markers of more
than 20 mm are observed [11] and the STA associated with
the thigh is greater than any lower limb segment.

Several methods were proposed to reduce these errors,
but these techniques have the following limitations: 1) A re-
cent study [12] has showed that some mathematical ap-
proaches [2] are unstable and do not perform better than
traditional bone pose estimators (e.g., SVD algorithm [49]).
These approaches are thus not efficient to compensate STA;
2) Some methods [9, 37] are based on invalid assumptions
(e.g., assuming that the skin motion during a static posture
is the same as during the dynamic activities); 3) Some tech-
niques [36] are limited to the use of ball and socket joints
(i.e., meaning that no shifts are allowed), which simplifies
the joint structures and is not subject-specific.

To overcome this issue, we propose to extend previous
works with a correction method combining nonlinear op-
timization (i.e., we use a quadratic algorithm for robust-
ness and fast convergence) to optimize joint center locations
and segment orientations, and joint constraints to avoid non-
physiological joint translation and even dislocation due to
STA [31]. However, our approach is not meant to impose
strong kinematics constraints, as this was addressed in [36].
We rather aim at applying little joint constraints, allowing
some shifts at the joint.

Once the femoroacetabular movements are precisely es-
timated, they provide the motion input for the physically-
based simulation. The analysis of the stress and contact dis-
tribution in the acetabulum region was the focus of several
studies. In vitro and in vivo measurement methods were de-
veloped based on miniature pressure transducers, inserted
into the femoral head of cadaveric hips [8, 17] or into im-
planted prostheses [29]. Unfortunately, these methods are
not patient-specific or are invasive and difficult to set up. As
a result, mathematical models were implemented to com-
pute non-invasively the mechanics of subject-specific hip
joints. They are divided into two categories: analytical and
numerical models. Analytical models are based on simple
mathematical equations and geometrical parameters [41],
whereas numerical models are based on either Mass–Spring
[32, 38] systems or Finite-Element methods (FEM) [1, 13,
46]. These latter methods were also used to investigate nor-
mal and pathological hip joints (e.g., dysplastic hip [46],
cam/pincer FAI hip [13, 14]). However, these studies do not
generally simulate complex geometrical 3D meshes (for in-
stance patient-specific models) during sophisticated move-
ments. Indeed, the movement is typically simplified to sim-
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ple anatomical angles or to low amplitude motion. There-
fore, we believe that the combination of physical simulation
and motion capture can be an effective approach to study the
hip joint in extreme postures.

3 Material and methods

Our study is conducted with professional female ballet
dancers. The institutional medical-ethical committee ap-
proved the study and the subjects gave written informed con-
sent. For each dancer, patient-specific 3D models (1 femur,
1 hip bone, 1 labrum and 1 skin) of the hip joint were recon-
structed from a static MRI protocol [22]. The reconstruc-
tion is based on discrete deformable models used to auto-
matically register generic models onto individual static MRI
data.

The acetabular region represents the contact area. Since
our goal is to assess the labral deformations during ex-
treme movements, only the labrum was tetrahedralized (∼4
K tetrahedra), whereas the 3D models of the bones were hy-
pothesized as rigid bodies. A method based on the medial
axis information was used to construct the corresponding
tetrahedral mesh, as depicted in [3].

3.1 Motion recordings

Two clusters of six 7 mm spherical markers were affixed
onto the lateral and frontal parts of both thighs. Six markers
were also stuck on the pelvis (Fig. 2a). These skin mark-
ers were arranged to ensure their visibility to the cameras
throughout the range of motion. Additional reflective mark-
ers were distributed over the body to confer a more complete
visualization from general to detailed.

Data from the subjects were acquired during 3 different
dancing activities: grand plié, frontal split and developpé à la
seconde (Fig. 2b, c, d). These movements have been chosen,

Fig. 2 (a) Skin markers configuration: yellow markers are fixed to the
pelvis, blue and pink markers are fixed to the right and left thigh, re-
spectively (b, c, d). Dancing movements recorded with the Vicon sys-
tem: grand plié (b), frontal split (c) and developpé à la seconde (d)

because they require extreme hip flexion and/or abduction.
Moreover, they seem to create significant stress in the hip
joint, according to some dancer’s pain feedback. The mark-
ers trajectories were tracked within a 45.3 m3 measurement
volume (3.6 × 4.2 × 3 m) using 8 infrared cameras (Vicon
MX 13i, Oxford Metrics, UK), sampling at 120 Hz.

3.2 Anatomical calibration

Before converting markers trajectories into animation, an
anatomical calibration is necessary to put in correspondence
anatomical and motion frames. This calibration entails the
localization of the bone segments in the marker cluster tech-
nical frame (CTF) (i.e., the frame determined using marker
point coordinates) and the determination of the relevant
anatomical frames (AFs) (i.e., the local frames rigidly as-
sociated with the bone segments).

In most kinematic studies, bone segment locations and
orientations in the CTF are established from a number of
calibrated anatomical landmarks (ALs), located by exter-
nal palpation [10]. Then, through obvious geometric cal-
culations and using the reconstructed positions of the ALs,
the relevant AFs are computed. However, this methodology
lacks accuracy and precision in the determination of ALs,
due to the overlying soft tissues or to AL misplacement [16].
This affects AF position and orientation precision and, con-
sequently, the estimation and interpretation of joint kinemat-
ics.

To cope with the inaccuracies in the determination of
ALs, we computed the pelvic and femoral coordinate sys-
tems from ALs defined directly on the 3D models of the
bones. These AFs were implemented following the recom-
mendations of the Standardisation and Terminology Com-
mittee of the International Society of Biomechanics [51] to
report joint motion in a repeatable way. The same bone mod-
els were used to evaluate the hip joint center’s (HJC) posi-
tion using a functional method, detailed in [21].

To establish the correspondence between the markers
setup and the bone segments, our idea is to combine MRI
and 3D body scan information to have a better approxima-
tion due to marker positions on the skin. Indeed, 3D body
scanning is a modality that digitalize accurate skin models
of the complete body (accuracy ≈1 mm). Following mo-
tion recordings, the subjects underwent a 3D body scan (Vi-
tus Pro, Vitronic, Germany) with the markers still in place
to retrieve their exact external body surface. From this ac-
quisition, a body contour of the subject is produced and
accurately fitted to a generic body model [48]. Moreover,
the positions of the skin markers are easily identified on
the scan data, using a least-squares sphere fitting technique
[47]. Subsequently, a registration method is used to conform
the body model and the extracted marker positions to the
generic skin segmented from MR images. Since the MRI
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skin model is limited to the pelvis and the femur, the regis-
tration method works in two steps (Fig. 3):

Step 1: The body model surface from the pelvis to the knee
is conformed to the MRI skin model through barycentric co-
ordinates, previously stored from a single subject manual
registration. The power of using generic shapes is that the
morphological features have the same vertex indexes across
individual models. Therefore, since the body model and the
MRI skin model are both generic, only one single subject
manual registration is required to compute the geometric
correspondences (i.e., the barycentric coordinates) between
the two models. Then, the body model can be easily con-
formed to the MRI skin model for all other individuals, us-
ing those correspondences.

To visually evaluate the registration accuracy, the con-
tours of the two surfaces are drawn on the MRI slices
(Fig. 3d). The registration is considered as accurate, when
the two contours are perfectly aligned for the entire MRI
volume.

Step 2: Rigid registrations are performed for the other
body parts (i.e., the two shanks and the torso) using a least-
squares minimization. To proceed, the following procedure
is performed:

Let us consider a set of points {xi ∈ R
3}ni=1 belonging

to the body model surface from the pelvis to the knee, at

Fig. 3 (a) The markers and the body model segmented into 2 parts: the
yellow part is conformed to the MRI skin model and the green parts
are rigidly registered. (b) The MRI skin model with the reconstructed
bones and the MRI volume. (c) Registration result (the bones are not
shown for clarity). (d) The surface contours drawn in one MRI slice.
The green (body model) and blue (MRI skin model) contours are per-
fectly aligned. (e) The points at the junction of the torso (red) used to
compute the rigid transform of the torso

the junction of the torso (Fig. 3e). These points are trans-
formed in Step 1 and their new positions are denoted by
{yi ∈ R

3}ni=1. We seeks for the best rigid transform Rt that
minimize the function:

min
n∑

i=1

‖Rxi + t − yi‖2 (1)

with R the rotation matrix and t the translation vector. The
resulting rigid transform is used to register the torso. For the
two shanks, the same procedure is applied by selecting ap-
propriate points on the body model surface. Since our focus
is on the hip joint, simple approximations for these parts are
satisfactory.

Finally, markers which are attached to the body model
surface follow the transformation of the body model. As a
result, the body model is replaced in the MRI space. A cal-
ibration frame is also obtained where the relative position
of the skin markers, with respect to the underlying bone, is
now established.

3.3 Bone poses estimation

Rigid motion of the bone segment cannot be robustly esti-
mated from the markers trajectories, unless the STA is small.
To reduce STA, our correction method works in 2 phases:
1) First, we combine nonlinear optimization and joint con-
straints. The optimization provides us for each segment with
the rotation and translation that minimize the error made
globally on all the markers, while the HJC remains fixed dur-
ing this first phase; 2) Although the HJC can be considered
as fixed during low amplitude movements, this is not true for
extreme motion. Indeed, a potential subluxation may occur
to avoid bones penetration. Thus, our algorithm adjusts the
HJC by detecting collisions among the articulating bones,
the goal being to reach the non-penetrating state. More de-
tails about these 2 phases are given below:

Phase 1: During a movement, several components con-
tribute to the motion of a skin marker. Assuming that the
pelvis motion is known, the HJC can slightly move during
the rotation of the thigh. This introduces one translation Tc

and one rotation R. Additionally, a rigid displacement is ob-
served due to STA which is denoted by another translation
Ts . The motion of a marker with respect to the pelvis can
hence be described by 3 transformations successively ap-
plied. Since we cannot accurately estimate both Tc and Ts

simultaneously, one of the translations must be discarded.
Previous works [11] showed that, for the thigh, the magni-
tude of the STA is greater than the displacement of the joint
center. Therefore, we decided to compute the best estimate
of Ts and to assume that Tc is close to null. On the contrary,
for the pelvis, it appears that the STA remains small. Thus,
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for this bone we assumed that Ts is close to null and we
estimated Tc instead.

In order to find the transformation (3 unknowns for the
rotation in an axis-angle form and 3 for the translation) that
minimizes the error made globally on the markers, the ob-
jective function to minimize for each segment and for each
instant frame is as follows:
∑

n

(pi − p′
i )

2 (2)

with n the number of markers attached to the bone seg-
ment, pi the recorded position of the ith marker, and p′

i

its estimated position. This is a least-squares minimization
for which we used the rfsq optimizer [34]. Since the skin
markers move nonlinearly [11], the solution converges faster
thanks to the quadratic programming algorithm.

Phase 2: We assume that the position of the pelvis is cor-
rect, because the magnitude of the STA remains small for
this bone. In case of collision between the articulating bones,
the position of the femur must be hence corrected, for each
instant frame, in order to reach the non-penetrating state.
This correction corresponds to a translation of the HJC of
vector DHJC (boldface notation for vector). For fast compu-
tation, an uniform-level octree subdivision [24] is used for
the hip bone model and the following algorithm is applied
(see Fig. 4):

Let us consider Φ being the collider (i.e., the femur)
and Γ the collided object (i.e., the hip bone). The two
meshes are defined by a set of points Φ = {Pi ∈ R

3} and
Γ = {Qi ∈ R

3}, respectively. First, we project each point Pi

Fig. 4 2D schematic view of the collisions detection algorithm. The
femur is corrected at each instant frame. As a result, the HJC undergoes
a translation of vector DHJC

onto Γ , yielding the projected point Pi⊥. Then, Pi is defined
as being inside, and therefore colliding, if PiPi⊥.NPi⊥ > 0
where NPi⊥ is the outward normal at Pi⊥. This subset of k

colliding points Ck = {P1, . . . ,Pk} creates the displacement
vector:

D =
∑k

i=1 PiPi⊥
k

=
∑k

i=1 di

k
. (3)

The collider undergoes a translation proportional to the vec-
tor D. This algorithm is iteratively performed for each in-
stant frame, until no more collisions are detected. As a re-
sult, the translation DHJC of the HJC is equivalent to the sum
of the translation vectors applied on the collider.

Validation: The validation of the hip kinematics estima-
tion was obtained using marker position data, collected
during clinical motion patterns (flexion/extension, abduc-
tion/adduction, internal/external rotation) on 6 volunteers
scanned with a dynamic MRI protocol [23]. The subjects
were equipped with external MRI-compatible marker sets
and a tracking device was used to ensure the movements
repeatability. For each instant frame, the position and orien-
tation of both the hip and femur bones were computed and
the kinematics derived from the marker position data were
compared with that of the MRI bone tracking. Only the error
on the femur translation/orientation was calculated, since no
markers were placed on the pelvis. Table 1 shows the femur
position and orientation reconstruction errors expressed in
the hip joint coordinates system.

As said previously in Sect. 2, the femur exhibits substan-
tial skin motion. From these results, the STA errors for this
bone are thus significantly reduced by the use of the pro-
posed method.

3.4 The simulation model

The base of this simulation model is a first-order finite-
element system [4, 7, 15], which offers a good tradeoff be-
tween accuracy and computation speed in the context of soft
tissues. Since the only degrees of freedom of such models
are the vertices of the mesh, it can be associated to any
fast numerical integration method commonly used in parti-
cle systems [25], as well as good convenience for managing

Table 1 Femur reconstruction errors for medio-lateral (X), antero-
posterior (Y ) and proximo-distal (Z) translations [mm], and for flex-
ion/extension (α), abduction/adduction (β) and internal/external rota-
tion (γ ) [deg]

X Y Z α β γ

Mean 0.45 0.19 0.37 3.28 1.49 0.43

RMS 0.59 0.24 0.4 3.86 1.71 0.55

Std 0.4 0.16 0.17 2.06 0.89 0.37
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collisions, contacts and other geometrical constraints effi-
ciently.

This model has been optimized to the context of large
deformations through the corotational scheme: this avoids
the nonlinearity of shear deformations by expressing the de-
formation state of the material in a local coordinate system
oriented along the eigendirections of the strain tensor [27,
42]. This preserves accuracy in the linearized expression of
the material strain, allowing linearity to offer a more ro-
bust processing of high compression states than the Saint-
Venant–Kirchhoff models usually implemented in the con-
text of large deformations [7, 26, 44].

We have associated this model to an adapted numerical
integration scheme which uses either Newton–Raphson or
Backward Euler steps, depending if static relaxation or dy-
namic simulation is used. Both take advantage of an efficient
implementation of the Conjugate Gradient method which al-
lows variable force Jacobian matrices to be accurately taken
into account, key to an accurate processing of the nonlinear-
ities resulting from large deformations.

This system provides us with a good performance in com-
puting the strain and stress states of the deformable tissues,
which can then be rendered interactively though adequate
visualization techniques.

4 Results

4.1 Morphological analysis

Since our goal is to investigate idiopathic OA, we must first
eliminate the typical abnormalities of the hip joint that could
lead to cam/pincer FAI. Therefore, a morphological analy-
sis is performed to evaluate the prevalence of the subject’s
hip joint. The morphology of the hip is well described by
selected anatomical parameters.

One important parameter is the computation of the ac-
etabular version which can be an indicator of pincer FAI
[43]. We have implemented the standard measurement
method from [45]. It is based on the angle between the
sagittal direction and lines drawn between the anterior and
posterior acetabular rim, at different heights (Fig. 5a). The
angle is considered as positive when inclined medially to
the sagittal plane (anteversion) and negative when inclined
laterally to the sagittal plane (retroversion). Normal hips are
anteverted.

Another indicator of pincer FAI is the acetabular depth
[43]. The depth of the acetabulum is defined as the distance
in mm between the center of the femoral head (O) and the
line AR–PR connecting the anterior (AR) and posterior
(PR) acetabular rim (Fig. 5b). The value is considered as
positive and normal if O is lateral to the line AR–PR.

Fig. 5 (a) Computation of the acetabular version based on 3D recon-
struction; roof edge (RE) and equatorial edge (EE) are lines drawn
between the anterior and posterior acetabular edges, defining the ori-
entation of the acetabular opening proximally and at the maximum
diameter of the femoral head respectively (arrows). (b) Definition of
the acetabular depth (right) on a transverse oblique MR image (left).
(c) Definition of the α angle (right) on a radial MR image (left), illus-
trating a cam type morphology (α = 85◦)

Finally, a standard parameter related to the femur geom-
etry is the femoral alpha (α) neck angle that is used for de-
tecting cam FAI [43]. The α angle is being defined by the
angle formed by the line O–O ′ connecting the center of the
femoral head (O) and the center of the femoral neck (O ′) at
its narrowest point, and the line O–P connecting O and the
point P where the distance between the bony contour of the
femoral head and O exceeds the radius (r) of the femoral
head (Fig. 5c). Deviation from the normal geometry is usu-
ally associated with larger α angles (>60◦).

All the dancers’ hips were analyzed, according to those
3 anatomical parameters. No morphological abnormalities
were detected and it was concluded that all the measured
hips were anteverted, with a positive depth and an α angle
in the normal range (30◦ < α < 55◦). The results were vali-
dated by a radiological expert.

4.2 Physical simulation

Simulation results are presented for one dancer. They were
obtained during the simulation of the hip joint, where the
labral deformations and pressures were computed. The el-
ements present in our tests were: the hip and femur bones,
as well as the tetrahedralized labrum. We investigated the
three dancing’s movements (grand plié, frontal split and de-
veloppé à la seconde) recorded from the motion capture,
as motion input. Since they all require extreme hip flexion
and/or abduction, they should create significant stress in the
articulation.

All the biomechanical materials considered in the cur-
rent study were assumed as linear elastic and isotropic. The
3D models of the bones were hypothesized as rigid bodies,
and the material properties for the labrum in terms of elastic
modulus (Young’s modulus E) and Poisson’s ratio (ν) were
defined to be 20 MPa and 0.4, as depicted in [18].
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Fig. 6 Peak contact pressures of the labrum during the whole motion

The mechanical simulation first detects the collisions be-
tween the femur and labrum surfaces, using the previous ap-
proach described in Sect. 3.3. Then, an appropriate collision
response is computed, based on quadratic penalty forces
[28]. The aim is to constrain the two models to reach the
non-penetrating state.

We define the pressure P as the stress along the direction
of the maximal compression. For each movement, the peak
contact pressures of the labrum are plotted, as a function of
motion (Fig. 6). Furthermore, Fig. 7a shows for the three
motions the pressure distribution within the labrum, for the
instant frame where the maximal pressure was computed.
Finally, Table 2 presents, for the three movements, the max-
imal and average peak pressures calculated during the entire
motion, but only when collisions were detected.

Table 2 Maximal and average peak pressures within the labrum, cal-
culated during the entire motion, but only when collisions were de-
tected

Movement Peak (MPa) Mean (MPa)

Grand plié 14.12 10.18

Frontal split 14.28 11.95

Developpé à la seconde 14.27 9.16

4.3 Interpretation

The subject’s MR images were analyzed by a radiological
expert. For the tested dancer, the localization of the labral
lesions were diagnosed for both hips in the superior region
of the acetabular rim. The labrum was considered as degen-
erated (abnormal signal intensity) for the left hip and torn
(abnormal linear intensity extending to the labral surface)
for the right hip. According to the three anatomical parame-
ters, the morphological analysis for this subject reported an
α angle of 42.95◦ (left hip) and 43.67◦ (right hip), an ac-
etabular depth of 8.06 mm (left hip) and 7.72 mm (right hip)
and no retroversion. Thus, the subject’s hips did not present
any cam or pincer type morphology.

For the three movements analyzed, the maximal peak
contact pressures occurred at maximal hip joint angle, as
shown in Fig. 7a. Strong labral deformations were observed
when the subject was performing extreme hip flexions or ab-
ductions. Moreover, the labral deformations were located in
the superior area of the acetabular rim, which corresponds
to the localization of diagnosed lesions (Fig. 7b). Finally,
according to Table 2, the calculated maximal and average
peak pressures are high compared to the normal situation.
Indeed, previous studies [14, 46] reported cartilages pres-
sures ranging from 2 MPa to 4 MPa for asymptomatic hips
and daily activities. This corroborates the fact that the artic-
ulation undergoes a high stress during extreme hip motion.
Moreover, Fig. 6 reveals that such high pressures are often
reached during dancing activities.

In conclusion, the simulation clearly demonstrates that
both the pressure and its distribution within the labrum are
clinically relevant with respect to radiologically observed
damage zones in the labrum.

5 Discussion

In this paper, a methodology to perform functional simula-
tions of the hip joint in extreme postures has been described.
The use of optical motion capture allows us to accurately es-
timate bone poses of patient-specific hip joint, whereas the
physical simulation provides us with accurate labral defor-
mations and pressure indications in the simulated joint.
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Fig. 7 (a) Computed motion
and resulting pressure
distribution within the labrum:
grand plié (top), frontal split
(middle) and developpé à la
seconde (bottom). We clearly
see that the maximal peak
contact pressures occur at the
maximal hip joint flexion and/or
abduction. (b) Top: spatial
partitioning of the acetabular
region in quadrants. Middle and
bottom: diagnosed labral lesions
in patient’s MR images (red
arrows). The labral
deformations (a) and the
lesions (b) are both located in
the superior quadrant of the
acetabular rim

The simulation results have been reported for a single
dancer, presenting no morphological abnormalities. These
results already reveal that motion has a direct influence on
the pressure distribution within the labrum. Moreover, a
strong correlation is observed between the computed labral
deformations and the diagnosed lesions. These are clinically
encouraging results, but this methodology needs to be tested
with additional subjects. However, there is little doubt that
repetitive extreme hip motion could be a potential cause for
the development of hip pain and OA in this selected popula-
tion, with potential stigmata in the symptomatic dancers.

Future work will address the following points: The com-
plex mechanical behavior of cartilage (i.e., nonlinear and
biphasic properties) will be considered. A more advanced
simulation accounting for all the cartilages of the hip joint
(labrum, acetabular and femoral cartilages) will also be in-
vestigated. Finally, further experiments will be carried out
to estimate the error made on the hip kinematics during ex-
treme movements, since currently only low amplitude mo-
tion was validated. For example, these experiments can be
conducted in open MRI.
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