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Abstract Fracture of concrete at the scale of the
aggregate structure (or smaller) is a complicated pro-
cess. Simple simulation models may be of help in
understanding fracture in more detail, provided that the
material structure is incorporated in as much detail as
possible. A combined approach using computed tomo-
graphy and image processing allows us to model
concrete close to reality. The shape of the aggregates
is included in a 3D beam lattice model for fracture.
Fracture of concrete beams is simulated under 3-point
bending with different sizes, aggregate densities and
aggregates shapes, focusing on the size effect on struc-
tural strength and fracture energy.

Keywords Computed tomography · Aggregate
structure · Oval-shaped aggregates · Crushed
aggregates · Numerical concrete · 3D lattice model

1 Introduction

In this paper a size effect study is presented using nume-
rical concrete. Lattice models are a suitable instrument
for learning and understanding fracture mechanisms.
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The principle of the model is that the material is repla-
ced by a network of one-dimensional, continuum line
elements (springs, truss elements or beams).

Lattice type models were first studied by Hrennikoff
(1941), who calculated linear elastic problems with
truss elements in 2D, to some extent also in 3D (shells),
long before computers were developed. Later statistical
physics reintroduced the method for studying fracture
(Herrmann et al. 1989) and was adopted and modi-
fied to study fracture in concrete (Schlangen and Van
Mier 1992; Schlangen 1993). The lattice model was
made suitable for concrete through various modifica-
tions including the use of triangular lattice geometries
instead of using square lattices. This modification leads
to an improved estimate of the Poisson’s ratio. In addi-
tion an aggregate structure was implemented and dif-
ferent properties were assigned to elements falling in
the respective material phases. In this model fracture is
simulated by a removal of one beam element in each
step.

On aggregate scale (millimeter scale) concrete has
characteristically a high degree of heterogeneity. At this
so-called meso-level concrete is usually characterized
as a three-phase material, consisting of stiff aggregates,
a weaker cement matrix and between them a weak
interfacial transition zone. Variations may appear, for
example low strength porous aggregates may be used
in some cases, especially for reducing the density of
the material. In that case concrete is still considered as
a three-phase material, but the strength ratios are quite
different compared to normal concrete.
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62 H.-K. Man, J. G. M. van Mier

In the lattice model, the heterogeneity can easily
be included into the model by assigning different
Young’s modulus and tensile strengths, i.e. the mate-
rial structure of concrete will be mapped into the mesh
directly.

Lattice simulations were done initially in 2D with
a relatively small number of around 3,000–30,000 lat-
tice elements (see for example Schlangen and Van Mier
1992; Vervuurt 1997; Van Vliet 2000), which was limi-
ted primarily by the high demand on computational
time.

Over the last years faster computing systems have
developed rapidly. Moreover a parallel solver has been
implemented in the lattice program, which allows to
benefit from parallel computers (Lingen 2000). With
this potential, high performance computers like the
CRAY XT3 with over 1,656 computing processors can
be used now for simulating fracture experiments.
Thanks to this, analyses with a high number of lat-
tice elements are possible. Fracture simulations can be
carried out in full 3D (Lilliu and Van Mier 2003; Lil-
liu 2007; Man and Van Mier 2008; Van Mier and Man
2008), allowing building three-dimensional lattice net-
works with multi-million elements and a high degree
of heterogeneity. At the same time the lattice element
sizes are reduced, allowing including much more detail
of the microstructure. For example the smallest element
considered now was a lattice beam length of 0.1 mm.
This was used to capture the structure of foamed cement
in great detail, see Meyer et al. (2007).

The material structure of concrete can be generated
with a computer program. In that case the aggregates
are represented as circles in 2D or as spheres in 3D. In
general a Fuller aggregate size distribution is used.

Recently, however, the material structure of concrete
is modeled more realistically. The circular or spheri-
cal aggregates are still a simplification and one can
argue that in reality the aggregates are generally non-
spherical.

The geometries of aggregates vary and in practice
aggregates with oval or crushed shapes are used (see
Fig. 1a and b). For implementing those types of aggre-
gates into the lattice model, a different kind of approach
has to be developed. One possibility is to mathemati-
cally describe the shape of the aggregates, which was
done for example by Wittmann et al. (1985) in 2D or
by Garboczi (2002) in 3D. These descriptions are very
complicated, but can be implemented into the already
existing program. Nevertheless, this kind of approach

Fig. 1 Pictures of aggregates (basalt) used in the model concrete:
(a) oval-shaped and (b) crushed aggregates

lacks simplicity. Therefore instead of modifying and
extending an existing computer program for generating
the real grain structures, a different, but at the same time
a very simple approach was designed.

In this paper the new method will be introduced. CT-
Scans of real concrete samples are modified to allow for
direct mapping of the material structure onto a lattice.
Examples of applications are shown. The focus is on
the analysis is of the size effect on fracture strength and
fracture energy (work of fracture).

2 Sample preparation and image processing

The basic concept of modeling real aggregate shapes
is

• to extract the material structure directly from exis-
ting concrete samples and
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Fig. 2 Microstructure of a scanned concrete prism after CT scan (volume rendering): (a) oval-shaped and (b) crushed aggregates

• to transfer this structural information directly into
the lattice model.

To detect the aggregates structure of real concrete struc-
tures, prisms are scanned through computed tomogra-
phy (CT-scan). The resulting images serve as basis for
implementing the aggregate structure into the nume-
rical model. This approach has the obvious advantage
of using real instead of computer-generated spherical
aggregates.

Concrete specimens are prepared with cement CEM
I 42.5 with a low water-cement ratio (w/c = 0.3 by
weight) and with aggregates, which have either oval
or crushed shapes. Different kinds of aggregates were
selected and scanned: basalt and marble. These two
materials have a much higher density in comparison
to the cement matrix, and are thus suitable for expe-
riments in the CT scanner. Cement matrix with a w/c
ratio of 0.3 has a density of around 2,100–2,200 kg/m3,
while basalt has a density of around 3,000 kg/m3 and
marble of around 2,700 kg/m3. The used aggregates are
shown in Fig. 1.

All the concrete prisms were scanned with a medi-
cal dual source CT scanner Siemens SOMATOM Defi-
nition. The result of the scanning process is a series
of 2D images, which can be reconstructed in various
ways. A volume of a concrete specimen can be built
simply by ‘stacking’ the individual slices one on top
on one another. This is a technique called “volume ren-

dering” (see Fig. 2a and b). A similar technique will
be applied to map the material structure into the lattice
model.

To transfer/map this information of the microstruc-
ture directly into the lattice model, the slices of the
images will be overlaid directly on the respective nodes.
Usually low-density materials are in dark tones (cement
matrix) and material with a high density like the aggre-
gates are represented in lighter tones (see Fig. 3). By
stacking the individual slices into the third dimension
(analog to volume rendering) a 3D microstructure is
generated. In addition to build a 3D lattice model the
nodes must be connected into a lattice network.

To determine the material property of a lattice ele-
ment, a simple procedure checks whether both nodes
fall within an aggregate particle: the element will be
assigned aggregate properties. If both nodes are within
the cement matrix, the element will be assigned cement
matrix properties, whereas when the element has one
aggregate and one matrix node it will be assigned ITZ
(interfacial transition zone) properties.

Figure 3 shows a comparison of one slice of the
scanned image and the resulting lattice model. The
lattice shows the three phases: cement matrix (blue),
aggregates (red) and ITZ (green). The figure illustrates
clearly that the shapes of the aggregates from the real
samples can be captured in the lattice structure quite
well and non-spherical aggregate shapes can be mode-
led by means of this simple approach.
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Fig. 3 Comparison of the microstructure from a X-ray tomo-
graphy slice with a slice of a 3D lattice

Fig. 4 Comparison between the Pk of a real concrete sample
with the lattice structures for Pk = 20%, 30 and 40% (with the
element size C “large” with 1,155,549 lattice elements)

It seems that this method is applicable for mode-
ling real concrete structures including as much detail
as required. Figure 4 makes a quantitative comparison
between the scanned concrete samples and the resul-
tant lattice structure. The comparison was done on three
samples with crushed shaped aggregates. The compari-
son in Fig. 4 shows that the lattice structure has a lower
aggregate volume Pk. In all models the Pk-ratio of the
(numerical) concrete is underestimated:

Pk(real concrete sample) > Pk(3D lattice). (1)

The aggregate volume of the scanned specimen is 5–8%
higher than its numerical counterpart. The difference is
explained from the integration of the ITZ, which has
a thickness of exactly one-lattice element length. This
is dearly an overestimation, since in reality the ITZ
thickness should be in the order of 20–40µm (Scri-
vener 1989). To solve this problem there are several
possibilities: either reducing the length of ITZ beams
or reducing the length of all lattice beams in general;
in both cases this would raise the element numbers and
consequently increase the computational time. In the
end a reasonable balance must be derived between spa-
tial resolutions and computational effort needed.

In the analysis presented in this paper we have kept
the same beam length for the entire lattice.

3 Simple lattice model

The lattice model, which is used here, is based on
a sequential removal of one Bernoulli beam in each
step: simulating the fracture process of concrete with
this model is (still) very time-consuming and the need
of computational resources is huge. Nevertheless for
understanding the fracture process of quasi-brittle
materials such as concrete it appears to be a simple
and useful method. The fracture law has the following
form:

σ

ft
= 1

ft

(
N

A
+ α

max(Mi , M j )

W

)
(2)

with N the normal force, A the cross-section area, Mi

the bending moment of the node i and W the sectional
modulus. ft is the tensile strength of the considered
lattice element. The parameter α determines the role of
bending in the fracture law.

In our case we choose α = 0, thus reducing the frac-
ture criterion into a simple maximum tensile stress
criterion which resembles the Rankine criterion. This
same assumption was made in earlier 3D lattice analy-
sis (Lilliu and Van Mier 2003; Lilliu 2007). Thus, Eq.
2 reduces into the much simpler expression:

σ

ft
= 1

ft

N

A
(3)

In each sequential step the element with the highest σ
ft

value will be removed from the lattice mesh.
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4 Overview of the analysis

In this paper, fracture simulations are presented on
concrete prisms subjected to 3 point bending. The
prisms have varying particle densities, different aggre-
gate shapes and different sizes. In the present size effect
study the specimen sizes will be scaled in all three direc-
tions. The size ratio from the smallest to the largest
specimen is 1:8 (see Table 1).

In the past size effect studies scaling the specimen
size was commonly done in two dimensions only (sca-
ling in length and height). One size parameter is held
constant which is usually the thickness. This approach
(referred to 2D scaling) is, in contrast to 3D (or full)
scaling, a much simpler and less demanding approach,
both, in experiments and numerical simulations. The
specimen volume increases by a factor 2n, assuming a
doubling with n = 2 in 2D and n = 3 in 3D. It is obvious
that the volume (and thus at the same time the number
of elements required) in 3D scaling increases signifi-
cantly compared to 2D scaling.

There are some advantages of using 3D scaling over
2D scaling. In 3D scaling usually a three-dimensional
material structure is used, for example the aggregates
are modeled fully in 3D, while in two-dimensional sca-
ling the material structure is also represented in 2D,
which means that the aggregates are modeled either as
circles (plane stress) or as cylinders (plane strain).

As mentioned above in 2D scaling the specimen thi-
ckness is held constant for all specimen sizes. If the
thickness is significantly smaller than the two other
specimen dimensions, a plane-stress analysis will suf-
fice. The situation changes when the thickness is of
the same order as the other specimen dimensions and
a plane-strain analysis is required. This is not entirely
clear where the transition lies.

Another aspect is that wall effects can be included in
a 3D analysis. Depending on whether a concrete speci-
men is cast or sawn from a larger block, different wall
effects exist. Walls are in a 3D case two-dimensional

planes, whereas in the 2D case walls are represented
by one-dimensional lines only.

The lattice element numbers ranges from 21,107 to
9,269,081 elements, from the smallest specimen size
(6.25 × 2.38 × 2.6 mm) to the largest (50 × 18.84 ×
19.04 mm, see Table 1). A regular triangular lattice
configuration was used with a beam length of 0.25 mm,
which is used for all prism sizes. The ratio of the
Young’s modulus of the aggregate, cement matrix and
the ITZ phases is: 70/25/25; the ratio of the tensile
strengths is 10/5/1.25.

Due to the improvements of modeling the micro-
structure mentioned earlier, the shapes of the aggre-
gates can be either oval or crushed. For the rough par-
ticles three different particle densities were investiga-
ted: Pk = 20, 30 and 40% (see Fig. 5a–c).

To compare between rough and oval shaped aggre-
gates directly and to find out structural and mechanical
differences, also a concrete specimen with oval shaped
aggregates and Pk = 40% was selected and analyzed
(Fig. 5d). The aggregate size ranges between 1.5 and
3 mm. To obtain a similar microstructure, it is conve-
nient to use one large scanned concrete prism and to
cut all specimens from this large microstructure.

Figure 6 shows four lattices of different sizes contai-
ning crushed aggregates (Pk = 20%). The material struc-
ture are kept the same, see the circled area on the
figures. In the center of one edge the material struc-
ture is identical for all sizes. For the remainder of the
specimen there is un-avoidable variation.

The largest specimen size was simulated only once,
the second largest size was repeated 5–6 times, the
medium size 8–10 and for the smallest one 10–12 simu-
lations were performed (see Table 2).

These fracture simulations are performed on dif-
ferent computers: either on small unix/linux worksta-
tions with up to four processors, mid-size computing
servers (SGI Altix 350 with 16 Intel Itanium 2 pro-
cessors and 32 GB of shared memory) to larger ser-
vers (HP Superdome with 96 Intel Itanium 2 dual-core

Table 1 Specimen size and
number of lattice elements

A B C D

# Lattice 21,107 143,627 1,155,549 9,269,081
elements
Specimen 6.25 × 2.38 × 2.6 12.5 × 4.6 × 4.8 25 × 9.31 × 9.53 50 × 18.84 × 19.04
size (mm)
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66 H.-K. Man, J. G. M. van Mier

Fig. 5 Microstructure of the four concrete prisms with Pk =
20% (a), 30% (b), and 40% (c), with crushed aggregates, Pk =
40% with oval-shaped aggregates (d). The specimen size is C
(“Large”)

processors and 384 GB of shared memory) and massive
parallel computing facilities like the CRAY XT3 from
the Swiss National Supercomputing Center, which has
a total of 1,656 AMD Opteron dual-core processors
with 2GB RAM per processor (total of 3,312 proces-
sing cores). It proved to be optimal to use 64–256 pro-

Fig. 6 Microstructure of 3D lattices with Pk = 20%, from the
largest (a) to the smallest specimen (d). The circled area indicates
where the microstructure matches

cessors in the CRAY XT3. This facility was used to
analyse the two largest specimen sizes (specimen size
C with 1,155,549 and size D with 9,269,081 elements).

5 Structural study

Figure 7 compares the distribution of the material
phases between oval and crushed aggregates with
Pk = 40%. The smallest specimen with Pk = 40% (in
both cases) is not exactly matched (an average of
Pk = 34% for concrete with oval aggregates and
Pk = 44% for crushed aggregates with a large errorbar),
which is in contrast to the larger sizes, that converge to
the original Pk of 40% and also the errorbars are much
smaller. As mentioned, the smallest specimen size is
6.25 × 2.38 × 2.6 mm and the grain size ranges bet-
ween 1.5 and 3 mm. One can argue that this is probably
the main problem here; the biggest aggregate is not
significantly smaller than the prism size. In our case
it is not unusual to have only 2–3 aggregates in such
a small specimen (see for example Fig. 6d), therefore

Table 2 Number of
simulations done for each
case

A (small) B (medium) C (large) D (xlarge)

20% (crushed aggregates) 10 10 6 1
30% (crushed aggregates) 12 8 5 1
40% (crushed aggregates) 12 8 6 1
40% (oval-shaped aggregates) 12 8 5 1
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it is very difficult to match the same Pk in compari-
son to the larger sizes. One can certainly discuss if the
smallest specimen size should be included in the ana-
lysis at all, but by doing so one has also to consider
that the size ratio from the smallest to the largest prism
size would be only 1:4 instead of 1:8. It was decided
to keep the smallest size in our analysis, but running
more simulations for the smallest sizes compared to the
larger ones.

This discrepancy of the Pk of the smallest compared
to the larger sizes and the large scatter of aggregate
density for the smallest size can also be observed for
the other cases as well (see Table 3).

Although Fig. 7 shows that both aggregate types have
a comparable Pk of around 40%, the number of ITZ ele-
ments differs significantly. With identical Pk, the cru-
shed aggregates have a higher number of ITZ elements
in comparison to the oval shaped aggregates, at the
same time a lower share of cement matrix elements.

Fig. 7 Comparison of oval and crushed aggregates at Pk = 40%

Table 4 indicates that the difference on ITZ elements
are up to 46% for the second largest specimen size,
concluding that crushed aggregates have a higher spe-
cific surface, as was expected.

Table 3 Numbers of elements used in the various computations with the distribution of the three material parameters. Standard-deviation
in brackets

Average # Agg. # ITZ # Matrix % Agg. % ITZ % Mat.

Pk = 40% (oval-shaped aggregates)
A 9,457 (1,062) 2,731 (71) 8,919 (1,011) 44.81 12.94 42.26
B 60,224 (3,676) 18,893 (604) 64,509 (4,132) 41.93 13.15 44.91
C 479,039 (6,244) 154,455 (1,825) 522,055 (7,876) 41.46 13.37 45.18
D 3,669,629 (–) 1,167,904 (–) 4,431,548 (–) 39.59 12.6 47.81

Pk = 40% (crushed aggregates)
A 7,221 (530) 3,713 (186) 9,674 (495) 36.58 17.59 45.83
B 55,840 (476) 26,516 (283) 61,271 (610) 38.88 18.46 42.66
C 456,612 (976) 224,790 (914) 473,096 (1,317) 39.51 19.45 41.03
D 3,891,140 (–) 1,519,241 (–) 3,858,700 (–) 41.97 16.39 41.63

Pk = 30% (crushed aggregates)
A 7,216 (1,018) 3,632 (215) 10,259 (1,022) 34.19 17.21 48.60
B 43,475 (3,093) 23,956 (1,114) 76,195 (4,036) 30.27 16.68 53.05
C 337,039 (2,904) 187,919 (435) 630,591 (3,206) 29.17 16.26 54.57
D 2,833,558 (–) 1,475,637 (–) 4,959,886 (–) 30.57 15.92 53.51

Pk = 20% (crushed aggregates)
A 4,824 (1,313) 2,239 (297) 14,046 (1,366) 22.85 10.61 66.54
B 35,110 (1,350) 16,397 (1,320) 92,150 (2,067) 24.69 11.65 63.66
C 242,385 (13,548) 127,040 (3,369) 786,124 (16,910) 20.98 11.99 68.03
D 2,037,206 (–) 1,045,543 (–) 6,186,332 (–) 21.98 11.28 66.74

Table 4 Comparison of the
numbers of ITZ elements
between concrete
containing crushed
aggregates or oval-shaped
aggregates at Pk = 40%

Average # of ITZ Average # of ITZ Ratio
elements crushed elements oval-shaped
aggregates aggregates

A 3,713 2,731 1.35
B 26,516 18,893 1.40
C 224,790 154,455 1.46
D 1,519,241 1,167,904 1.3

123



68 H.-K. Man, J. G. M. van Mier

6 Fracture behavior

Figures 8 and 9 illustrate the fracture behavior for both
crushed and oval-shaped aggregates (with Pk = 40%)
at 3 different stages (marked in the respective load dis-
placement diagram) for specimens of size C (“Large”).

Figures 8a and 9a illustrate the fracture pattern at maxi-
mum load, Figs. 8b and 9b during softening and Figs. 8c
and 9c at the end of the softening stage. Figures 8d
and 9d are the load-displacement diagrams for each
case. The load displacement diagram shows the zig-zag
curves, which is characteristic for lattice type simula-

Fig. 8 Fracture process of a 3D lattice with oval-shaped aggregates at different stages
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Fig. 9 Fracture process of a 3D lattice with crushed aggregates
at different stages. The circled area shows an example of an
aggregate crack

tions, reflecting the subsequent loading-unloading
curves upon lattice element removal. Nevertheless the
envelope curve (Fig. 8f) of the fracture simulation is
similar to the typical fracture behaviour of concrete
observed in experiments.

One fracture simulation on concrete with oval aggre-
gates is illustrated in Fig. 8. In the beginning micro-
cracks develop along the interface zone. Until peak load
interface cracks appear predominantly. After reaching

maximum load macrocracks grow through the cement
matrix and finally deformations localize in one large
single crack (Fig. 8c). Fracture occurs usually only in
the bond zone and in the cement matrix.

The analysis of the fracture process of concrete with
crushed aggregates (Fig. 9) shows that until peak-load
the microcracks develop in the same way as in the
example of Fig. 8 with oval-shaped aggregates. Howe-
ver after maximum load, different fracture behaviour
is visible. Figure 9b and c show that fracture can also
occur through the aggregate. The circled area of Fig. 9a–
c points that out. This is unusual because aggregates
have a two times higher tensile strength in comparison
to the cement matrix and an eight times higher strength
than ITZ. The present analyses show that aggregate
fracture is possible for extreme aggregate shapes. In
contrast fracture simulations with spherical aggregates
and also with oval shaped aggregates usually do not
show any aggregate fracture.

7 Size effect on structural strength

Size effect on structural strength is typically shown by
calculating the nominal bending (or tensile) stress and
illustrating that in a bi-logarithmic diagram containing
the stress on one axis and the characteristic specimen
size along the other. Alternatively a different formula-
tion is postulated in Man and Van Mier (2007), who
proposed using a double-logarithmic nominal strength
vs. specimen volume relationship instead.

Figure 10a and b show that the bending strength
decreases with increasing specimen size, which is in
agreement with many other the studies. Through linear
regression, which has the following form:

ln σ = a + b ln H, (4)

where σ is the nominal bending strength and H is the
characteristic specimen size (in this case the specimen
height), the four curves can be presented in a simple
manner. The calculated values for a, b (b indicates the
slope of the regression curve) are in Table 5a and b. In
Table 5a, the slopes are calculated for the smallest to
the largest specimen (A–D), in Table 5b for size B–D.

For the crushed shaped aggregates the slopes varies
are between −0.5 and −0.58, depending on Pk. In the
case with oval-shaped aggregates the slope is −0.58,
which is close to the linear elastic fracture mecha-
nics solution of −0.5. The diagram on Fig. 10b shows
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Fig. 10 Bi-logarithmic nominal strength vs. specimen height
relationship of concrete: (a) Pk = 40% with oval-shaped aggre-
gates, (b) Pk = 20%, 30 and 40% with crushed aggregates

non-linear behavior on the bi-logarithmic diagram, sho-
wing the slopes are not constant and become flatter with
increasing size.

So if one takes a closer look into the three largest
sizes only, as indicated in the past (because the Pk of

the smallest specimen does not match the Pk of the
other sizes), the slopes change. For the crushed aggre-
gates it decreases from b =− 0.22 to b =− 0.37, whe-
reas for the oval-shaped aggregates b = − 0.48. In all
cases the slopes are flatter. In the case of concrete
structures with oval-shaped aggregates the LEFM
assumption may be correct; in the case of the cru-
shed aggregates, the slopes are close to the Weibull
theory assuming that the Weibull modulus is m = 12
for concrete, suggested by Zech and Wittmann (1978).
One explanation of the change of slope is the large scat-
ter of the bending strength for the smallest specimen
size. The largest grain size is 3 mm and the specimen
height is 2.6 mm only, resulting in a height over grain
size ratio below 1. The specimen size A is clearly too
small to be representative for the material.

8 Work of fracture (fracture energy)

The fracture energy is considered as a material parame-
ter by some researchers (Duan et al. 2007). From that
standpoint it should be a size-independent constant.

For the present simulations the work of fracture can
be obtained from the following equation:

W = 1

bh

∫
Pdδ. (5)

P is the measured force and δ the displacement. The
integral can be evaluated from the area under the load-
displacement (P-δ) curve. It has to be noted that the
envelope curve was taken to calculate the fracture
energy, thus neglecting the zigzags (Fig. 8f). The inte-
gral is then averaged over the area of the specimen
height h and thickness b.

Figure 11 illustrates the calculated work of fracture
for the four cases. On average the fracture energy on

Table 5 Coefficients of the
regression analysis from
Eq. 4. (a) Regression
analysis from size A to D.
(b) Regression analysis
from size B to D

a b R2

a
20% (crushed aggregates) 1.98 −0.5 0.82
30% (crushed aggregates) 1.93 −0.45 0.79
40% (crushed aggregates) 2.18 −0.57 0.86
40% (oval-shaped aggregates) 2.18 −0.58 0.85

b
20% (crushed aggregates) 1.7 −0.37 0.73
30% (crushed aggregates) 1.47 −0.22 0.72
40% (crushed aggregates) 1.54 −0.26 0.79
40% (oval-shaped aggregates) 1.99 −0.48 0.88
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Fig. 11 Calculation of the total work of fracture for different sizes and different Pk: (a) Pk = 40% with oval-shaped aggregates,
(b) Pk = 40%, (c) Pk = 30% and (d) Pk = 40% with crushed aggregates

concrete with oval-shaped aggregates is higher in com-
parison to those with crushed aggregates. The fracture
energy varies with size, the minimum specific fracture
energy usually at the smallest size, which is observed
also for the case of Pk = 20% and 30% (Fig. 11c and
d). More computations are needed for the two larger
sizes to find out if the curves are approaching a certain
asymptotic value, as was observed in experiments (Van
Vliet and Van Mier 2000).

9 Summary and conclusions

In this paper results are presented from a study on the
size effect on fracture of (numerical) concrete subjec-
ted to 3 point bending. Scaling was done in all three
directions for prisms of four different sizes; the ratio
from the largest to the smallest specimen size is 8.

Fracture simulations were performed with a three-
dimensional lattice model, with multi-million lattice
beam elements.

One of the improvements made is that the concrete
microstructure can now be modeled more accurately
than in the past. At the aggregate level concrete gene-
rally has random geometries (shapes). Instead of using
ideal spherical aggregates like in the past, a procedure
was developed to transfer the results from X-ray scans
of concrete directly into the 3D lattice. As a result
concrete is modeled more realistically at the aggregate
level; real shapes of aggregate particles are included
into the lattice model, like, for example, oval-shaped
or crushed (broken) aggregates.

The comparison of the fracture behavior of concrete
with oval-shaped and crushed aggregates shows signifi-
cant differences. Fracture of concrete with oval-shaped
(also with ideal spherical) aggregates occurs along the
bond zones and in the cement matrix (fracture in two
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phases), whereas in concrete structures with crushed
aggregates cracks also appear through the aggregates
(fracture in all three phases).

The study showed that the bending strength varies
with size. The slope of the regression curves in a bi-
logarithmic nominal stress—size diagram appear to
change with size and is not a constant. Concrete with
crushed aggregates has a slope close to the LEFM limit
of −0.5, if considering all sizes. When only the three
largest specimen sizes are considered the slope becomes
flatter.

The results obtained indicate that it seems to be
useful to study at least one additional size; i.e. the
next larger one. The next larger prism has the length
of 100 × 39 × 38 mm with a total of 74,248,497 lat-
tice elements, thus a considerable numerical effort is
needed.
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