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Abstract The recent release of the genome sequences
of a number of crop and model plant species has made
it possible to define the genome organisation and func-
tional characteristics of specific genes and gene families
of agronomic importance. For instance, Sorghum bi-
color, maize (Zea mays) and Brachypodium distachyon
genome sequences along with the model grass species
rice (Oryza sativa) enable the comparative analysis of
genes involved in plant defence. Germin-like proteins
(GLPs) are a small, functionally and taxonomically
diverse class of cupin-domain containing proteins that
have recently been shown to cluster in an area of
rice chromosome 8. The genomic location of this gene
cluster overlaps with a disease resistance QTL that
provides defence against two rice fungal pathogens
(Magnaporthe oryzae and Rhizoctonia solani). Studies
showing the involvement of GLPs in basal host resis-
tance against powdery mildew (Blumeria graminis ssp.)
have also been reported in barley and wheat. In this
mini-review, we compare the close proximity of GLPs
in publicly available cereal crop genomes and discuss
the contribution that these proteins, and their genome
sequence organisation, play in plant defence.
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Introduction

Many genes and gene families in plants have been
implicated in specific and quantitative responses to a
range of stresses. In times of biotic stress, plants can
produce several different types of defence responses
and genetic mechanisms for recognising and respond-
ing to attack. Qualitative disease resistance to patho-
gens is mediated by a single resistance (R)-gene
whose products can recognise pathogen -effectors
(Zimmermann et al. 2006; Jones and Dangl 2006).
Disease resistance receptor genes (R-genes and host-
pattern recognition receptor (HPRR) genes; Kou and
Wang 2010) generally make proteins such as receptor-
kinases (such as rice Xa2l (Song et al. 1995) and
barley Rpgl (Brueggeman et al. 2002)) and nucleotide-
binding site leucine-rich repeat (NBS-LRR) proteins.
NBS-LRR proteins have highly variable LRR domains
which are primarily used for pathogen recognition
(Yahiaoui et al. 2004; Caplan et al. 2008; McDowell
and Simon 2008; Bhullar et al. 2009; Padmanabhan
et al. 2009). Many R-genes have been isolated in crop
species using map-based cloning techniques such as
Lr10 (Feuillet et al. 2003), Lrl (Cloutier et al. 2007),
Pm3 (Yahiaoui et al. 2004) and Lr21 (Huang et al.
2003).

Other than receptor genes, defence-responsive or
defence-related genes (acting as either activators or
suppressors) can respond to pathogen attack through
post-translational protein modification and variation
of expression (Eulgem 2005; Benschop et al. 2007;
Kou and Wang 2010). These race non-specific genes,
along with HPRRs in combination, act to provide
quantitative disease resistance at a quantitative trait
locus (QTL). While possibly performing with multiple
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defensive roles, these genes give an additive affect on
the plant leading to a resistant phenotype (Jones and
Dangl 2006). This quantitative type of resistance does
not give a complete resistant phenotype compared to
the single R-gene resistance, or so-called ‘race-specific
resistance’ model, but often provides a more durable or
broad-spectrum resistance to pathogens (Ayliffe et al.
2008).

Disease resistance QTLs, as well as candidate genes
that are known to be involved in disease resistance,
have been shown to cluster on particular chromosomal
segments in rice (Wisser et al. 2005) and maize (Wisser
et al. 2006). The consequence of having multiple genes
in a closely linked genome region such as a QTL
creates difficulties in studying their effects. However,
the availability of whole genome sequences in multi-
ple crop species, along with QTL mapping techniques,
has allowed easier identification and analysis of genes
linked to quantitative diseases resistance. Studies like
those already carried out in rice (Wisser et al. 2006)
have looked to fuse QTL and genome data to identify
candidate genes for quantitative disease resistance.

Major and minor quantitative disease resistance
genes have recently been identified in wheat and rice
from a diverse variety of gene families. The wheat
fungal resistance QTL, which contains the gene Lr34
was identified on chromosome 7D and encodes an ATP
binding cassette transporter from the pleiotropic drug
resistance subfamily (Krattinger et al. 2009). Lr34 is
effective against diseases such as leaf rust, stripe rust
and powdery mildew. A stripe rust resistance gene
Yr36, conferring broad-spectrum resistance at high
temperatures was identified on wheat chromosome 6B
and encodes a kinase-START protein (Fu et al. 2009).
A rice chromosome 4 QTL for the recessive pi2l gene,
conferring durable resistance to blast disease, was iden-
tified as a mutated proline-rich protein that contains a

Signal peptide

putative heavy metal-binding domain (Fukuoka et al.
2009). Other genes conferring minor disease resistance
effects have also been identified in rice (Hu et al. 2008).

In this publication we review germin-like protein
(GLP) gene clusters, one of which was recently iden-
tified in a study of a diseases resistant QTL on rice
chromosome 8 (Manosalva et al. 2008). The germin-like
proteins will be reviewed with regards to their physi-
cal protein structure, functional contribution to plant
defence and taxonomic distribution. We also present
Bioinformatics and comparative genomic analysis of
cereal plant genomes, that have either been completed
or are in draft stages of sequencing or annotation, and
propose major germin-like protein clusters that may
identify disease resistance loci.

Defining GLPs

Germins and GLPs were originally identified in wheat
plants as a specific marker for the start of germination
(Lane et al. 1993; Dunwell et al. 2008). These pro-
teins generally code two exons and contain a ‘cupin’
protein domain (PF00190; Finn et al. 2008) at their
C terminus (Fig. 1). The cupin protein domain family
are a large, functionally diverse super-family (Dunwell
and Gane 1998; Dunwell et al. 2000, 2004) that are
distantly related to seed storage proteins such as vicilins
(Gane et al. 1998). The cupin domain is named for the
protein’s classic jellyroll beta-barrel structural domain,
with ‘cupa’ meaning small barrel in Latin (Dunwell
et al. 2000).

Each member of the protein family contains two
amino acid sequence motifs, described as the ‘ger-
min box’ (Lane et al. 1991; Dunwell and Gane 1998;
Dunwell 1998; Yamahara et al. 1999). Motif 1-
G(x)SHxH(x)3,4E(x)6G and Motif 2-G(x)5PxG(x)
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Fig. 1 Multiple sequence alignment of the barley germin amino-
acid sequences that characterise the GER families in cereals
(Druka et al. 2002; Zimmermann et al. 2006; Manosalva et al.
2008). Annotated on the figure is the signal peptide that is found
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in most GLPs (blue box), cupin domain (red box) and the two
defining germin motifs (black boxes). The asterisks above the
sequence indicate amino acid conservation over all six HYGER
families
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2H(x)3N are both contained in the classic jellyroll
beta-barrel structural domain. Crystallographic evi-
dence carried out on a barley germin protein confirmed
that six germin proteins (which each bind a single
manganese-ion) make up an extremely stable hexamer
protein structure (Woo et al. 2000). Each germin pro-
tein ‘monomer’ binds to another creating a hexamer
structure made from a ‘trimer of dimers’ (Fig. 2). Man-
ganese ions are bound by ligands similar to manganese
superoxide dismutase (SOD), with enzyme activity in
germin and GLPs confirmed with biochemical evidence
(Yamahara et al. 1999; Carter and Thornburg 2000;
Woo et al. 2000). Each germin monomer is comprised
of an irregular N-terminal extension, the beta-barrel
and a C-terminal sequence containing three alpha-
helices (Woo et al. 2000). Interestingly the irregular
N-terminal domain shape is conserved in many GLPs.
In total the hexamer contains about 1,200 amino acids
with an approximate molecular mass of 130 kDa (Lane
2002). This is contrasted by the discovery of a single
copy GLP from rice that has SOD-activity in its dimeric
form (Banerjee and Maiti 2010).

GLPs and other cupin domain-containing proteins
are a functionally and taxonomically diverse family
of proteins (Table 1). Germins and GLPs are single
cupin domain proteins (or monocupins) along with pro-
teins such as microbial phosphonmannose isomerases,
AraC-type transcriptional regulators and oxalate oxi-
dase (OXO) enzymes in plants, while bicupins (with
two cupin domains) are found in proteins such as seed

Fig.2 The hexameric 3D-protein structure of the barley 130 kDa
germin protein (a) made up of six individual germin monomer
proteins (b) that each bind one manganese ion each (grey spheres
in the middle of b). The germin monomer is made up of an alpha-
helical C-terminal domain (coloured in red), a barrel structure
made up of multiple beta-sheets (green and yellow) and an irreg-

storage proteins and oxalate decarboxylases (Khuri
et al. 2001). The bicupin globular storage proteins such
as legumins (11S) and euvicilins (7S) have also been
identified as major food allergens being found in such
plants as soybean, peanut, walnut and lentil (Mills et al.
2002). Multiple epitopes have been mapped onto their
complex multi-dimer structures, which are often asso-
ciated with these high thermotolerance proteins (Mills
et al. 2002; Xiang et al. 2002; Dunwell et al. 2004).
The clustering of proteins in a structure-based phy-
logeny study of bicupin-containing proteins revealed
that N- and C-terminal cupin domains had evolved
independently of each other (Agarwal et al. 2009).
Sequence-based phylogenetic analyses of all cupin-
domain-containing proteins in rice can clearly separate
monucupins and bicopins, despite >90% amino acid
and nucleotide identity Carrillo et al. (2009).

The high sequence conservation of germins and
GLPs over multiple plant species presents difficulties
in classification (Dunwell and Gane 1998). Structural
characteristics of these proteins offer a more robust
system of classification due to the clustering of proteins
with conserved functions (Agarwal et al. 2009). The
well-conserved homogeneous group of so-called ‘true
germins’ are those found to have OXO activity and
are almost exclusively found within cereal plant species
(Lane et al. 1991; Woo et al. 2000; Bernier and Berna
2001; Carrillo et al. 2009; Davidson et al. 2009). The
heterogeneous GLP group of proteins have a far wider
taxonomic range in plants and include germin-motif

ular N-terminal extension (blue). The protein structure on this
barley germin hexamer (PDB Accession: 1FI2) was determined
by X-ray crystallisation (Woo et al. 2000) and the figures were
taken from the RCSB protein data bank (PDB; Kouranov et al.
2006)
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Table 1 Summary of major groups of cupin domain-containing proteins

Protein Type Organisms Literature cited

Type II—Phosphomannose isomerases (PMIs) Monocupin  Microbial Dunwell and Gane (1998)

HTH Transcription factors Monocupin  Microbial Aravind and Koonin (1999)

AraC-type transcriptional regulators Monocupin  Microbial Gallegos et al. (1997); Soisson et al. (1997a, b)

Gentisate 1,2-dioxygenases (GDOs) Monocupin  Microbial Dunwell et al. (2000)

Oxalate decarboxylases Bicupin Microbial Tanner and Bornemann (2000)

7S and 118 seed storage proteins Bicupin Plants Biumlein et al. (1995); Adachi et al. (2001)
(legumins, globulins, triticin, glutelin and euvicilins)

Germins Monocupin  Plants, Fungi  Lane et al. (1993)

Germin-like proteins (GLPs) Monocupin  Plants, Fungi Dumas et al. (1993)

containing proteins with an average of 50% amino
acid sequence identity that either do not possess OXO
activity or have not yet been assigned an enzymatic
function (Dumas et al. 1993; Carter et al. 1998; Dunwell
et al. 2008).

Multiple studies have examined the role of germins
and GLPs in a wide variety of plant systems such as
Arabidopsis (Membré et al. 1997; Carter et al. 1998),
woody azalea (Rhododendron mucronatum; Kondo
et al. 2008), conifers (Mathieu et al. 2006), soybean
(Klink et al. 2007), grapevine (Ficke et al. 2002; Cramer
et al. 2007; Godfrey et al. 2007) and Medicago (Doll
et al. 2003; Soares et al. 2009). The majority of germin
and GLP research has centred on cereal plants, espe-
cially rice, barley, maize and wheat, where the protein
was first discovered. Six germin subfamilies (GER1-6)
were characterised in Druka et al. (2002) with varying
enzymatic activities e.g. OXO action in GER1 (‘true
germin’ proteins) and SOD activity in GER2 (Banerjee
and Maiti 2010), GER4 and GERS sub-families. The
GERI1 subfamily has also been shown to be important
for germination and early plant development in plants
(Federico et al. 2006). Also, OsGLP1 downregulated
transgenic plants in rice (a member of the GER2 sub-
family) were shown to induce dwarfism, change cell
morphology, cause dramatic increases in sheath blight
and blast fungal diseases (Banerjee and Maiti 2010).

Plant defence mechanisms of GLPs

GLPs have been studied in a wide variety of sys-
tems and implicated as plant cell defenders in many
species, conditions and diseases. These proteins have
been shown to be highly resistant to proteases, heat,
sodium dodecyl sulphate (SDS) and extreme pH (Lane
et al. 1993; Lane 1994; Wei et al. 1998; Carter et al. 1998;
Membré et al. 2000; Mahmood et al. 2010). Significant
GLPs and/or OXO expression have been shown in
environmental conditions such as salt stress (Hurkman
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et al. 1991, 1994; Cramer et al. 2007), aluminium
stress (Houde and Diallo 2008) and drought stress (Ke
et al. 2009). These genes are also expressed when
attacked by fungal pathogens (Schweizer et al. 1999;
Donaldson et al. 2001; Liang et al. 2001; Ficke et al.
2002; Zimmermann et al. 2006; Manosalva et al. 2008),
bacteria and viruses (Park et al. 2003) and Erysiphe
nectar infections (Godfrey et al. 2007). They are ex-
pressed in a diverse range of tissues and can act against
parasites like nematodes (Knecht et al. 2010) and in-
sects (Ramputh et al. 2002; Lou and Baldwin 2006).

So far germins and GLPs have been shown to func-
tion by using three main enzyme actions. Studies origi-
nally from barley revealed that germins have an OXO
enzyme action (Lane et al. 1993; Dumas et al. 1993).
OXOs act by catalysing the production of CO, and
H, 0, (Requena and Bornemann 1999), the latter being
present and implicated in plant defence (Wojtaszek
1997a, b). As mentioned above, SOD activity has been
identified in previous studies on germins (Woo et al.
2000) and GLPs (Yamahara et al. 1999) and they work
through the conversion of toxic reactive oxygen species
(ROS) to H, O, (Kukavica et al. 2005). Additionally, a
barley GLP was identified to have a different ADP glu-
cose pyrophosphatase/phosphodiesterase (AGPPase)
enzyme activity (Bernier and Berna 2001; Mahmood
et al. 2010), which may help to control metabolic flow
towards starch, cell wall polysaccharides, glycoproteins
and glycolipids in plants (Rodriguez-Lépez et al. 2001).

A previous study into germin isoforms (Lane et al.
1992) identified that approximately 40% of germins
in wheat embryonic tissue are cell wall-associated and
important for plant development. To date, all GLPs
analysed possess N-terminal secretory signals, which
further indicates cell wall/extracellular matrix targeting
(Lane et al. 1992; Heintzen et al. 1994; Lane 1994;
Bernier and Berna 2001; Zimmermann et al. 2006).
Other cell wall localisation studies have also confirmed
this cell surface association (Heintzen et al. 1994;
Davidson et al. 2010). A cell-wall-associated GLP in
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rice was also shown to be located in higher abundance
in sub-epidermal cells (Banerjee and Maiti 2010). It is
believed that GLPs might also possess a structural role
in cross-linking the cell wall after a pathogen attack
(Christensen et al. 2004).

Most studies investigating the physiological cell de-
fence mechanisms of GLPs have focused on the expres-
sion and defence mechanisms of GLPs in the apoplast
(Felle et al. 2005), with their cell-wall interaction en-
abling early response to pathogens (Davidson et al.
2010). GLPs have been shown to increase in expression
within plant cells after infection (causing the produc-
tion of ROS such as H,0,) and form an ‘oxidative
burst’ response (Wojtaszek 1997a; Averyanov 2009).
H,0, is also involved in cell signalling in the apoplast. A
transgenic study in sugar beet indicated that expression
of BvGLP-1 constitutively activates the expression of
other defence-related proteins and downregulates oth-
ers (Knecht et al. 2010). Transgenic ectopic expression
studies in Soybean (Donaldson et al. 2001) and gene
silencing in epidermal cells of Nicotiana attenuata (Lou
and Baldwin 2006) also indicated the expression of
GLP-encoding genes in cell wall regions proximal to the
pathogen attack or wounding site.

GLP gene clusters in currently available cereal
genome sequences

Two studies of GLP expression in barley
(Zimmermann et al. 2006) and a QTL on chromosome
8 of rice (Manosalva et al. 2008) have shown the
complex nature of GLP genes in cereal genomes and
confirmed their involvement in broad-level disease
resistance. Both studies analysed plant interaction
with fungal pathogens such as powdery mildew
(Blumeria graminis f sp. hordei) in barley and rice blast
(Magnaporthe oryzae) and sheath blight (Rhizoctania
solani) diseases in rice. Pre-genome sequence analyses
carried out on each rice chromosome in Wisser et al.
(2005) also indicated that the chromosome 8 disease
resistance QTL was indeed a ‘hotspot’ for different
disease resistance genes. Developmental transcript
analysis of barley tissues showed a broad range of
expression of five germin sub-families previously
outlined in Druka et al. (2002). Gene silencing
through RNA interference showed that transient
silencing of GER3 and GERS sub-families in barley
and transient over-expression of GER4 and GERS
protected epidermal cells from powdery mildew attack.
The silencing of GER4 led to high susceptibility to
pathogen attack (Zimmermann et al. 2006).

Similar results were found in rice (Manosalva et al.
2008) except a fully sequenced rice genome enabled the
authors to identify genes involved in a rice blast disease
associated QTL. Eight GLPs were identified to form
the QTL on chromosome 8 in a tightly linked cluster
and after RNA silencing of each GLP gene in the clus-
ter, the susceptibility to the two rice diseases mentioned
above increased. Like in Zimmermann et al. (2006), the
GER4 subfamily was identified to contribute most to
diseases resistance.

The recent studies identifying GLP gene clusters in
both the rice chromosome 8 QTL region studied in
Manosalva et al. (2008) and a sequenced region in
barley (Himmelbach et al. 2010) indicated a strong
connection between both GLP clusters and disease re-
sistance phenotypes. To identify any more GLP clusters
the publicly accessible genome sequences of Brachy-
podium distachyon, rice (Oryza sativa), Sorghum bi-
color and maize (Zea mays) were assayed to identify
GLP gene locations. One rice GLP (OsGLPS-1) from
the chr8 QTL region (Manosalva et al. 2008) was used
to query the JGI Phytozome comparative genomics
resource (http://www.phytozome.net/). The OsGLPS-
1 belonged to the ‘hypothetical grass post-duplication
gene’ family (Cluster 22740912), which encompasses all
the rice chromosome 8 GLPs from the QTL region
defined in (Manosalva et al. 2008).

The chromosomal locations of all genes within the
family were identified and defined as a cluster if three
or more GLPs were found in close proximity (a region
with less than 100 kb between each gene member).
Genes were renamed according to their position on
each chromosome, mirroring the nomenclature used
to describe the rice GLP genes in Manosalva et al.
(2008) e.g. OsGLPS8-1 is the first gene family member
on rice chromosome 8 (Table 2). One Sorghum bi-
color GLP did not have a designated chromosome and
was therefore named SbGLP-unk. All genes contained
within the gene family contained a cupin domain (Pfam
domains PF07883 and PF00190) except for BAGLP3-7
which contains a F-BOX domain (PF00646). The size
of BAGLP3-7 is almost double the size of all other
genes in the family and it is likely that this is due to an
insertion within the cupin domain. Five GLPs found on
chromosome 10 in maize were not classified as a cluster
(ZmGLP10-1 to ZmGLP10-5) as they were spaced over
800 kb. The size and number of GLPs within each
cluster are detailed in Table 3.

Six clusters were identified in the four genomes and
contained 56 out of the 65 genes (86%) found within
the gene family, indicating that GLPs within this family
are likely to be contained in clusters. Syntenic genome
segment analysis from whole genome analyses (Salse
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Table 2 All genes found in Genome

Chromosome Chromosome position Cluster name

Annotated name?

the hypothetical gene

(#22740912) family Brachypodium 2

(Phytozome 5 families; distachyon 3
http://www.phytozome.net/)
that were used to query GLP
clustering in completely
sequenced post-duplication
grass genomes
Oryza sativa 8
12

Sorghum bicolor 6
7

Zea mays 2

18393515-18394672
13504258-13505260
13507473-13508475
13511002-13512125
13513339-13514481
13525866-13526904
15477075-15477893
15480755-15484032
15517276-15518266
5185878-5186701
5207388-5208572
5221217-5222314
5227825-5229037
5232771-5233801
5238002-5239151
5241498-5242660
5247669-5248835
5253289-5254233
5259155-5260302
5263250-5264392
7993396-7994721
2687758-2688828
2691487-2692513
2695409-2696216
2698177-2699274
2974644-2975922
7102087-7103153
7160130-7161537
7239661-7240653
7251112-7252308
7259660-7260808
7306801-7307936
7315270-7316197
7409465-7410307
7419332-7420175
7426073-7426916
7435638-7436234

7453736-7454803
9

102590903-102592174

28196791-28197411
28210385-28211585
28242531-28243821
28261457-28262833
28271569-28273041
28304728-28305909
28326084-28327223
28331328-28332493
28354736-28355846
28361093-28362101
28410680-28411226
28468821-28470086
28476442-28477847
28486541-28487446
28491220-28492488
28515885-28517050
28560860-28561920
28566314-28576866

BdGLP2-1
BdGLP3-1
BdGLP3-2
BdGLP3-3
BdGLP3-4
BdGLP3-5
BdGLP3-6
BdGLP3-7
BdGLP3-8
OsGLP8-1
OsGLPS8-2
OsGLPS8-3
OsGLP8-4
OsGLPS8-5
OsGLPS8-6
OsGLPS8-7
OsGLPS8-8
OsGLP8-9
OsGLP8-10
OsGLPS8-11
OsGLP8-12
OsGLP12-1
OsGLP12-2
OsGLP12-3
OsGLP12-4
SbGLP6-1
SbGLP7-1
SbGLP7-2
SbGLP7-3
SbGLP7-4
SbGLP7-5
SbGLP7-6
SbGLP7-7
SbGLP7-8
SbGLP7-9
SbGLP7-10
SbGLP7-11
SbGLP7-12
SbGLP-unk
ZmGLP2-1
ZmGLP3-1
ZmGLP3-2
ZmGLP3-3
ZmGLP3-4
ZmGLP3-5
ZmGLP3-6
ZmGLP3-7
ZmGLP3-8
ZmGLP3-9
ZmGLP3-10
ZmGLP3-11
ZmGLP3-12
ZmGLP3-13
ZmGLP3-14
ZmGLP3-15
ZmGLP3-16
ZmGLP3-17
ZmGLP3-18

Bradi2g21010.1
Bradi3g15190.1
Bradi3g15200.1
Bradi3g15210.1
Bradi3g15220.1
Bradi3g15240.1
Bradi3g17310.1
Bradi3g17320.1
Bradi3g17330.1
LOC_0s08g08920.1
LOC_0s08g08960.1
LOC_0s08g08970.1
LOC_0s08g08980.1
LOC_0s08g08990.1
LOC_0Os08g09000.1
LOC_0s08g09010.1
LOC_0s08g09020.1
LOC_0Os08g09040.1
LOC_0Os08g09060.1
LOC_0s08g09080.1
LOC_Os08g13440.1
LOC_Os12g05840.1
LOC_0Os12g05860.1
LOC_0Os12g05870.1
LOC_0Os12g05880.1
Sb06g001690.1
Sb07g005240.1
Sb07g005250.1
Sb07g005260.1
Sb07g005270.1
Sb07g005280.1
Sb07g005290.1
Sb07g005300.1
Sb07g005310.1
Sb07g005320.1
Sb07g005330.1
Sb07g005340.1
Sb07g005350.1
Sb07375002010.1
GRMZM2G045809_P01
AC190772.4_FGPO11
GRMZM2G030772_P02
GRMZM2G149714_P01
GRMZM2G093622_P01
GRMZM2G093606_P01
GRMZM2G093554_P01
GRMZM2G157364_P01
GRMZM2G157298_P01
GRMZM2G148026_P01
GRMZM2G148014_P01
GRMZM2G155506_P01
GRMZM2G165839_P01
GRMZM2G074443_P01
GRMZM2G105940_P01
GRMZM2G093076_P01
GRMZM2G072965_P01
GRMZM2G176798_P01
GRMZM2G471355_P01
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Table 2 (continued)

Genome Chromosome Chromosome position Cluster name Annotated name?
28591509-28592973 ZmGLP3-19 GRMZM2G170829_P01
28598452-28599606 ZmGLP3-20 GRMZM2G170857_P01
Z‘Armot'ated name in 10 42520607-42521751 ZmGLP10-1 GRMZM2G178817_P01
T espect1ye genome 42648230-42649497 ZmGLP10-2 GRMZM2G071390_P01
ig;‘:’;ﬂé%“ﬁfﬁ?fi‘ﬁ? 43077044-43078521 ZmGLP10-3  GRMZM2G049930_P01
hitp://www.phytozome.net 43234112-43235435 ZmGLP10-4 GRMZM2G012530_P01
p phy
43263304-43264488 ZmGLP10-5 GRMZM2G087111_P01

comparative genomics site

et al. 2008; Schnable et al. 2009; Initiative et al. 2010)
indicate that five out of the six clusters are located
on an ancestral genome segment, the same segment
that contains the chromosome 8 GLP cluster in rice
(Manosalva et al. 2008).

All of the 65 genes involved in the above analyses
belong to the GER3 and GER4 germin subfamilies
as characterised by previous studies in barley (Druka
et al. 2002; Zimmermann et al. 2006). As shown on
Fig. 3, genes from a species-specific cluster were usu-
ally grouped together indicating that one or more
genes were duplicated multiple times at that region.
Duplication of the GER4 sub-family members in the
chromosome 8 QTL genes (OsGLP8-1 to OsGLPS-
12) was confirmed in Davidson et al. (2010) based on
their proximity to each other and similarities within the
sequence and putative regulatory sequences. However,
genes from a chromosomal gene cluster in the same
species were not exclusively from the same GER sub-
family (e.g. out of the 11 genes in the rice chromosome
8 cluster, five were grouped with the GER3 subfamily
and seven grouped with GER4). This suggests diver-
sification of duplicated genes within the loci, as was also
suggested in Manosalva et al. (2008).

The expressed GER3 and GER4 subfamilies of
GLPs contributed the most to resistance against pow-

dery mildew in wheat and barley (Christensen et al.
2004; Zimmermann et al. 2006) and both powdery
mildew and blast fungus in rice (Manosalva et al. 2008).
The cluster of eight functional GLP genes on barley
chromosome 4H were all identified to be from the
GER4 sub-family (Himmelbach et al. 2010). This bar-
ley GLP cluster did not show synteny to the other GLP
clusters in Sorghum, Brachypodium, rice and maize,
however its presence on an ancestral genome segment
could not be verified (Salse et al. 2008).

The high sequence similarity between family mem-
bers in close proximity suggests functional redundancy
of GLP proteins (Zimmermann et al. 2006). This is
one possible explanation for the clustering of GLPs in
cereal genomes. It was suggested in Manosalva et al.
(2008) that as GLP genes are amplified through dupli-
cation, the protein family diversifies (Kafri et al. 2006)
and evolves new functional or structural roles. Agarwal
et al. (2009) suggested that the functional diversity of
cupin domain-containing proteins is believed to be due
to variations in the length of «-strands and greater
conformation freedom in folds holding metal binding
residues.

The acquisition of new functional roles through du-
plication was highlighted in rice where the chromo-
some 8 GLP cluster contributed far more to resistance

Table 3 Clustering of the genes in the ‘hypothetical grass post-duplication gene’ family (Cluster 22740912) from the Joint Genome
Institute (JGI)/Center for Integrative Genomics (CIG) comparative genomics website (http:/www.phytozome.net)

Species Genes Number of gene clusters GLP clusters
Chromosome Number of genes Approximate cluster size
Brachypodium distachyon 9 3 Chr 3 5 21kb
Chr 3 3 41 kb?
Oryza sativa 16 2 Chr 8 12 80 kb
Chr 12 4 12 kb
Sorghum bicolor 14 2 Chr 7 12 353 kb
Zea mays 26 3 Chr 4 20 405 kb
65 10 52

The bold type chromosome of the major germin clusters indicate the clusters found on syntenic genome segments between the cereal

species (i.e.Bd3/0s8/Sb7/Zm4)
4There are two GLP clusters in close proximity on Bd3

PEleven of the 12 rice chr8 genes are found in a 80 kb cluster, however found the gene OsGLP8-12 (located over 2 Mb away) to be

within the QTL boundary
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than the smaller chromosome 12 cluster that contained
only four genes (Manosalva et al. 2008). This four-
gene cluster over 12 kb shows a duplicated nucleotide
sequence pattern (Fig. 4), with the duplications likely to
be recent and less likely to have evolved new functional
attributes. Tandem duplication of genes from the
closely related OXO cupin subclasses has also been
reported (Carrillo et al. 2009).

The most recent GLP cluster identified in barley
defined an interesting cyclic gene ‘birth and death’ sce-
nario for the GLP genes within a cluster (Himmelbach
et al. 2010) instead of a typical ‘pseudogenisation’ affect
on multiple gene duplicates at a single loci (Ohno
1970). Mutations within regulatory elements showed to

Cupin domain containing protein, expressed Cupin domain containing

LOC_0512g05660.1 LOC_0s12g05670.1 LOC_0s512905650.1
oc ost20m Loc_ostoy c ostzgo

enhance transcript dosage and functional redundancy
by pathogen-induced promoter activity. Conserved reg-
ulatory elements in GLP promoter sequences have also
been shown to be responsive to environmental stresses
and growth factors (Mahmood et al. 2010). The evolu-
tionary driving force behind localised gene expansion,
suggested in Himmelbach et al. (2010), was the en-
hancement of transcript dosage encoding functionally
redundant proteins in a robust manner rather than the
diversification of local genes paralogs.

The syntenic GLP cluster region on maize chro-
mosome 4 also contains multiple QTLs for diseases
like ear and stalk rot, common smut, common rust,
southern rust, gray leaf spot and northern corn leaf
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blight (Wisser et al. 2006). Rice GLPs and OXO gene
clusters were also shown to co-localise with multiple
published QTLs, with the exception of the four-gene
chromosome 12 gene cluster (Davidson et al. 2009).
These regions outlined in Davidson et al. (2009) are
associated with phenotypes such as bacterial blight,
brown plant hopper, leaf and neck blast, yellow mottle
virus, sheath rot and sheath blight.

GLP/OXO gene clusters were identified to be lo-
cated in the boundaries of multiple QTLs on chro-
mosome 8 (Manosalva et al. 2008) and chromosome
3 (Liu et al. 2009; Ramalingam et al. 2003; Sirithunya
et al. 2002; Wu et al. 2004; Zou et al. 2000; Tabien
et al. 2002; Pinson et al. 2005; Chen et al. 2003). The
rice chromosome 3 multiple QTL region is syntenic to
maize chromosomes 1 (distal region of both arms), 5
(distal short arm) and 9 (distal long arm; from Salse
et al. (2008), all of which contain multiple published
QTLs (Wisser et al. 2006). These regions, along with
regions where single GLP/OXO genes are located in
multiple QTL regions, are good candidates for future
disease resistance (Davidson et al. 2009). And despite
large amounts of segmental genome variation through
duplications, chromosome fusions, and translocations
since originating from their ancestral genome 90 MYA,
there is a high degree of synteny between ancestral
genome segments in cereal genomes (Salse et al. 2008).
So by combining metagenome analysis with GLP clus-
ter information, research from model organisms such
as rice and maize may be transferred to organisms
whose genomes are historically difficult and complex to
sequence (Gill et al. 2004; Schulte et al. 2009).

Wheat and barley are two such genomes which are
difficult to sequence due to a high proportion of repet-
itive DNA. GLPs contained within the GLP clusters
located on Sorghum chromosome 7 and maize chromo-
some 4 are all separated by large stretches of repetitive
DNA, most notably LTR Retrotransposons, which in-
crease the length (and numbers of genes) of the GLP
clusters in both species (355 kb in Sorghum and 405kb
in maize; Table 2) compared to the syntenic rice and
Brachypodium clusters. Transposable elements (TEs),
found in high copy numbers within plant genomes such
as wheat, maize and barley, may also be responsible
for duplications of GLPs. TE-mediated gene sequence
movement has been shown in maize by CACTA DNA
Transposons (Li et al. 2009) and Helitron elements (Lai
et al. 2005). Localised gene duplications of GLPs in
TE-rich sequence has also been identified on a disease
resistance loci in wheat (J. Breen and R. Mago, unpub-
lished data).

The presence of TEs and smRNAs around GLP clus-
ters may also affect the regulation of each gene within
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the GLP cluster. It would be speculative to suggest
that an epigenetic affect, such as the affect of tandem
repeats at the paramutation loci in maize (Chandler
and Alleman 2008), may play a role in localised gene
duplications of GLPs. Such a mechanism may account
for the clustering of GLPs in cereals and the affect of
QTLs to provide durable plant resistance to pathogen
attack. Small RNA regulation has already been shown
to play important roles in disease resistance gene clus-
ters in Arabidopsis thaliana (Yi and Richards 2007).
Davidson et al. (2009) scanned small RNA libraries
and found instances of regulation of duplicated GLP
genes. Within the GLP cluster at the QTL region on
chromosome 8 (Manosalva et al. 2008), an insertion
within the promoter sequence of OsGLP8-6 (a GER4
family member) enhanced expression in two resistant
rice (ssp. indica) cultivars, while higher expression of
OsGLPS8-12 (a GER3 family member) was identified
in susceptible cultivars (Davidson et al. 2010). The
authors in Davidson et al. (2010), along with small
RNA data in Davidson et al. (2009), suggest regulation
through both small RNAs and regulatory domain vari-
ation are responsible for the variation of expression in
the important GER3 and GER4 subfamilies in certain
tissues.

Conclusion

Studies into QTLs conferring durable and/or broad-
spectrum disease resistance phenotypes in cereals are
an important step in crop improvement. A recent pub-
lication identifying a genomic GLP cluster linked to
a disease resistance QTL in rice, along with other
studies identifying their defensive actions, have high-
lighted the importance of this gene family. The large
increase in sequence data from plant genomic sequenc-
ing projects, especially important cereal crops, has
allowed researchers to identify candidate disease resis-
tance hotspots and merge with current QTL mapping
data.

In this mini-review we consider that GLP genes
are involved in plant defence and reviewed recent
literature that discusses possible mechanisms of non-
race specific disease resistance. GLP clusters (three or
more GLPs found in close proximity to each other) are
common in cereal genome sequences and they could
provide new opportunities to increase non-race specific
disease resistance in crop species. The four major syn-
tenic GLP clusters in maize, Sorghum, Brachypodium
and rice are also interesting models in comparing how
gene loci evolve and respond to pathogens. The inter-
play between localised gene duplications, small RNAs,
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TEs and regulatory elements in promoter sequences
could interact to affect GLP expression and its ability
to defend plants cells using a broad-level and durable
resistance mechanism.

Acknowledgements The authors would like to thank the help
of Professor Christ of Ringli for manuscript editing and scientific
feedback.

References

Adachi M, Takenaka Y, Gidamis AB, Mikami B, Utsumi S
(2001) Crystal structure of soybean proglycinin alablb ho-
motrimer. J Mol Biol 305(2):291-305

Agarwal G, Rajavel M, Gopal B, Srinivasan N (2009) Structure-
based phylogeny as a diagnostic for functional characteriza-
tion of proteins with a cupin fold. PLoS ONE 4(5):e5736

Aravind L, Koonin EV (1999) Dna-binding proteins and evolu-
tion of transcription regulation in the archaea. Nucleic Acids
Res 27(23):4658-4670

Averyanov A (2009) Oxidative burst and plant disease resistance.
Front Biosci (Elite Ed) 1:142-152

Ayliffe M, Singh R, Lagudah E (2008) Durable resistance to
wheat stem rust needed. Curr Opin Plant Biol 11(2):187-192

Banerjee J, Maiti MK (2010) Functional role of rice germin-like
proteinl in regulation of plant height and disease resistance.
Biochem Biophys Res Commun 394(1):178-183

Bédumlein H, Braun H, Kakhovskaya IA, Shutov AD (1995) Seed
storage proteins of spermatophytes share a common ances-
tor with desiccation proteins of fungi. J Mol Biol 41(6):1070-
1075

Benschop JJ, Mohammed S, O’Flaherty M, Heck AJR, Slijper
M, Menke FLH (2007) Quantitative phosphoproteomics of
early elicitor signaling in arabidopsis. Mol Cell Proteomics
6(7):1198-1214

Bernier F, Berna A (2001) Germins and germin-like proteins:
plant do-all proteins. But what do they do exactly? Plant
Physiol Biochem 39:545-554

Bhullar NK, Street K, Mackay M, Yahiaoui N, Keller B (2009)
Unlocking wheat genetic resources for the molecular iden-
tification of previously undescribed functional alleles at the
pm3 resistance locus. Proc Natl Acad Sci USA 106(23):9519-
9524

Brueggeman R, Rostoks N, Kudrna D, Kilian A, Han F, Chen J,
Druka A, Steffenson B, Kleinhofs A (2002) The barley stem
rust-resistance gene rpgl is a novel disease-resistance gene
with homology to receptor kinases. Proc Natl Acad Sci USA
99(14):9328-9333

Caplan J, Padmanabhan M, Dinesh-Kumar SP (2008) Plant nb-
Irr immune receptors: from recognition to transcriptional
reprogramming. Cell Host Microbe 3(3):126-135

Carrillo M, Goodwin P, Leach J, Leung H, Cruz CV (2009) Phy-
logenomic relationships of rice oxalate oxidases to the cupin
superfamily and their association with disease resistance qtl.
Rice 2(1):67-79

Carter C, Thornburg RW (2000) Tobacco nectarin i. Purification
and characterization as a germin-like, manganese superoxide
dismutase implicated in the defense of floral reproductive
tissues. J Biol Chem 275(47):36726-36733

Carter C, Graham RA, Thornburg RW (1998) Arabidopsis
thaliana contains a large family of germin-like proteins: char-

acterization of cdna and genomic sequences encoding 12
unique family members. Plant Mol Biol 38(6):929-943

Chandler V, Alleman M (2008) Paramutation: epigenetic instruc-
tions passed across generations. Genetics 178(4):1839-1844

Chen H, Wang S, Xing Y, Xu C, Hayes PM, Zhang Q
(2003) Comparative analyses of genomic locations and race
specificities of loci for quantitative resistance to pyricu-
laria grisea in rice and barley. Proc Natl Acad Sci USA
100(5):2544-2549

Christensen AB, Thordal-Christensen H, Zimmermann G,
Gjetting T, Lyngkjaer MF, Dudler R, Schweizer P (2004)
The germinlike protein glp4 exhibits superoxide dismutase
activity and is an important component of quantitative re-
sistance in wheat and barley. Mol Plant-Microb Interact
17(1):109-117

Cloutier S, McCallum BD, Loutre C, Banks TW, Wicker T,
Feuillet C, Keller B, Jordan MC (2007) Leaf rust resistance
gene Irl, isolated from bread wheat (triticum aestivum 1.) is
a member of the large psr567 gene family. Plant Mol Biol
65(1-2):93-106

Cramer GR, Ergiil A, Grimplet J, Tillett RL, Tattersall EAR,
Bohlman MC, Vincent D, Sonderegger J, Evans J, Osborne
C, Quilici D, Schlauch KA, Schooley DA, Cushman JC
(2007) Water and salinity stress in grapevines: early and late
changes in transcript and metabolite profiles. Funct Integr
Genomics 7(2):111-134

Davidson R, Reeves P, Manosalva P, Leach J (2009) Germins:
a diverse protein family important for crop improvement.
Plant Sci 3(1):43-55

Davidson RM, Manosalva PM, Snelling J, Bruce M, Leung H,
Leach JE (2010) Rice germin-like proteins: Allelic diversity
and relationships to early stress responses. Rice 3:43-55

Doll J, Hause B, Demchenko K, Pawlowski K, Krajinski F (2003)
A member of the germin-like protein family is a highly con-
served mycorrhiza-specific induced gene. Plant Cell Physiol
44(11):1208-1214

Donaldson P, Anderson T, Lane B, Davidson A, Simmonds D
(2001) Soybean plants expressing an active oligomeric ox-
alate oxidase from the wheat gf-2.8 (germin) gene are resis-
tant to the oxalate-secreting pathogen sclerotina sclerotio-
rum. Physiol Mol Plant Pathol 59(6):297-307

Druka A, Kudrna D, Kannangara CG, von Wettstein D,
Kleinhofs A (2002) Physical and genetic mapping of barley
(Hordeum vulgare) germin-like cdnas. Proc Natl Acad Sci
USA 99(2):850-855

Dumas B, Sailland A, Cheviet JP, Freyssinet G, Pallett K (1993)
Identification of barley oxalate oxidase as a germin-like pro-
tein. C R Acad Sci, 3 Sci Vie 316(8):793-798

Dunwell J, Gane P (1998) Microbial relatives of seed storage
proteins: conservation of motifs in a functionally diverse su-
perfamily of enzymes. J Mol Biol 46(2):147-154

Dunwell J, Gibbings J, Mahmood T, Naqvi SS (2008) Germin and
germin-like proteins: evolution, structure, and function. Crit
Rev Plant Sci 27:342-375

Dunwell JM (1998) Cupins: a new superfamily of functionally
diverse proteins that include germins and plant storage pro-
teins. Biotechnol Genet Eng Rev 15:1-32

Dunwell JM, Khuri S, Gane PJ (2000) Microbial relatives of
the seed storage proteins of higher plants: conservation of
structure and diversification of function during evolution of
the cupin superfamily. Microbiol Mol Biol Rev 64(1):153—
179

Dunwell JM, Purvis A, Khuri S (2004) Cupins: the most function-
ally diverse protein superfamily? Phytochemistry 65(1):7-17

Eulgem T (2005) Regulation of the arabidopsis defense transcrip-
tome. Trends Plant Sci 10(2):71-8

@ Springer



474

Funct Integr Genomics (2010) 10:463-476

Federico ML, Iiiguez-Luy FL, Skadsen RW, Kaeppler HF (2006)
Spatial and temporal divergence of expression in dupli-
cated barley germin-like protein-encoding genes. Genetics
174(1):179-190

Felle HH, Herrmann A, Hiickelhoven R, Kogel K-H (2005)
Root-to-shoot signalling: apoplastic alkalinization, a general
stress response and defence factor in barley (hordeum vul-
gare). Protoplasma 227(1):17-24

Feuillet C, Travella S, Stein N, Albar L, Nublat A, Keller B
(2003) Map-based isolation of the leaf rust disease resis-
tance gene Irl0 from the hexaploid wheat (Triticum aes-
tivum L.) genome. Proc Natl Acad Sci USA 100(25):15253-
15258

Ficke A, Gadoury DM, Seem RC (2002) Ontogenic resistance
and plant disease management: a case study of grape pow-
dery mildew. Phytopathology 92(6):671-675

Finn RD, Tate J, Mistry J, Coggill PC, Sammut SJ, Hotz H-R,
Ceric G, Forslund K, Eddy SR, Sonnhammer ELL, Bateman
A (2008) The pfam protein families database. Nucleic Acids
Res 36(Database issue):D281-D288

Fu D, Uauy C, Distelfeld A, Blechl A, Epstein L, Chen X,
Sela H, Fahima T, Dubcovsky J (2009) A kinase-start gene
confers temperature-dependent resistance to wheat stripe
rust. Science 323:1357-1360

Fukuoka S, Saka N, Koga H, Ono K, Shimizu T, Ebana K,
Hayashi N, Takahashi A, Hirochika H, Okuno K, Yano
M (2009) Loss of function of a proline-containing pro-
tein confers durable disease resistance in rice. Science
325(5943):998-1001

Gallegos MT, Schleif R, Bairoch A, Hofmann K, Ramos JL
(1997) Arac/xyls family of transcriptional regulators. Micro-
biol Mol Biol Rev 61(4):393-410

Gane PJ, Dunwell JM, Warwicker J (1998) Modeling based on
the structure of vicilins predicts a histidine cluster in the
active site of oxalate oxidase. J Mol Biol 46(4):488-493

Gill BS, Appels R, Botha-Oberholster A-M, Buell CR,
Bennetzen JL, Chalhoub B, Chumley F, Dvorak J, Iwanaga
M, Keller B, Li W, McCombie WR, Ogihara Y, Quetier
F, Sasaki T (2004) A workshop report on wheat genome
sequencing: International genome research on wheat consor-
tium. Genetics 168(2):1087-1096

Godfrey D, Able AJ, Dry IB (2007) Induction of a grapevine
germin-like protein (vvglp3) gene is closely linked to the site
of erysiphe necator infection: a possible role in defense? Mol
Plant-Microb Interact 20(9):1112-1125

Heintzen C, Fischer R, Melzer S, Kappeler K, Apel K, Staiger
D (1994) Circadian oscillations of a transcript encoding a
germin-like protein that is associated with cell walls in young
leaves of the long-day plant sinapis alba 1. Plant Physiol
106(3):905-915

Himmelbach A, Liu L, Zierold U, Altschmied L, Maucher H,
Beier F, Miiller D, Hensel G, Heise A, Schiitzendiibel A,
Kumlehn J, Schweizer P (2010) Promoters of the barley
germin-like ger4 gene cluster enable strong transgene ex-
pression in response to pathogen attack. Plant Cell 22:937—
952

Houde M, Diallo AO (2008) Identification of genes and path-
ways associated with aluminum stress and tolerance using
transcriptome profiling of wheat near-isogenic lines. BMC
Genomics 9:400

Hu K-M, Qiu D-Y, Shen X-L, Li X-H, Wang S-P (2008) Isola-
tion and manipulation of quantitative trait loci for disease
resistance in rice using a candidate gene approach. Mol Plant
1(5):786-793

Huang L, Brooks SA, Li, W, Fellers JP, Trick HN, Gill BS (2003)
Map-based cloning of leaf rust resistance gene Ir21 from

@ Springer

the large and polyploid genome of bread wheat. Genetics
164(2):655-664

Hurkman W, Tao H, Tanaka C (1991) Germin-like polypep-
tides increase in barley roots during salt stress. Plant Physiol
97(1):366-374

Hurkman WJ, Lane BG, Tanaka CK (1994) Nucleotide sequence
of a transcript encoding a germin-like protein that is present
in salt-stressed barley (hordeum vulgare 1.) roots. Plant Phys-
iol 104(2):803-804

Initiative TIB, investigators P, Vogel JP, Garvin DF, Mockler
TC, Schmutz J, Rokhsar D, Bevan MW, sequencing D,
assembly Barry K, Lucas S, Harmon-Smith M, Lail K,
Tice H, Leader JS, Grimwood J, McKenzie N, Bevan
MW, assembly P, end sequencing B, Huo N, Gu YQ,
Lazo GR, Anderson OD, Leader JPV, You FM, Luo M-C,
Dvorak J, Wright J, Febrer M, Bevan MW, Idziak D,
Hasterok R, Garvin DF, sequencing T, analysis Lindquist
E, Wang M, Fox SE, Priest HD, Filichkin SA, Givan SA,
Bryant DW, Chang JH, Leader TCM, Wu H, Wu W, Hsia
A-P, Schnable PS, Kalyanaraman A, Barbazuk B, Michael
TP, Hazen SP, Bragg JN, Laudencia-Chingcuanco D, Vogel
JP, Garvin DF, Weng Y, McKenzie N, Bevan MW, analysis
G, annotation Haberer G, Spannagl M, Leader KM, Rattei
T, Mitros T, Rokhsar D, Lee S-J, Rose JKC, Mueller LA,
York TL, analysis R, Leader TW, Buchmann JP, Tanskanen
J, Leader AHS, Gundlach H, Wright J, Bevan M, de Oliveira
AC, da C Maia L, Belknap W, Gu YQ, Jiang N, Lai J, Zhu
L,MalJ, Sun C, Pritham E, Genomics C, Leader JS, Murat F,
Abrouk M, Haberer G, Spannagl M, Mayer K, Bruggmann
R, Messing J, You FM, Luo M-C, Dvorak J, analysis SR,
Fahlgren N, Fox SE, Sullivan CM, Mockler TC, Carrington
JC, Chapman EJ, May GD, Zhai J, Ganssmann M, Gurazada
SGR, German M, Meyers BC, Leader PJG, annotation M,
gene family analysis, Bragg JN, Tyler L, Wu J, Gu YQ,
Lazo GR, Laudencia-Chingcuanco D, Thomson J, Leader
JPV, Hazen SP, Chen S, Scheller HV, Harholt J, Ulvskov P,
Fox SE, Filichkin SA, Fahlgren N, Kimbrel JA, Chang JH,
Sullivan CM, Chapman EJ, Carrington JC, Mockler TC,
Bartley LE, Cao P, Jung K-H, Sharma MK, Vega-Sanchez
M, Ronald P, Dardick CD, Bodt SD, Verelst W, Inzé
D, Heese M, Schnittger A, Yang X, Kalluri UC, Tuskan
GA, Hua Z, Vierstra RD, Garvin DF, Cui Y, Ouyang
S, Sun Q, Liu Z, Yilmaz A, Grotewold E, Sibout R,
Hematy K, Mouille G, Hofte H, Michael T, Pelloux J,
O’Connor D, Schnable J, Rowe S, Harmon F, Cass CL,
Sedbrook JC, Byrne ME, Walsh S, Higgins J, Bevan M, Li
P, Brutnell T, Unver T, Budak H, Belcram H, Charles M,
Chalhoub B, Baxter I (2010) Genome sequencing and analy-
sis of the model grass brachypodium distachyon. Nature
463(7282):763-768

Jones JDG, Dangl JL (2006). The plant immune system. Nature
444(7117):323-329

Kafri R, Levy M, Pilpel Y (2006) The regulatory utilization of
genetic redundancy through responsive backup circuits. Proc
Natl Acad Sci USA 103(31):11653-11658

Ke Y, Han G, He H, Li J (2009) Differential regulation of
proteins and phosphoproteins in rice under drought stress.
Biochem Biophys Res Commun 379(1):133-138

Khuri S, Bakker FT, Dunwell JM (2001) Phylogeny, function, and
evolution of the cupins, a structurally conserved, functionally
diverse superfamily of proteins. Mol Biol Evol 18(4):593—
605

Klink VP, Overall CC, Alkharouf NW, MacDonald MH,
Matthews BF (2007) Laser capture microdissection (lcm)
and comparative microarray expression analysis of syncytial
cells isolated from incompatible and compatible soybean



Funct Integr Genomics (2010) 10:463-476

475

(glycine max) roots infected by the soybean cyst nematode
(Heterodera glycines). Planta 226(6):1389-1409

Knecht K, Seyffarth M, Desel C, Thurau T, Sherameti I, Lou B,
Oclmiiller R, Cai D (2010) Expression of bvglp-1 encoding a
germin-like protein from sugar beet in arabidopsis thaliana
leads to resistance against phytopathogenic fungi. Mol Plant-
Microb Interact 23(4):446-457

Kondo K, Yamada K, Nakagawa A, Takahashi M, Morikawa
H, Sakamoto A (2008) Molecular characterization of at-
mospheric no2-responsive germin-like proteins in aza-
lea leaves. Biochem Biophys Res Commun 377(3):857-
861

Kou Y, Wang S (2010) Broad-spectrum and durability: under-
standing of quantitative disease resistance. Curr Opin Plant
Biol 13(2):181-185

Kouranov A, Xie L, de la Cruz J, Chen L, Westbrook J, Bourne
PE, Berman HM (2006) The rcsb pdb information por-
tal for structural genomics. Nucleic Acids Res 34(Database
issue):D302-D305

Krattinger S, Lagudah E, Spielmeyer W, Singh R, Huerta-Espino
J, McFadden H, Bossolini E, Selter L, Keller B (2009) A
putative abc transporter confers durable resistance to mul-
tiple fungal pathogens in wheat. Science 323(5919):1360-
1363

Kukavica B, Vucini¢ Z, Vuleti¢c M (2005) Superoxide dismu-
tase, peroxidase, and germin-like protein activity in plasma
membranes and apoplast of maize roots. Protoplasma 226(3-
4):191-197

Lai J, Li Y, Messing J, Dooner HK (2005) Gene movement
by helitron transposons contributes to the haplotype vari-
ability of maize. Proc Natl Acad Sci USA 102(25):9068-
9073

Lane BG (1994) Oxalate, germin, and the extracellular matrix of
higher plants. FASEB J 8(3):294-301

Lane BG (2002) Oxalate, germins, and higher-plant pathogens.
IUBMB Life 53(2):67-75

Lane BG, Bernier F, Dratewka-Kos E, Shafai R, Kennedy TD,
Pyne C, Munro JR, Vaughan T, Walters D, Altomare F
(1991) Homologies between members of the germin gene
family in hexaploid wheat and similarities between these
wheat germins and certain physarum spherulins. J Biol
Chem 266(16):10461-10469

Lane BG, Cuming AC, Frégeau J, Carpita NC, Hurkman WJ,
Bernier F, Dratewka-Kos E, Kennedy TD (1992) Germin
isoforms are discrete temporal markers of wheat devel-
opment. Pseudogermin is a uniquely thermostable water-
soluble oligomeric protein in ungerminated embryos and
like germin in germinated embryos, it is incorporated into
cell walls. Eur J Biochem 209(3):961-969

Lane BG, Dunwell JM, Ray JA, Schmitt MR, Cuming AC (1993)
Germin, a protein marker of early plant development, is an
oxalate oxidase. J Biol Chem 268(17):12239-12242

Li Q, Li L, Dai J, Li J, Yan J (2009) Identification and char-
acterization of cacta transposable elements capturing gene
fragments in maize. Chin Sci Bull 42:251-269

Liang H, Maynard CA, Allen RD, Powell WA (2001) Increased
septoria musiva resistance in transgenic hybrid poplar leaves
expressing a wheat oxalate oxidase gene. Plant Mol Biol
45(6):619-629

Liu G, Jia Y, Correa-Victoria FJ, Prado GA, Yeater KM,
McClung A, Correll JC (2009) Mapping quantitative trait
loci responsible for resistance to sheath blight in rice. Phy-
topathology 99(9):1078-1084

Lou Y, Baldwin IT (2006) Silencing of a germin-like gene in nico-
tiana attenuata improves performance of native herbivores.
Plant Physiol 140(3):1126-1136

Mahmood T, Nazar N, Abbasi B (2010) Comparative analysis
of regulatory elements in different germin-like protein gene
promoters. Afr J Biotechnol 9(13):1871-1881

Manosalva P, Davidson R, Liu B, Zhu X, Hulbert S, Leung H,
Leach J (2008) A germin-like protein gene family functions
as a complex qtl conferring broad-spectrum disease resis-
tance in rice. Plant Physiol 149(1):286-296

Mathieu M, Lelu-Walter MA, Blervacq AS, David H, Hawkins S,
Neutelings G (2006) Germin-like genes are expressed during
somatic embryogenesis and early development of conifers.
Plant Mol Biol 61(4-5):615-627

McDowell JM, Simon SA (2008) Molecular diversity at the plant-
pathogen interface. Dev Comp Immunol 32(7):736-744

Membré N, Bernier F, Staiger D, Berna A (2000) Arabidopsis
thaliana germin-like proteins: common and specific features
point to a variety of functions. Planta 211(3):345-354

Membré N, Berna A, Neutelings G, David A, David H, Staiger D,
Visquez JS, Raynal M, Delseny M, Bernier F (1997) CDNA
sequence, genomic organization and differential expression
of three arabidopsis genes for germin/oxalate oxidase-like
proteins. Plant Mol Biol 35(4):459-469

Mills EN, Jenkins J, Marigheto N, Belton PS, Gunning AP,
Morris VJ (2002) Allergens of the cupin superfamily.
Biochem Soc Trans 30(Pt 6):925-929

Ohno S (1970) Evolution by gene duplication. Springer-Verlag,
Berlin

Ouyang S, Buell CR (2004) The tigr plant repeat databases: a col-
lective resource for the identification of repetitive sequences
in plants. Nucleic Acids Res 32(Database issue):D360-D363

Ouyang S, Zhu W, Hamilton J, Lin H, Campbell M, Childs K,
Thibaud-Nissen F, Malek RL, Lee Y, Zheng L, Orvis J, Haas
B, Wortman J, Buell CR (2007) The tigr rice genome an-
notation resource: improvements and new features. Nucleic
Acids Res 35(Database issue):D883-D887

Padmanabhan M, Cournoyer P, Dinesh-Kumar SP (2009) The
leucine-rich repeat domain in plant innate immunity: a
wealth of possibilities. Cell Microbiol 11(2):191-198

Park C-J, Kim K-J, Shin R, Park JM, Shin Y-C, Pack K-H (2003)
Pathogenesis-related protein 10 isolated from hot pepper
functions as a ribonuclease in an antiviral pathway. Plant J
37(2):186-198

Pinson SRM, Capdevielle FM, Oard JH (2005) Confirming qtls
and finding additional loci conditioning sheath blight re-
sistance in rice using recombinant inbred lines. Crop Sci
45:313-324

Ramalingam J, Cruz CMV, Kukreja K, Chittoor JM, Wu JL, Lee
SW, Baraoidan M, George ML, Cohen MB, Hulbert SH,
Leach JE, Leung H (2003) Candidate defense genes from
rice, barley, and maize and their association with qualitative
and quantitative resistance in rice. Mol Plant-Microb Inter-
act 16(1):14-24

Ramputh A, Arnason J, Cass L, Simmonds J (2002) Reduced
herbivory of the european corn borer (ostrinia nubilalis) on
corn transformed with germin, a wheat oxalate oxidase gene.
Plant Sci 162(3):431-440

Requena L, Bornemann S (1999) Barley (hordeum vulgare) ox-
alate oxidase is a manganese-containing enzyme. Biochem J
343 Pt 1:185-190

Rodriguez-Lépez M, Baroja-Ferndndez E, Zandueta-Criado A,
Moreno-Bruna B, Muiioz FJ, Akazawa T, Pozueta-Romero
J (2001) Two isoforms of a nucleotide-sugar pyrophos-
phatase/phosphodiesterase from barley leaves (hordeum
vulgare 1.) are distinct oligomers of hvglpl, a germin-like
protein. FEBS lett 490(1-2):44-48

Salse J, Chague V, Bolot S, Magdelenat G, Huneau C, Pont
C, Belcram H, Couloux A, Gardais S, Evrard A, Segurens

@ Springer



476

Funct Integr Genomics (2010) 10:463-476

B, Charles M, Ravel C, Samain S, Charmet G, Boudet N,
Chalhoub B (2008) New insights into the origin of the b
genome of hexaploid wheat: evolutionary relationships at
the spa genomic region with the s genome of the diploid
relative aegilops speltoides. BMC Genomics 9(1):555

Schnable P, Ware D, Fulton R, Stein J, Wei F, Pasternak S,
Liang C, Zhang J, Fulton L, Graves T, Minx P, Reily A,
Courtney L, Kruchowski S, Tomlinson C, Strong C,
Delehaunty K, Fronick C, Courtney B, Rock S, Belter E, Du
F, Kim K, Abbott R, Cotton M, Levy A, Marchetto P, Ochoa
K, Jackson S, Gillam B, Chen W, Yan L, Higginbotham
J, Cardenas M, Waligorski J, Applebaum E, Phelps L,
Falcone J, Kanchi K, Thane T, Scimone A, Thane N,
Henke J, Wang T, Ruppert J, Shah N, Rotter K, Hodges J,
Ingenthron E, Cordes M, Kohlberg S, Sgro J, Delgado
B, Mead K, Chinwalla A, Leonard S, Crouse K, Collura K,
Kudrna D, Currie J, He R, Angelova A, Rajasekar S,
Mueller T, Lomeli R, Scara G, Ko A, Delaney K, Wissotski
M, Lopez G, Campos D, Braidotti M, Ashley E, Golser W,
Kim H, Lee S, Lin J, Dujmic Z, Kim W, Talag J, Zuccolo
A, Fan C, Sebastian A, Kramer M, Spiegel L, Nascimento
L, Zutavern T, Miller B, Ambroise C, Muller S, Spooner
W, Narechania A, Ren L, Wei S, Kumari S, Faga B, Levy
M, McMahan L, Buren PV, Vaughn M, Ying K, Yeh C-T,
Emrich S, Jia Y, Kalyanaraman A, Hsia A-P, Barbazuk W,
Baucom R, Brutnell T, Carpita N, Chaparro C, Chia J-M,
Deragon J-M, Estill J, Fu Y, Jeddeloh J, Han Y, Lee H, Li
P, Lisch D, Liu S, Liu Z, Nagel D, McCann M, SanMiguel
P, Myers A, Nettleton D, Nguyen J, Penning B, Ponnala L,
Schneider K, Schwartz D, Sharma A, Soderlund C, Springer
N, Sun Q, Wang H, Waterman M, Westerman R, Wolfgruber
T, Yang L, Yu Y, Zhang L, Zhou S, Zhu Q, Bennetzen J,
Dawe R, Jiang J, Jiang N, Presting G, Wessler S, Aluru S,
Martienssen R, Clifton S, McCombie W, Wing R, Wilson
R (2009) The b73 maize genome: complexity, diversity, and
dynamics. Science 326(5956):1112-1115

Schulte D, Close TJ, Graner A, Langridge P, Matsumoto T,
Muehlbauer G, Sato K, Schulman AH, Waugh R, Wise
RP, Stein N (2009) The international barley sequencing
consortium-at the threshold of efficient access to the barley
genome. Plant Physiol 149(1):142-147

Schweizer P, Christoffel A, Dudler R (1999) Transient expres-
sion of members of the germin-like gene family in epidermal
cells of wheat confers disease resistance. Plant J 20(5):541—
552

Sirithunya P, Tragoonrung S, Vanavichit A, Pa-In N,
Vongsaprom C, Toojinda T (2002) Quantitative trait
loci associated with leaf and neck blast resistance in
recombinant inbred line population of rice (oryza sativa).
DNA Res 9(3):79-88

Soares NC, Francisco R, Vielba JM, Ricardo CP, Jackson PA
(2009) Associating wound-related changes in the apoplast
proteome of medicago with early steps in the ros signal-
transduction pathway. J Proteome Res 8(5):2298-309

Soisson SM, MacDougall-Shackleton B, Schleif R, Wolberger C
(1997a) The 1.6 a crystal structure of the arac sugar-binding
and dimerization domain complexed with d-fucose. J Mol
Biol 273(1):226-237

Soisson SM, MacDougall-Shackleton B, Schleif R, Wolberger C
(1997b) Structural basis for ligand-regulated oligomerization
of arac. Science 276(5311):421-425

@ Springer

Song WY, Wang GL, Chen LL, Kim HS, Pi LY, Holsten T,
Gardner J, Wang B, Zhai WX, Zhu LH, Fauquet C, Ronald
P (1995) A receptor kinase-like protein encoded by the rice
disease resistance gene, xa21. Science 270(5243):1804-1806

Tabien E, Li Z, Paterson H, Marchetti A, Stansel W, Pinson
M (2002) Mapping qtls for field resistance to the rice blast
pathogen and evaluating their individual and combined util-
ity in improved varieties. Theor Appl Genet 105(2-3):313-
324.

Tanner A, Bornemann S (2000) Bacillus subtilis yvrk is an acid-
induced oxalate decarboxylase. J Bacteriol 182(18):5271-
5273

Wei Y, Zhang Z, Andersen CH, Schmelzer E, Gregersen PL,
Collinge DB, Smedegaard-Petersen V, Thordal-Christensen
H (1998) An epidermis/papilla-specific oxalate oxidase-like
protein in the defence response of barley attacked by the
powdery mildew fungus. Plant Mol Biol 36(1):101-112

Wisser RJ, Sun Q, Hulbert SH, Kresovich S, Nelson RJ (2005)
Identification and characterization of regions of the rice
genome associated with broad-spectrum, quantitative dis-
ease resistance. Genetics 169(4):2277-2293

Wisser RJ, Balint-Kurti PJ, Nelson, RJ (2006) The genetic ar-
chitecture of disease resistance in maize: a synthesis of pub-
lished studies. Phytopathology 96(2):120-129

Wojtaszek P (1997a) Mechanisms for the generation of reactive
oxygen species in plant defence response. Acta Physiol Plant
19:581-589

Wojtaszek P (1997b) Oxidative burst: an early plant response to
pathogen infection. Biochem J 322(Pt 3):681-692

Woo EJ, Dunwell JM, Goodenough PW, Marvier AC, Pick-
ersgill RW (2000) Germin is a manganese containing ho-
mohexamer with oxalate oxidase and superoxide dismutase
activities. Nat Struct Biol 7(11):1036-1040

Wu J-L, Sinha PK, Variar M, Zheng K-L, Leach JE, Courtois
B, Leung H (2004) Association between molecular markers
and blast resistance in an advanced backcross population of
rice. Theor Appl Genet 108(6):1024-1032

Xiang P, Beardslee TA, Zeece MG, Markwell J, Sarath G (2002)
Identification and analysis of a conserved immunoglobulin
e-binding epitope in soybean gla and g2a and peanut ara h 3
glycinins. Arch Biochem Biophys 408(1):51-57

Yahiaoui N, Srichumpa P, Dudler R, Keller B (2004) Genome
analysis at different ploidy levels allows cloning of the pow-
dery mildew resistance gene pm3b from hexaploid wheat.
Plant J 37(4):528-538

Yamahara T, Shiono T, Suzuki T, Tanaka K, Takio S, Sato K,
Yamazaki S, Satoh T (1999) Isolation of a germin-like pro-
tein with manganese superoxide dismutase activity from cells
of a moss, barbula unguiculata. J Biol Chem 274(47):33274—
33278

Yi H, Richards EJ (2007) A cluster of disease resistance genes
in arabidopsis is coordinately regulated by transcriptional
activation and rna silencing. Plant Cell 19(9):2929-2939

Zimmermann G, Biaumlein H, Mock H-P, Himmelbach A,
Schweizer P (2006) The multigene family encoding germin-
like proteins of barley. Regulation and function in basal host
resistance. Plant Physiol 142(1):181-192

Zou J, Pan X, Chen Z, Xu J, Lu J, Zhai W, Zhu L (2000)
Mapping quantitative trait loci controlling sheath blight re-
sistance in two rice cultivars (oryza sativa l.). Theor Appl
Genet 101:569-573



	Germin-like proteins (GLPs) in cereal genomes: gene clustering and dynamic roles in plant defence
	Abstract
	Introduction
	Defining GLPs
	Plant defence mechanisms of GLPs
	GLP gene clusters in currently available cereal genome sequences
	Conclusion
	References




<<
  /ASCII85EncodePages false
  /AllowTransparency false
  /AutoPositionEPSFiles true
  /AutoRotatePages /None
  /Binding /Left
  /CalGrayProfile (Gray Gamma 2.2)
  /CalRGBProfile (sRGB IEC61966-2.1)
  /CalCMYKProfile (ISO Coated v2 300% \050ECI\051)
  /sRGBProfile (sRGB IEC61966-2.1)
  /CannotEmbedFontPolicy /Error
  /CompatibilityLevel 1.3
  /CompressObjects /Off
  /CompressPages true
  /ConvertImagesToIndexed true
  /PassThroughJPEGImages true
  /CreateJDFFile false
  /CreateJobTicket false
  /DefaultRenderingIntent /Perceptual
  /DetectBlends true
  /DetectCurves 0.0000
  /ColorConversionStrategy /sRGB
  /DoThumbnails true
  /EmbedAllFonts true
  /EmbedOpenType false
  /ParseICCProfilesInComments true
  /EmbedJobOptions true
  /DSCReportingLevel 0
  /EmitDSCWarnings false
  /EndPage -1
  /ImageMemory 1048576
  /LockDistillerParams true
  /MaxSubsetPct 100
  /Optimize true
  /OPM 1
  /ParseDSCComments true
  /ParseDSCCommentsForDocInfo true
  /PreserveCopyPage true
  /PreserveDICMYKValues true
  /PreserveEPSInfo true
  /PreserveFlatness true
  /PreserveHalftoneInfo false
  /PreserveOPIComments false
  /PreserveOverprintSettings true
  /StartPage 1
  /SubsetFonts false
  /TransferFunctionInfo /Apply
  /UCRandBGInfo /Preserve
  /UsePrologue false
  /ColorSettingsFile ()
  /AlwaysEmbed [ true
  ]
  /NeverEmbed [ true
  ]
  /AntiAliasColorImages false
  /CropColorImages true
  /ColorImageMinResolution 150
  /ColorImageMinResolutionPolicy /Warning
  /DownsampleColorImages true
  /ColorImageDownsampleType /Bicubic
  /ColorImageResolution 150
  /ColorImageDepth -1
  /ColorImageMinDownsampleDepth 1
  /ColorImageDownsampleThreshold 1.50000
  /EncodeColorImages true
  /ColorImageFilter /DCTEncode
  /AutoFilterColorImages true
  /ColorImageAutoFilterStrategy /JPEG
  /ColorACSImageDict <<
    /QFactor 0.40
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /ColorImageDict <<
    /QFactor 1.30
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /JPEG2000ColorACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 10
  >>
  /JPEG2000ColorImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 10
  >>
  /AntiAliasGrayImages false
  /CropGrayImages true
  /GrayImageMinResolution 150
  /GrayImageMinResolutionPolicy /Warning
  /DownsampleGrayImages true
  /GrayImageDownsampleType /Bicubic
  /GrayImageResolution 150
  /GrayImageDepth -1
  /GrayImageMinDownsampleDepth 2
  /GrayImageDownsampleThreshold 1.50000
  /EncodeGrayImages true
  /GrayImageFilter /DCTEncode
  /AutoFilterGrayImages true
  /GrayImageAutoFilterStrategy /JPEG
  /GrayACSImageDict <<
    /QFactor 0.40
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /GrayImageDict <<
    /QFactor 1.30
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /JPEG2000GrayACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 10
  >>
  /JPEG2000GrayImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 10
  >>
  /AntiAliasMonoImages false
  /CropMonoImages true
  /MonoImageMinResolution 600
  /MonoImageMinResolutionPolicy /Warning
  /DownsampleMonoImages true
  /MonoImageDownsampleType /Bicubic
  /MonoImageResolution 600
  /MonoImageDepth -1
  /MonoImageDownsampleThreshold 1.50000
  /EncodeMonoImages true
  /MonoImageFilter /CCITTFaxEncode
  /MonoImageDict <<
    /K -1
  >>
  /AllowPSXObjects false
  /CheckCompliance [
    /None
  ]
  /PDFX1aCheck false
  /PDFX3Check false
  /PDFXCompliantPDFOnly false
  /PDFXNoTrimBoxError true
  /PDFXTrimBoxToMediaBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXSetBleedBoxToMediaBox true
  /PDFXBleedBoxToTrimBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXOutputIntentProfile (None)
  /PDFXOutputConditionIdentifier ()
  /PDFXOutputCondition ()
  /PDFXRegistryName ()
  /PDFXTrapped /False

  /Description <<
    /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e5c4f5e55663e793a3001901a8fc775355b5090ae4ef653d190014ee553ca901a8fc756e072797f5153d15e03300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
    /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc87a25e55986f793a3001901a904e96fb5b5090f54ef650b390014ee553ca57287db2969b7db28def4e0a767c5e03300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
    /DAN <>
    /ESP <>
    /FRA <>
    /ITA <>
    /JPN <>
    /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020d654ba740020d45cc2dc002c0020c804c7900020ba54c77c002c0020c778d130b137c5d00020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
    /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken die zijn geoptimaliseerd voor weergave op een beeldscherm, e-mail en internet. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
    /NOR <>
    /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f0062006500200050004400460020006d00610069007300200061006400650071007500610064006f00730020007000610072006100200065007800690062006900e700e3006f0020006e0061002000740065006c0061002c0020007000610072006100200065002d006d00610069006c007300200065002000700061007200610020006100200049006e007400650072006e00650074002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
    /SUO <>
    /SVE <>
    /ENU (Use these settings to create Adobe PDF documents best suited for on-screen display, e-mail, and the Internet.  Created PDF documents can be opened with Acrobat and Adobe Reader 5.0 and later.)
    /DEU <FEFF004a006f0062006f007000740069006f006e007300200066006f00720020004100630072006f006200610074002000440069007300740069006c006c0065007200200037000d00500072006f006400750063006500730020005000440046002000660069006c0065007300200077006800690063006800200061007200650020007500730065006400200066006f00720020006f006e006c0069006e0065002e000d0028006300290020003200300031003000200053007000720069006e006700650072002d005600650072006c0061006700200047006d006200480020>
  >>
  /Namespace [
    (Adobe)
    (Common)
    (1.0)
  ]
  /OtherNamespaces [
    <<
      /AsReaderSpreads false
      /CropImagesToFrames true
      /ErrorControl /WarnAndContinue
      /FlattenerIgnoreSpreadOverrides false
      /IncludeGuidesGrids false
      /IncludeNonPrinting false
      /IncludeSlug false
      /Namespace [
        (Adobe)
        (InDesign)
        (4.0)
      ]
      /OmitPlacedBitmaps false
      /OmitPlacedEPS false
      /OmitPlacedPDF false
      /SimulateOverprint /Legacy
    >>
    <<
      /AddBleedMarks false
      /AddColorBars false
      /AddCropMarks false
      /AddPageInfo false
      /AddRegMarks false
      /ConvertColors /ConvertToRGB
      /DestinationProfileName (sRGB IEC61966-2.1)
      /DestinationProfileSelector /UseName
      /Downsample16BitImages true
      /FlattenerPreset <<
        /PresetSelector /MediumResolution
      >>
      /FormElements false
      /GenerateStructure false
      /IncludeBookmarks false
      /IncludeHyperlinks false
      /IncludeInteractive false
      /IncludeLayers false
      /IncludeProfiles true
      /MultimediaHandling /UseObjectSettings
      /Namespace [
        (Adobe)
        (CreativeSuite)
        (2.0)
      ]
      /PDFXOutputIntentProfileSelector /NA
      /PreserveEditing false
      /UntaggedCMYKHandling /UseDocumentProfile
      /UntaggedRGBHandling /UseDocumentProfile
      /UseDocumentBleed false
    >>
  ]
>> setdistillerparams
<<
  /HWResolution [2400 2400]
  /PageSize [595.276 841.890]
>> setpagedevice


