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Abstract—Many parasitic wasps are attracted to volatiles that are released by

plants when attacked by potential hosts. The attractiveness of these semi-

ochemicals from damaged plants has been demonstrated in many tritrophic

systems, but the physiological mechanisms underlying the insect responses are

poorly understood. We recorded the antennal perception by three parasitoids

(Cotesia marginiventris, Microplitis rufiventris, and Campoletis sonorensis) to

volatiles emitted by maize, cowpea, and cotton plants after attack by the

common caterpillar pest Spodoptera littoralis. Gas chromatography-electro-

antennography (GC-EAG) recordings showed that wasps responded to many,

but not all, of the compounds present at the physiologically relevant levels

tested. Interestingly, some minor compounds, still unidentified, elicited strong

responses from the wasps. These results indicate that wasps are able to detect

many odorant compounds released by the plants. It remains to be determined

how this information is processed and leads to the specific behavior of the

parasitoids.
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INTRODUCTION

Many plants attacked by herbivorous insects indirectly defend themselves by

emitting semiochemicals that act as attractants for natural enemies of the

attackers (Dicke and Sabelis, 1988; Turlings et al., 1990; Steinberg et al., 1993;

Agelopoulos and Keller, 1994; Geervliet et al., 1994; Röse et al., 1997; Du

et al., 1998; Shiojiri et al., 2000; Neveu et al., 2002). At least 12 families of

plants produce volatiles in response to herbivory (Dicke, 1999). The

compositions of the volatiles produced are variable, but isoprenoids, lip-

oxygenase-derived volatiles, and aromatics (derived from either the phenyl-

alanineYammoniaYlyase pathway or from other amino acids) commonly

dominate the blends released by insect-damaged plants (Whitman and Eller,

1990; Tumlinson et al., 1992; Rutledge, 1996). The emission of volatiles after

attack by Lepidoptera is induced by elicitors in the oral secretions of herbivores

(Dicke et al., 1993; Turlings et al., 1993; Mattiacci et al., 1995). Two different

types of elicitors have been identified, a b-glucosidase from Pieris rapae

(Lepidoptera: Pieridae) (Mattiacci et al., 1995), and fatty acid derivatives, such

as volicitin isolated from Spodoptera exigua (Lepidoptera: Noctuidae) (Alborn

et al., 1997; Turlings et al., 2000).

Spodoptera spp. (Lepidoptera: Noctuidae) larvae are important pests of

various cultivated plants, including maize (Zea mays mays), cotton (Gossypium

herbaceum), and cowpea (Vigna unguiculata). In response to larval feeding,

these plants emit a particular odor (Turlings, 1990; McCall et al., 1993; Röse

et al., 1996) that is perceptible even by humans (Gouinguené, personal

observation). These pests can be parasitized by various wasps, including

Cotesia marginiventris (Hymenoptera: Braconidae), Microplitis rufiventris

(Hymenoptera: Braconidae), and Campoletis sonorensis (Hymenoptera: Ichneu-

monidae). The induced odors emitted by maize, cotton, and cowpea plants during

feeding by Spodoptera spp. are attractive to each of these parasitoids (Turlings

et al., 1995; Röse et al., 1998; C. Tamó and T. Degen, personal communica-

tion). According to the species of plant, the induced odor can vary, although

some common substances are present in the different blends (Turlings et al.,

1991; Röse et al., 1998; Hoballah et al., 2002). C. marginiventris and C.

sonorensis originate from the new world, while M. rufiventris occurs in the

old world, in particular in north Africa. These are generalists, although

M. rufiventris is found more often parasitizing S. littoralis feeding on cotton

plants (C. Tamó, personal communication). The different hosts of these parasi-

toids are often generalists, and feed on various plant families, including maize,

cotton, and cowpea.

Although the responses of parasitoids to induced plant odors have been

intensively studied in terms of behavior, the physiological mechanisms underly-

ing the behavior are largely unknown. Coupled high-resolution gas chromatog-
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raphy (GC) and electrophysiology techniques can be used to identify physiolog-

ically active compounds from complex natural product extracts (Wadhams,

1990). This approach has been used to determine active components in the odor

blend of maize for C. flavipes, a parasitoid of the stemborer spp (Ngi-Song and

Overholt, 1997). Female C. flavipes respond to six compounds (an unidentified

C5 compound, heptanal, (Z )-3-hexenyl acetate, (E )-ocimene, linalool, and (E )-

4,8-dimethyl-1,3,7-nonatriene (DMNT)) in the odor of maize infested with

Chilo partellus larvae (Lepidoptera: Pyralidae). Using simple EAG recordings,

C. sonorensis has been shown to respond to green leaf volatiles, monoterpenes

(a-pinene, myrcene, limonene), and with lower sensitivity to sesquiterpenoids

(gossonorol, b-caryophyllene oxide, b-caryophyllene, a-humulene) (Baehrecke

et al., 1989). So far, no data are available on the perception of induced odor by

C. marginiventris and M. rufiventris. EAG recordings have also been used to

test the sensitivity of antennal perception in some other parasitoids (Lecomte

and Pouzat, 1985; Salom et al., 1991; Jyothi et al., 2002). Only a few studies on

parasitoids have been done using coupled GC and EAG systems. Pettersson

et al. (2000) found that the bark beetle parasitoid, Rotrocerus xylophagum

(Hymenoptera: Pteromilidae), did not respond to the major compounds present

in the bark oil. More recently, Smid et al. (2002) compared the responses of a

specialist and generalist parasitoid of Pieris caterpillar to attacked Brussels

sprouts, and showed that the two parasitoid species responded similarly to a

large number of compounds present in the odor of damaged plants. Interest-

ingly, two compounds were only perceived by the specialist parasitoid (Cotesia

rubecula) (Smid et al., 2002).

The aim of this study was to use the GC-EAG approach to determine and

to compare the antennal perception of compounds in the induced odor blends of

maize, cotton, and cowpea for the three generalist parasitoids C. marginiventris,

M. rufiventris, and C. sonorensis, which show strong similarities in host range

and life cycle.

METHODS AND MATERIALS

Insects. C. marginiventris, M. rufiventris, and C. sonorensis were provided

by the Laboratory of Animal Ecology and Entomology, University of

Neuchâtel, Switzerland. The rearing of the three parasitoids follows the same

procedure. Second instar larvae of S. littoralis were exposed to female parasitic

wasps for at least 2 hr, then wasps were removed and the larvae reared on

artificial diet (Syngenta, Basel, Switzerland). When the parasitic larvae are

ready to pupate, they exit the host and form cocoons that can be easily collected.

Cocoons were placed in plastic boxes (13.5 � 7.5 � 6 cm) with wet cotton to
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maintain humidity and drops of honey for food. Newly-emerged adult parasi-

toids were sexed, and placed in plastic cups (6.5 � 5.5 cm diam.), and were

provided with honey and wet cotton. They were kept in a climate chamber

(20-C, 40% RH) and 2- to 3-d-old females were used in experiments.

Collection of Induced Odors. Air entrainment samples of induced odor of

cotton, maize (variety Delprim), and cowpea were used, and were prepared at

the University of Neuchâtel. Three seeds of cotton, maize, and cowpea were

sown in plastic pots, filled with fertilized potting soil (Coop, Switzerland).

Plants were grown in a climate chamber at 23-C, 60% RH, and under

50,000 lm/m2 (16L:8D). Fifteen-d-old plants were used. To induce the plants to

emit volatiles, 30 S. littoralis larvae (second instar) were allowed to feed on

the three plant species for 2 d prior to the first odor collection. The volatile

collection system has been described in detail (Turlings et al., 1998) and

was modified as follows. It consisted of five vertically placed glass cylinders

(7 cm i.d., 43 cm high). The pot with the three plants was placed in a glass

pot (7 cm diam., 8.5 cm high), which fits in the vertical cylindrical glass.

Purified and humidified air was pushed into each cylinder at a rate of 1 l/min

and flowed around the plant. Around the base of each cylinder, an opening

served as a port that could hold the collection traps. For collections, air was

drawn (0.8 l/min) through a Super-Q adsorbent trap (Heath and Manukian,

1994), while the rest of the air vented through the hole in the top, thus

preventing external, impure air from entering. The automated part of the

collection system (Analytical Research System, Gainesville, FL, USA) con-

trolled flow through the trap. The climate chamber (CMP4030, CONVIRON,

Winnipeg, Canada) in which the collection cylinders were housed was kept

at 17.5-C. Due to the heat irradiation, the temperature inside the cylinders

was 23 T 3-C. During the photophase (16L:8D) light intensity was approx.

20,000 lm/m2.

Two collections were done during the day, starting 2 and 9 hr after the

beginning of the photophase. Each collection lasted 6 hr. After each collection,

traps were extracted with 250 ml of methylene chloride (Lichrosolv, Merck,

Switzerland). The same plants were used for volatile collection the next day. At

the end of the 2 d, the samples from the four collections of the same plant

species were pooled. To obtain control samples, the same conditions were used

to collect volatiles from undamaged plants, pot and soil only, and empty

glasses.

Electrophysiology. Electroantennogram (EAG) recordings from 2- to 3-d-

old female wasps were made using AgYAgCl glass electrodes filled with saline

solution (composition as Maddrell (1969), without glucose). The insect was

anaesthetized by chilling, and the head was excised and inserted in the tip of the

indifferent electrode. The tips of the two antennae were inserted into the

recording electrode. Signals were passed through a high impedance amplifier
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(UN-06, Syntech, The Netherlands) and analyzed by using a customized soft-

ware package (Syntech, The Netherlands).

Coupled Gas Chromatography-Electroantennography (GC-EAG). The cou-

pled GC-EAG system, in which the effluent of the GC column is simultaneously

directed to the antennal preparation and the GC detector, has been described

(Wadhams, 1990). Separation of the volatiles was achieved on an AI 93 GC

equipped with a cold on-column injector and an FID. The column used was a

50 m � 0.32 mm i.d. HP-1 column (non polar). Oven temperature was main-

tained at 40-C for 2 min and then programmed at 5-C/min to 100-C and then at

10-C/min to 250-C. The carrier gas was hydrogen (15 psi). The outputs from

the EAG amplifier and the FID were monitored simultaneously and analyzed

with the software package (Syntech, the Netherlands). A standard stimulation

was done at the beginning and at the end of each recording to correct for the

loss of sensitivity of the preparation. The stimulus (100 mg of (Z )-3-hexenol)

was applied on a filter paper strip, inserted in a Pasteur pipette, and a puff of

odor was flushed on the EAG preparation. For the correction, we assumed that

the decrease in sensitivity is linear with the time. Data were then normalized to

the standard as follows:

A

EAG std1ð Þ þ EAG std2ð Þ � EAG std1ð Þð Þ RT Að Þ � RT std1ð Þ
RT std2ð Þ � RT std1ð Þ

where A is the amplitude (mV) of the EAG response to compound A; EAG(std1)

is the EAG response to standard at the beginning of the recording; EAG(std2)

is the EAG response to standard at the end of the recording; RT(A) is the

retention time of compound A; RT(std1) is the time when the stimulation at

the beginning of the recording was done; RT(std2) denotes the time when the

stimulation at the end of the recording was done. For each induced odor tested,

responses from 10 females were recorded.

Coupled Gas Chromatography-Mass Spectrometry (GC-MS). GC-MS was

used to tentatively identify compounds giving rise to the peaks associated with

EAG activity from the induced odor blend of maize, cowpea, and cotton. A

capillary GC column (50 m � 0.32 mm i.d. HP-1) fitted with a cold on-column

injector was directly coupled to a mass spectrometer (VG Autospec, Fisons

Instruments). Ionization was by electron impact at 70 eV, 250-C. The oven

temperature was maintained at 30-C for 5 min and then programmed at 5-C/min

to 250-C. Peak identities were determined by comparison of the spectra with

those of authentic compounds from synthesis or other botanical sources and

confirmed by comparison of Kovat’s indices.

Statistical Analysis. Normalized EAG responses of the three parasitoids to

the different plants odor were compared using nonparametric tests. On each

compound that activated a response from the parasitic wasps, a KruskallYWallis
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comparison was done, when it was shown that the mean responses were

different, MannYWhitney pairs comparisons were realized to determine which

parasitoid was different from which. For such comparison, the level of signifi-

cativity was corrected using the Bonferroni correction, thus a = 0.017.

RESULTS

Figures 1, 2, and 3 present representative GC-EAG recordings from the 10

replicates from each wasp species and each induced odor (60 recordings in

total). Most of the major compounds elicited EAG responses from the three

parasitoids. Some minor compounds also evoked strong responses (Figures 1, 2,

and 3). The greatest responses were obtained from the green leaf volatiles

( peaks a, b, n), whereas lower responses were recorded later in the GC-EAG

analytical traces. This difference may reflect a differences in sharpness of the

GC peaks and the number of molecules that hit the antennae at the same time

and should not be interpreted as difference in strength of perception. Table 1

FIG. 1. GC-EAG traces of Cotesia marginiventris, Microplitis rufiventris and Campoletis

sonorensis in response to the caterpillar-induced odor from maize.
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gives the identity and normalized EAG value of all the electrophysiologically

active compounds in the three induced odor samples tested. The letter in the first

column refers to the letters in Figures 1, 2, and 3. Only a few small responses

were recorded from the volatile samples from undamaged control plants

(Figure 4). For example, in odor from undamaged maize, these responses were

associated with the constitutive compounds, like linalool (s).

For maize, a total of 25 compounds in the induced blend gave detectable

responses from the three parasitoids combined (Figure 1 and Table 1). EAG

responses from C. marginiventris were elicited by 24 compounds. C. sonorensis

females responded to 20 compounds (Figure 1). C. marginiventris showed high

responses to (E)-2-hexenal (b), (Z)-3-hexenyl acetate (n), linalool (s), neryl or

geranyl acetate (ze), and unknown 5 (l) (Table 1). Normalized responses to (E )-

2-hexenal (b) were higher than the response of the two other parasitic wasps

(comparison with M. rufiventris, P = 0.004; with C. sonorensis, P = 0.005),

while responses to DMNT were lower (P = 0.005 in both comparisons). Neryl

or geranyl acetate (ze) gave the highest response (20.6%) from M. rufiventris

(Table 1), and that response was significantly higher than the one from

C. sonorensis (P = 0.007). M. rufiventris responded weakly to unknown 5 (l) as

FIG. 2. GC-EAG traces of Cotesia marginiventris, Microplitis rufiventris and Campoletis

sonorensis in response to the caterpillar-induced odor from cotton.
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compared to C. marginiventris (P < 0.001) and C. sonorensis (P < 0.001).

C. sonorensis showed higher responses to linalool (s), (Z)-3-hexenyl acetate (n),

(Z)-3-hexenol (f), (Z)-3-hexenal (a), and DMNT (t). C. sonorensis had lower

responses than C. marginiventris to (E )-2-hexenal (b) (P = 0.005). Although

not statistically different, responses to methyl anthranilate (zc) by C. sonorensis

tended to be low compared to the ones of the two other parasitoids. Benzyl

acetate (v) evoked no responses in C. sonorensis. Interestingly, all three

parasitoids responded strongly to geranyl acetate (ze).

A total of 23 compounds were perceived in the induced odor of cotton

(Figure 2). As in maize plants, some of the minor compounds elicited relatively

strong EAG responses in C. marginiventris (i and l, Figure 2). C. sonorensis

and C. marginiventris appeared to have similar sensitivity to most of the com-

pounds from induced odor of cotton. These wasps showed a greater sensitivity

to green leaf volatiles (compounds a, b, and c) than M. rufiventris (Figure 2

and Table 1), which had significantly lower response to (Z )-3-hexen-1-ol (c)

(P = 0.015 and P = 0.01, respectively). Compared to the other two wasps,

C. marginiventris showed particularly strong responses to methyl-(Z )-3-hexa-

FIG. 3. GC-EAG traces of Cotesia marginiventris, Microplitis rufiventris and Campoletis

sonorensis in response to caterpillar-induced odor from cowpea.
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noate (f ) (P < 0.001 both with M. rufiventris and C. sonorensis), nerolidol (zl),

and unknown 8 (zn) (although not significantly different). M. rufiventris was

less responsive to (Z )-3-hexen-1-ol (c), methyl benzoate (q ), and DMNT (t)

compared to C. marginiventris (P = 0.015, P = 0.001, P = 0.011, respectively)

and C. sonorensis except to DMNT (P = 0.010, P < 0.001, P = 0.043). M.

rufiventris did not respond to unknown 3 (i), unknown 5 (l), or humulene (zi).

The induced blend of cowpea was less complex than those from maize

and cotton (Figure 3). Only 16 compounds elicited EAG responses from the

parasitoids (Figure 3). For all parasitoids, responses to green leaf volatiles were

FIG. 4. GC-EAD traces of Cotesia marginiventris, Microplitis rufiventris and Campoletis

sonorensis in response to odor from undamaged cotton, maize and cowpea.
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dominant, but C. marginiventris also responded relatively well to nerolidol (zl)

and methyl benzoate (q) (P < 0.001 for both M. rufiventris and C. sonorensis)

(Figure 3). C. marginiventris showed a tendency to higher responses compared

to the two other parasitoids (Table 1), while M. rufiventris and C. sonorensis

responded similarly to the compounds in cowpea induced odor (Table 1).

C. sonorensis responded significantly with lower intensity to DMNT (t) (P <

0.001), while responses from C. marginiventris and M. rufiventris were not

different (P = 0.72). Some compounds did not activate the olfactory receptors,

even when released in large amounts. The most striking example was a-pinene

( peak between g and i) in the induced cotton odor (Figure 2). Again, all three

species were sensitive to some minor compounds (f, g, i, and l), which may be

of importance in the recognition of specific host plants. In intact plants, the

emission of volatiles was extremely low, which led to no activation of the

olfactory receptors on wasps’ antennae (Figure 4).

DISCUSSION

The release of volatile compounds when plants are attacked by insect

herbivores, and the attractiveness of such induced compounds to natural enemies,

have been shown in various studies (Turlings et al., 1990; Steinberg et al., 1993;

Geervliet et al., 1994; Dicke and Vet, 1998). In some systems, there are key

compounds for the attraction of parasitoids, such as 6-methyl-5-hepten-2-one,

which is an indicator of the presence of specific host aphids for the parasitoid,

Aphidius ervi (Du et al., 1998). In other systems, the role of the various

compounds in the induced odor blends appears to be more complex (Dicke

et al., 1990; Vet et al., 1990; Turlings et al., 1995; Röse et al., 1998). In this

study, we compared the olfactory perception of three female parasitoids to the

induced odor of maize, cotton, and cowpea to determine if there are key

compounds mediating host location. The results showed that many, but not all,

of the compounds in the induced odors were perceived by the parasitoids. There

were some differences in the intensity of response to particular compounds,

indicating potential differential sensitivity of the parasitoids to the various

volatiles. For example, C. sonorensis and M. rufiventris both responded to

linalool, but when the amount of this compound was reduced, as it is in the

induced odor of cowpea, no EAG activity was detected, whereas C. margin-

iventris still responded at these concentrations. For an accurate determination of

the response threshold of the different parasitoids, dose-response measurements

should be made for each compound perceived and for each wasp. The absence

of responses from odor blends of control plants indicates that the undetectable

amount of odor released in the absence of attack by herbivorous insects may not
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be useful at long distance. It cannot be excluded, however, that undetectable

amounts of specific plant odors may be detected at short distance. Although it is

difficult to distinguish any specific pattern of response from the parasitoids due

to the high number of EAG active compounds in the different blends tested,

minor compounds may play a more important role than previously thought. The

strong EAG responses elicited by these semiochemicals suggests this. While the

major compounds are ubiquitous plant secondary metabolites, and may provide

general information indicating herbivore-damaged plants, information on the

identity of the herbivore doing the damage may be indicated by differences in

ratios between the different compounds (De Moraes et al., 1998), and minor

compounds may also be key in specific host recognition. Some of these minor

compounds were not present in the odor of all three plants, being more plant-

than host-specific.

No specific relation between the origin of female parasitoids and their

preferred plant/host complex could be detected. For example, M. rufiventris,

which occurs in Egypt, is more prevalent on cotton plants than the two other

parasitoids (C. Tamò, personal communication), but this was not reflected in the

antennal responses. It is also curious that, in general, the wasps showed

relatively poor responses to DMNT, TMNT, and several sesquiterpenes, which

are typical for caterpillar-induced odor blends and have been assumed to be key

attractants. This poor perception of these compounds, however, corresponds

well with results from behavioral assays designed to pinpoint key parasitoid

attractants (Hoballah et al., 2002: M D’Alessandro, M. Held, T. Turlings, per-

sonal communication).

A recent study measured the olfactory responses of C. glomerata, a

generalist parasitoid, and C. rubecula, a specialist parasitoid of Pieris rapae. No

obvious differences were found in the detected range of compounds released by

Brussels sprouts when attacked by caterpillars (Smid et al., 2002). This confirms

the difficulty of detecting any differences in peripheral perception among

parasitoids. As observed for the parasitoids in the present study, C. glomerata

and C. rubecula show a broad olfactory capability responding to 20 compounds

in the cabbage volatiles (Smid et al., 2002). The wasps’ ability to detect a wide

range of compounds in the induced odors of maize, cotton, and cowpea plants

suggests that they use a wide range of compounds to identify plants that carry

hosts. However, not all detected compounds are expected to have an effect on

behavior. The attraction of female parasitoids could be due to a few specific

compounds in the blend, or to a specific mixture of compounds. This is testable,

as is the relative importance of the minor compounds on parasitoid behavior.

Identification of the minor EAG active compounds in the different blends may

reveal interesting prospects for application and should improve our understand-

ing of the recognition by female parasitoids of plants attacked by potential

hosts. More detailed study should be done at the single sensillum level in order
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to determine the specificity of olfactory cells to the different compounds present

in the induced blends.

The results show that these parasitic wasps have a wide olfactory capability

and that there is little difference among species of parasitoids. Further studies to

understand the mechanisms mediating host location by parasitic wasps may help

in developing methods to optimize the efficiency of natural enemies as bio-

logical control agents.
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