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Abstract

Background: Catheter-guided interventions are increasingly used for relief of lesions in patients with con-
genital heart disease. Exact anatomical imaging with measurement of the vascular structures is crucial in
the planning of such interventions. This can be provided non-invasively and without radiation by contrast-
enhanced MR angiography (CE-MRA). Aim: To evaluate the accuracy of the measurements of the vessels
obtained by CE-MRA in comparison to those obtained by conventional X-ray angiography (XRA).
Methods: Measurements of the diameters of aorta and pulmonary arteries were performed retrospectively
and blinded on the CE-MRA and XRA images, in comparable locations. The limits of agreement between
the two methods were calculated. Results: Twenty-one CE-MRA and XRA were performed in 20 children
with congenital heart disease, median age 4 years (1 day–13 years), weight 18 kg (3.2–74 kg). The time
interval between CE-MRA and XRA was 2.6 ± 2.3 months. A total of 98 measurements, 38 of the aorta
and 60 of the pulmonary arteries were performed on the images obtained by each technique. The corre-
lation between CE-MRA and XRA measurements was excellent, r ¼ 0.97, p < 0.0001. The mean differ-
ence between the two techniques was 0.018 ± 1.1 mm; the limits of agreement )2.14 and + 2.18 mm.
Similar agreement was found for measures of the aorta (r ¼ 0.97, mean difference 0.20 ± 1.08 mm) and of
the pulmonary arteries (r ¼ 0.97, mean difference 0.048 ± 0.89 mm). Conclusions: CE-MRA provides
accurate quantitative anatomical information, which highly agrees with XRA data, and can therefore be
used for planning catheter-guided procedures.

Introduction

The anatomy of congenital heart defects (CHD),
either pre or postoperative, can be very complex.
Imaging strategies continue to evolve and at
present increasingly more information is gleaned
non-invasively [1]. In routine clinical practice
cross-sectional echocardiography has replaced
cardiac catheterization as the preoperative imaging

modality of choice for several patients with CHD
[2]. In case of a limited acoustic window the
anatomy can be well demonstrated by magnetic
resonance imaging (MRI) [3]. Contrast-enhanced
magnetic resonance angiography (CE-MRA) is a
newly developed technique increasing the diag-
nostic power of cardiac MRI studies and gaining
more and more importance in non-invasive cardiac
imaging [4, 5]. CE-MRA has been proven to be an
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accurate diagnostic tool for pulmonary and sys-
temic venous anomalies as well as for aortic arch
anomalies [6–10].

The number of diagnostic catheterization is
drastically declining [2]. In contrast catheter-gui-
ded interventions are increasingly used as alter-
native to surgical therapy [11]. Measuring exactly
the dimensions of the vessels or of the valve
annulus may be crucial in planning and proceeding
for surgery or for a catheter-guided procedure [12].
As cardiac MRI, including CE-MRA, is being
performed as diagnostic exam for clinical decision-
making and for planning the necessary procedures
in an increasing number of patients, the vascular
structures of interest could be preliminary mea-
sured on the CE-MRA images.

Aim of this study was to evaluate the accuracy
of the measurements of the vessels obtained by

CE-MRA in comparison with those obtained by
conventional X-ray angiography (XRA).

Materials and methods

Patients

Twenty consecutive children with CHD underwent
both cardiac MRI and catheterization. Patient’s
characteristics are shown in Table 1. The median
age was 4 years, with a range from 1 day to
13 years; the median weight 18 kg, with a range
from 3.2 to 74 kg. One patient underwent CE-
MRA and XRA twice, at 3 and 5 months of age,
respectively (case 4).

Echocardiographic evidence of a residual lesion
or of a complex anatomical situation (case 1, 9, 14,
16 and 20) that required clearer anatomical

Table 1. Patient’s characteristics, anatomical findings and interventions performed.

Case Age Diagnosis Angiographic findings Catheterization Intervention

1 1 day Situs inversus,

AV-VA-Discordance, PA

Bilateral PDA Interventional PDA stent

2 7 years dTGA, after switch LPA stenosis Interventional LPA stent

3 12 years CoA CoA Interventional Ao stent

4 3 months PA /VSD LPA stenosis Interventional LPA angioplasty

5 months PA/VSD LPA stenosis Interventional LPA stent

5 10 months TA, TGA, after BCPC Residual CoA Interventional Ao angioplasty

6 8 years TOF after repair Multiple PPS Diagnostic None

7 13 years CoA, Ao graft Aograft stenosis Diagnostic None

8 9 years dTGA, after switch RPA stenosis Interventional RPA stent

9 1 year DORV, single RV, after BCPC BCPC open Diagnostic None

10 9 months PA/VSD LPA stenosis Interventional LPA Angioplasty

11 3 weeks PA/VSD CE-MRA and CXA

not concordant

Diagnostic None

12 7 months IAA after repair LPA stenosis Interventional LPA angioplasty

13 9 years CoA after repair Residual CoA Interventional Ao angioplasty

14 4 years DORV, TGA, PS, MV straddling Known anatomy Interventional Atrial septostomy

15 12 years dTGA, after switch LPA stenosis Interventional LPA stent

16 4 years Ebstein, after BCPC BCPC open Diagnostic None

17 9 years CoA after repair Residual CoA Interventional Ao stent

18 11 years dTGA, after switch LPA stenosis Interventional LPA stent

19 14 years PA/VSD Multiple PPS Interventional Angioplasty, stent

20 5 months LAI, AVSD, singleRV,

PS, SV anomalies

Known anatomy

RPA stenosis

Diagnostic none

AVSD, atrioventricular septal defect; Ao, aorta; AV, atrio-ventricular; BCPC, bidirectional cavopulmonary connection; CoA, aortic

coarctation; dTGA, d- transposition of the great arteries; DORV, double outlet right ventricle; Ebstein, Ebstein malformation; IAA,

interrupted aortic arch; LAI, left atrial isomerism; LPA, left pulmonary artery; MV, mitral valve; PA/VSD, pulmonary atresia with

ventricular septal defect; PDA, patent ductus arteriosus; PS, pulmonary stenosis; PPS, peripheral pulmonary stenosis; RPA, right

pulmonary artery; RV, right ventricle; SV, systemic veins; TA, tricuspid atresia; TOF, tetralogy of Fallot; VA, ventriculo-arterial.
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delineation was the indication for performing CE-
MRA. In 15 patients an interventional procedure
was planned based on the CE-MRA findings. In 6
cases a diagnostic catheterization was additionally
performed, for measurement of the pulmonary
vascular resistance in 4 (case 6, 9, 16 and 20), for
anatomical imaging before surgery in one (case 7)
and to rule out a residual lesion needing reinter-
vention in another one (case 11).

Technique

CE-MRA
The contrast-enhanced angiographies were all
performed with a 1.5T GE Signa MRI/I Echo-
speed scanner (GE Medical systems, Milwaukee,
Wisconsin, USA) by using a phased-array cardiac
coil. CE-MRA was performed using a 3D-fast
spoiled gradient refocused echo sequence in the
coronal plane with the following parameters: TE
minimum, flip angle 30�, matrix 156 · 160, band-
width 62.5 kHz, number of excitations 1, field of
view 26–42 cm depending on body size, slice
thickness 3.2–4 mm and 20–32 partitions as
appropriate for covering the region of interest in
an adequate time, linear k-space filling. Scanning
time for each sequence ranged from 10 to 18 s.
Whenever possible, depending on the cooperation
of the patient images were acquired during breath
hold. Three consecutive sets of images were ac-
quired to visualize all the arteries and the veins of
both the systemic and the pulmonary circulation.
The timing of image acquisition, depending on the
vessel of interest, was determined by using the test-
bolus technique; the arrival of the contrast
medium in the vessel of interest and its maximal
contrast effect were visualized on real time images
[13]. This was performed by visual inspection
(qualitatively) after injection of 2 ml Gadodiamide
(Omniscan�, Nycomed AG, Wädenswil, Switzer-
land). Contrast medium was injected as a bolus via
peripheral intravenous access with a dose of
0.3 mmol/kg body weight by using an automated
contrast injector at injection rate of 2 ml/s fol-
lowed by a saline flush of 20 ml.

CE-MRA source data were reconstructed on a
commercially available workstation (Advantage
Window 4.0; GE Medical systems, Milwaukee,

Wisconsin, USA) with a maximum intensity pro-
jection algorithm. The course of the vessels was
reconstructed in every desired plane by using
multiplanar reformation and 3D volume rendering
techniques. Measurements of the vessels were
performed on the images obtained by multiplanar
reformation. Volume rendering images were used
only for advanced understanding of the topo-
graphic vascular anatomy.

XRA
Conventional angiographies were performed dur-
ing cardiac catheterization with a biplane Integris
BH 5000 cardiovascular system (Philips Medical
System, Best, The Netherlands). Hemodynamic
measurements were obtained in appropriate loca-
tions depending on the cardiac malformation, such
as the cardiac chambers and the main venous and
arterial vessels. Specific angiographies were ac-
quired for anatomic delineation before catheter-
guided intervention in 15 and for diagnostic pur-
poses in 6 patients. Angiographies were obtained
by injecting a ionized contrast medium (Iopam-
iro�, Sintetica SA, Mendrisio, Switzerland) in a
dose of 1–1.5 ml/kg and with the maximal flow
velocity allowed by the size of the catheter, i.e. 1–
2 ml/s, by using a power injector. The images were
acquired with a frame rate of 25/s. The imaging
plane was chosen depending on the vascular
structures needing to be visualized, in the standard
projections that have been previously described
[12]. If an intervention was planned, measurements
of the vessels were performed directly on the
screen, by using catheter calibration. The size of
the catheters used ranged from 4 to 6 French.

Data analysis

Two experienced investigators (ERV and SDB),
blinded to each other, retrospectively measured the
diameter of the vessels in several comparable
locations (Table 2) on the images obtained by CE-
MRA (ERV) and XRA (SDB), respectively. The
underlying cardiovascular lesion determined which
vessels could be measured. Thus in patients who
were evaluated for stenosis of the pulmonary
arteries, the diameter of the pulmonary arteries
was measured at the narrowest point of stenosis,
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corresponding usually to the origin of the vessel,
and further peripherally where the dimension was
wider again. In patients with lesions of the aortic
arch, the aortic arch was measured in standard
locations, including the ascending aorta, the
transverse aortic arch, between brachiocephalic
trunk und left carotid artery, the distal aortic arch,
between right carotid artery and right subclavian
artery, the isthmus and the thoracic aorta at the
level of the diaphragm.

Information was shared about the vessel and the
location where the measurements should be
performed, but not about the results of such mea-
surements. The CE-MRA images were recon-
structed as described above in order to obtain
similar projections as the XRA images; the diame-
ters of the vessels were then measured directly by
using the intrinsic electronic calibration of the sys-
tem. XRA were retrospectively reviewed by using
Inturis Cardio View software, Release 1.2 (Philips
Medical Systems, Best, The Netherlands). Before
measuring the diameter of the vessels, calibration
was obtained by comparing the diameter of the
catheter shown on the angiographic images with the
catheter diameter in French supplied by the man-
ufacturer. In order to increase the accuracy of the

measurements the external diameter of the catheter
was measured when empty of contrast medium.

Statistics

Numerical data are reported as mean values and
standard deviations or as median values and
ranges where appropriate. The measures ob-
tained were compared to each other by Pearson’s
correlation and by calculating the Bland Altman
limits of agreement [14]. A p value <0.05 was
considered as statistically significant. The study
was approved by the Research Ethics Board of
our institution.

Results

Twenty-one CE-MRA and XRA were performed
in 20 patients. The mean time interval between
CE-MRA and XRA was 2.6 ± 2.3 months. CE-
MRA was performed in 10 conscious children, in
general anesthesia in 9 and in sedation in 2. All
XRA were performed during cardiac catheteriza-
tion and in general anesthesia. No procedural
complications were observed.

Anatomy

CE-MRA and XRA showed similar morphologic
findings in 19 patients (Figure 1). In a newborn
girl with situs inversus, atrio-ventricular and ven-
triculo-arterial discordance and pulmonary atresia
with non-confluent pulmonary arteries that were
supplied by a bilateral ductus arteriosus (case 1),
the correct diagnose was first depicted at CE-
MRA and successively confirmed at XRA. In this
case an adequate management consisting in
stenting both ductus arteriosus could be planned
and performed on the basis of the anatomical
information obtained by CE-MRA. In one patient
(case 11) CE-MRA and XRA did not show the
same anatomical findings (Figure 2). In this child
with pulmonary atresia with ventricular septal
defect, Blalock-Taussig shunt to the pulmonary
arteries confluence and atypical patent ductus
arteriosus to the left pulmonary artery, a severe

Table 2. Locations of the measurements performed on the

CE-MRA and XRA images.

Location n

LPA

Origin 16

Before branching 15

RPA

Origin 13

Before branching 12

RVOT

Subvalvar 2

At valve annulus 3

Supravalvar 1

Aortic root 1

Ascending aorta 7

Aortic arch

Transverse 8

Distal 5

Isthmus 8

Descending aorta 4

Aortic conduit 3

LPA, left pulmonary artery; RPA, right pulmonary artery;

RVOT, right ventricular outflow tract.
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stenosis of the left pulmonary artery was diag-
nosed at CE-MRA, but not confirmed at XRA. In
two patients (case 6 and 18) who previously
underwent angioplasty of the left pulmonary ar-
tery, XRA depicted a small aneurysm at the origin
of the vessel, which had not been described by CE-
MRA.

Quantitative measurements

Ninety-eight single measurements were performed
on the CE-MRA and XRA images, respectively.
Fifty-four measures were performed on the pul-
monary arteries side branches, 35 on the aorta
(Figure 2), 6 on the right ventricular outflow tract
and 3 on an aortic conduit. Table 2 summarized the
exact anatomical location of themeasurements. For
statistical analysis measures of the right ventricular
outflow tract were included in the group of the
pulmonary arteries and measures of the aortic
conduit in the group of the aorta. The mean
diameters of the pulmonary arteries measured
7.92 ± 3.87 mm on the CE-MRA images and
7.87 ± 3.56 mm on the XRA images. The mean
diameter of the aorta was 10.65 ± 4.27 mm on the
CE-MRA images and 10.76 ± 4.35 mm on the
XRA images. There was an excellent correlation
between the measurements performed on the CE-
MRA and those performed on the XRA images
(Figure 3). The Bland Altman limits of agreements
between both methods are described in Table 3 and
illustrated inFigure 4. Similar agreementwas found
for measures of the aorta (r ¼ 0.97, mean difference
0.20 ± 1.08 mm) and of the pulmonary arteries
(r= 0.97, mean difference 0.048 ± 0.89 mm).

Discussion

The recent evolution in diagnosing CHD indicates
a clear trend toward the non-invasive approach.
Cross-sectional echocardiography and MRI are at
present the leading techniques for advanced ana-
tomical and functional imaging. Diagnostic cath-
eterization with conventional angiography is
limited to selected cases, in whom pulmonary
vascular resistance need to be determined or
specific anatomical conditions have to be addi-

Figure 1. Severe Stenosis of the left pulmonary artery as dem-

onstrated by XRA (a) and by CE-MRA with the multi intensity

projection reconstruction (b) and in the 3D reconstruction (c).

The diameter of the narrowest segment was 2.7 mm on the

CXA images and 2.5 mm on the CE-MRA images.
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tionally clarified [2]. In contrast catheter-guided
interventions are increasingly performed as alter-
native to surgery. Measuring exactly the dimen-
sions of vascular structures that need to be treated
is an important feature in diagnostic studies and
interventional procedures [12].

This study assessed the accuracy of measure-
ments of the diameter of the vessels performed on
images obtained by CE-MRA compared with
those obtained by XRA, considered as the gold
standard, and demonstrated the accuracy of such
measurements. We found an excellent correlation
between the CE-MRA and the XRA dimensions.
Our results validate the technique not only for
larger patients, but also for very young children,
being 8 of the 20 patients studied infants younger
than 1 year. This proves that this technique is ro-
bust independently of the age of the patients and
of the size of the vessels. Infants represent the
patient group that mostly may take advantage
from an accurate non-invasive diagnostic assess-
ment. In fact children who underwent neonatal
repair for complex CHD may present a few

Figure 2. Comparative measurements of the aortic arch in a

patients with a residual aortic coarctation on the XRA images

(a) and on the CE-MRA images (b).

Overall correlation
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Figure 3. Pearson’s correlation between the XRA and the

CE-MRA measurements.

Table 3. Bland Altman limits of agreement between CEMRA

and CXA measurements.

n Mean

difference

SD

difference

Limits of

agreement

All

measurements

98 0.01837 1.104 )2.145/+2.182

Aorta 38 0.2091 1.086 )2.338/+1.92

Pulmonary

arteries

60 0.04815 0.8952 )1.706/+1.803
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Figure 4. Bland Altman limits of agreement for all measurements performed (a) and for the measurements of the aorta (b) and of the

pulmonary arteries (c).
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months later with significant residual findings,
necessitating relief by catheter-guided interven-
tions.

The clinical relevance of our data consists in the
potential of avoiding performing a diagnostic
catheterization or additional XRA before an
intervention. As cardiac catheterization is associ-
ated with well-known risks, several advantages of
CE-MRA in comparison with XRA are evident
[15]. CE-MRA is non-invasive, sedation time is
shorter, no particular additional expertise is re-
quired for the examination of small children and
no arterial puncture is needed, what preserves
central vascular access. The lack of ionising radi-
ation may be one of the most striking advantages
of this technique. Long-term health effects, such as
fatal malignancies and teratogenic effects have
been described in patients irradiated during diag-
nostic or interventional catheterization [16]. Since
children are at higher risk than adults for devel-
oping a solid tumour and a substantial number of
patients with CHD may undergo repeated cardiac
catheterization, leading to a higher cumulative X-
ray dose, to reduce radiation is crucial in these
patients [17, 18]. A fast and efficient catheter-gui-
ded intervention can be achieved by accurately
planning such intervention on the basis of the
images and measurements obtained by CE-MRA.
Moreover, the renal function of critically ill pa-
tients may be preserved by reducing the amount of
iodinated contrast-medium injected, as the con-
trast medium used for CE-MRA is not nephro-
toxic [19, 20].

For ethical reasons we could not measure sys-
tematically every vessel in each patient, as XRA
was performed selectively only in the vessels of
clinical interest in order to reduce radiation to the
patient. Thus our results can be divided for two
groups of patients: children with lesions of the
pulmonary arteries and children with anomalies of
the aortic arch. Even if statistically not significant
the differences observed were slightly larger for
measurements of the aorta than for the pulmonary
arteries. Vonder Muhll et al. [21] recently reported
a similar slightly lower correlation for measure-
ments of the aorta. The different degree of pulsa-
tion in the high-pressure (aorta) and in the low-
pressure vessels (pulmonary arteries) may be the

reason for this observation. In fact on XRA ima-
ges the dimensions are usually measured during
the end-systolic phase, when the vessel is maxi-
mally distended. Images obtained by CE-MRA are
a summation of data acquired during all cardiac
phases and therefore the dimensions represent an
average diameter of the vessel, smaller than in the
end-systolic phase. The higher frame rate of image
acquisition and therefore higher temporal resolu-
tion of XRA may enhance this observation. In
spite of this technical difference in image acquisi-
tion, our results demonstrate the accuracy of this
promising technique.

In one single case the anatomical information
obtained by CE-MRA did not correspond to the
findings shown by XRA. In presence of complex
vascular anatomy with abnormal blood flow dis-
tribution, a situation mostly occurring in the pul-
monary arteries, when surgical shunts, ductus
arteriosus and aortopulmonary collaterals con-
tribute to blood flow, particular streaming effects
may represent a diagnostic pitfall in the interpre-
tation of CE-MRA images. These different sources
of blood flow can compete to each other, causing
loss of contrast in the vessel on the CE-MRA
images, which may mimicry a stenosis of the ves-
sel. If such situation is recognized the acquisition
of more temporal phases during CE-MRA and the
careful examination of all images in every different
phase, when the contrast medium may be steadily
distributed in all vessels, is recommended.

The recent advances in MRI technology with
implementation of high performance gradient
systems and parallel imaging has improved both
spatial and temporal resolution of CE-MRA by
maintaining a good image quality [22–24]. Further
technological improvements are allowing to start
performing MRI-guided interventional procedures
based on real time MR-images [25]. In this context
our results may also indicate that MRI-guided
interventions can be accurately and safely planned
on images obtained by CE-MRA, without need for
a previous XRA.

This study shows the limitations of being ret-
rospective. The calibration method for measure-
ments on the XRA images for correction of
magnification, by using the injection catheter as
correction factor, may represent a well-known
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source of error, but it is still used as sufficient
calibration tool during clinical practice. More
accurate would be calibration using a sphere of
known size and volume [12]. The time interval
between both examinations, CE-MRA and XRA,
may be another potential source of difference be-
tween the measurements.

Conclusion

Measurements of the vascular dimensions per-
formed on CE-MRA images are very accurate
when compared to XRA measurements and can
therefore be utilized for planning catheter-guided
interventions. Performing previous diagnostic
evaluation by CE-MRA allows reducing the
amount of ionising radiation and of iodinated
contrast medium used during interventional cath-
eterization. Particularly in small children with
complex CHD anatomical evaluation by CE-
MRA should be considered before performing any
interventional procedure on the great arteries.
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