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Abstract Combining two data sources on emissions with value-added and employment
data, this paper constructs six data bases on sulfur dioxide (SO2) intensities that vary across
countries, sectors and years. This allows us to perform a growth decomposition exercise
where the change in world manufacturing emissions is decomposed into scale, composition
and technique effects. The sample covers the period 1990–2000, and includes 62 countries
that account for 76% of world-wide emissions. While manufacturing activity has increased
by a rough 10% (scale effect), we estimate that emissions have fallen by about 10%, thanks
to the adoption of cleaner production techniques (the technique effect) and a small shift
towards cleaner industries (between-sector effect). As output and productivity gains have
been biased towards large emerging countries like China and India, which are both clean
in terms of emissions per unit labor and dirty in terms of emissions per dollar, the sign and
magnitude of the between-country effect depends on the choice regarding the scaling factor
(−2% for employment, +25% for value-added, with a corresponding adjustment of the tech-
nique effect). The paper also shows that these estimates are robust to changes in aggregation
across entities (regions or countries) and across industries, and that composition changes are
correlated with changes in prices and trade intensities.
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1 Introduction

It has long been recognized that our understanding of the relationship between the economy
and the environment is limited by data availability, notably with respect to the growth-
environment nexus. Although very generally accepted, in empirical and theoretical discus-
sions, the scale, composition and technique effects have failed so far to materialize into robust,
let alone stylized facts (see e.g. Grossman and Krueger (1991) for an early application and
the recent survey by Brock and Taylor (2005) for extensive discussion in growth models). In
the absence of emissions linked to human activity—the so-called emission intensities used
in the bottom-up approach—researchers have used average concentrations (e.g. Antweiler
et al. (2001)) or total emissions per capita (Cole and Elliott 2003) in panel aggregate emission
growth regressions. As a result, the respective role of composition effects within and across
countries identified in the literature, have been obfuscated. Thus, whether there has been a shift
towards “dirty” activities or “dirty” countries has largely remained elusive even for SO2 emis-
sions which have desirable characteristics for studying compositional shifts and more gener-
ally the growth-environment nexus (strong local effects, a by-product from goods production,
existing abatement technologies and differences in per-unit emissions across industries).

The Emission Database for Global Atmospheric Research (henceforth EDGAR, for more
details see Olivier and Berdowski (2001)) gives information on emissions for several
pollutants across sectors for 3 years (1990, 1995 and 2000) and provides a starting point
for relating more systematically the scale of economic activity in different sectors with emis-
sions when it is combined with the more disaggregated data set of an earlier project, the
Industrial Pollution and Projection System (IPPS, for details see Hettige et al. (1995)). We
use these two data sources, along with national emissions over a large number of countries
in Stern (2006) (hereafter STERN), to construct disaggregated data bases on emission across
manufacturing sectors, countries and over time for sulfur dioxide (SO2) emissions. Emission
intensities by activity are then constructed by reconciliation with and extension of a recent
Trade, Production and Protection (TPP) database (Nicita and Olarreaga 2007) resulting in a
potential set of six databases that vary in terms of geographic (62 countries or 6 regions) and
sectoral (7 or 28 sectors) disaggregation.

These data bases are then used to decompose changes in SO2 emissions into scale, compo-
sition and technique effects over the period 1990–2000. The overall picture that emerges is a
world in which the increase in world manufacturing activity has been more than compensated
by the decrease in world average emission intensity. The latter effect is further disentangled
between composition and technique effects, and it turns out that the outcome depends on the
scaling variable. When using employment, both effects work in the same direction, because
there has been a (small) structural shift towards cleaner products and cleaner countries (i.e.
with low emissions per employee) during the nineties. However, when using value-added
as the scaling factor, composition and technique effects work in opposite directions because
value-added has been reallocated towards low-productivity giants like China and India (which
are dirty in terms of emissions per dollar) where productivity gains have also been larger.
This leads to a sharper contrast between two large and opposite effects (positive for the
between-country effect, negative for the technique effect), although the net impact (i.e. the
addition of the two effects) is of course unaffected.

The remainder of the paper is organized as follows. Section 2 discusses the difference
between emissions (most suitable to measure scale, technique and composition effects) and
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concentration estimates (most suitable for assessing the welfare implications of emissions)
and presents a summary comparative review of the existing data sources for SO2 emissions
by manufacturing industries. Section 3 details how the different data bases were constructed.
Sections 4 and 5 are the heart of the paper. They present alternative decomposition formulas
of the evolution of SO2 manufacturing emissions from 1990 to 2000 using several scaling fac-
tors and data bases. Section 6 explores the correlates behind the evolution of the composition
effect. Section 7 concludes.

2 Comparing SO2 Pollution Data

This section discusses the appropriateness of emission and concentration data to study the
effects of pollution. It then presents briefly the EDGAR database, the only available data
base with time-varying emission data available on a disaggregated basis for a large sample
of countries (full details on the data bases and construction of variables used in the paper are
available in a separate appendix, any figure or table name starting with an “A” can also be
found in this appendix available as supplementary material).

2.1 Emissions or Concentrations

Concentration data on sulfur dioxide in the air are probably the most appropriate indicator to
assess the impact of pollution on the environment or on human health. However, they are very
difficult to relate to economic activity and this for two basic reasons. First, although distance
from emission sources is a fundamental determinant of concentration levels, sufficiently
precise data on geographical locations of both production and observation sites are usually
either fragmentary or missing altogether. This is one of the main obstacles to undertake con-
vincing cross-country studies on the basis of concentration data. Second, even with a perfect
knowledge of the location of human activities and of observation sites where concentration
is measured, the relationship between the two is still a complex one because of the number of
other factors that have to be controlled for. So, concentration levels are not only affected by
non-human and non-industrial sources (e.g. volcanic activity or domestic heating), or by the
type of measurement equipment; they also depend on weather conditions such as the wind
speed, temperature, or rainfall at the site (rainfall typically reduces concentrations). Some of
these effects are site-specific and can be controlled for with dummy variables (provided the
sites do not change), while others, like weather-related effects, are time-varying and hence
harder to control for.

To circumvent these difficulties, the alternative is to use emission rather than concentration
data. By definition, emissions are directly linked to specific activities, and available data are
suitable to analyze the production-pollution link both, on a large scale across countries, and
at a reasonably disaggregated level. As this paper illustrates, this is particularly true regard-
ing manufacturing emissions, which represent a substantial part of global man-made (i.e.
anthropogenic) emissions in the case of SO2, and are especially policy-relevant since manu-
facturing activities can be the target of environmental, trade and industrial policies. Although
sulphur dioxide emission inventories are collected in many countries,1 emissions are more
difficult to measure than concentrations. This may generate differences in estimates between

1 For example the industrial pollution projection system (IPPS) in the US or the major air pollutants (MAP)
emission inventory of the European Environment Agency.
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Table 1 Share of manufacturing sectors in world-wide SO2 emissions (%)

EDGAR code Name (ISIC rev. 2 codea) 1990 1995 2000

1 F30 Refineries, coke, gas (353, 354) 7.74 7.43 7.17

2 I10 Iron & steel (371) 0.57 0.59 0.66

3 I20 Non-ferrous metals (372) 12.26 12.92 14.94

4 I30 Chemicals (351, 352) 2.12 1.78 2.02

5 I40 Building materials—cement (369) 1.18 1.62 1.86

6 I50 Pulp & Paper (341) 0.58 0.71 0.69

7 F10 + B10 Fossil fuel and biofuelb 19.97 21.19 17.15

8 Total manufacturing 44.42 46.25 44.49

a The correspondence with SIC codes is an approximation
b To be ventilated across industrial sectors according to methodology described in Sect. 3

sources, depending on estimation techniques or assumptions with respect to production or
abatement technologies.2

2.2 Manufacturing Emissions

EDGAR is the unique source of time and country-varying emissions at a sufficiently
disaggregated level to include several manufacturing sectors, opening the possibility to relate
emissions to trade and economic structure. According to this data source, as shown in Table 1,
manufacturing emissions represent about 45% of the world total during the 90s.

Of the “six dirty sectors” listed in Table 1 (lines 1–6), the most polluting sectors are Non
Ferrous Metals and Refineries. Close to half of manufacturing emissions is due to “fossil
fuel and biofuel consumption”, which is non-attributed across manufacturing sectors in the
original EDGAR database. Section 3 proposes a method to allocate these fuel-based emis-
sions across manufacturing sectors. Combining the resulting data with the TPP database
leads to emission intensities estimates at a disaggregated level for the six polluting sectors
identified here and a residual “clean” sector for a sample of 62 countries.

Unfortunately, there is no alternative data base against which to evaluate these constructed
emissions. The best that can be done is to compare these estimates with those from the IPPS
coefficients for the US in 1987, keeping in mind that our US estimates are for 1990.3 This is
done for emissions per dollar and for emissions per worker. Results of this comparison are
displayed in Fig. 1.

Whichever data source is used, both emission intensities per worker and per dollar display
enormous differences across sectors (note the use of log scales on the axis). Also the matching

2 Appendix 1 (in supplementary material) provides a detailed analysis of the correlations between concentra-
tion measures and different types of emission sources. On the one hand, we find that the correlation between
concentrations and emissions is high at the world-wide level across the 1975–2000. However, this correlation
is considerably weaker at the country level, because of differences of location between measurement stations
and emission sources and because of the host of other factors that affect concentration levels and prove diffi-
cult to control for. On the other hand, there is a very strong correlation between national emissions reported
by the two main data sources considered in this paper (EDGAR and STERN), but for the fact that EDGAR
figures tend to be 10–20% larger (because they control less for abatement activities) and exhibit an increasing
trend at the world-wide level at the beginning of the nineties (while STERN data suggest the opposite). Both
qualifications are discussed further below.
3 Although US data are probably more reliable, a similar outcome was obtained with Chinese IPPS data.
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Fig. 1 IPPS versus EDGAR-derived emission intensities for the US (1987 for IPPS, 1990 for EDGAR)

between the two sets is far from perfect (the average absolute percentage difference is 52%
for original EDGAR intensities and 46% for STERN-adjusted ones). This may be due to
measurement errors, to differences in the time period (1990 for EDGAR, 1987 for IPPS) or
to differences in sector classification. Adjusting for the above-mentioned overestimation of
emissions by EDGAR data slightly increases the correspondence since the data are usually
above the 45◦C line. Though not obvious from the figure because of the scaling, note also
that the matching is far better for emissions per employee than for emissions per USD since
the sample correlation between the two sources of per employee intensities is equal to 0.94
and significant at 99%, while it is non significant between per USD intensities. Overall, we
conclude that EDGAR data should preferably be adjusted downwards using STERN total
estimates and that per employee emissions tend to be more reliable than per USD emissions,
at least for the US, an observation that is also confirmed across countries and regions in Fig. 2
and Table 3 below. These observations are taken into account in the construction of the data
base presented in the next section.

3 Constructing Manufacturing Emission Intensities

We now detail the construction of a new and complete database reporting SO2 emissions
for 7 manufacturing sectors in 62 developing and developed countries for 1990, 1995 and
2000 (the “base” years we refer to below). This emission data base is then combined with
production and employment data in Sect. 4 to carry out a growth decomposition exercise into
scale, composition and technique effects.

We proceed as follows. To construct the data base, we use two data sources on emissions
[see detailed description in Appendix 2 (supplementary material)], one disaggregated across
countries (EDGAR) and one across sectors (IPPS). EDGAR covers a large set of countries
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over three periods but only for six dirty industrial sectors, while IPPS provides emission
intensities for 28 ISIC 3-digit sectors but only for the US, and for 1 year, 1987.4 Using the
assumptions described below, data on industrial output and employment from the Trade Pro-
duction and Protection (TPP) database (Nicita and Olarreaga 2007) were used to construct a
set of six data bases on per dollar or per employee emission intensities (TPP data were com-
pleted by imputing missing values on the basis of the procedure described in Appendix 3 (in
supplementary material) and by considering a 3-year moving average to control for cyclical
fluctuations). These data bases were then scaled to match the total estimates of Stern (2006).
We describe first the construction of the EDGAR-related data bases, then the IPPS-related
data bases which serve as a check.

3.1 EDGAR-Related Data Bases

EDGAR data has two shortcomings. First, they do not take into account the fact that “clean”
sectors also generate emissions. Second, they report an awkward non-imputed category,
“fossil fuel and biofuel consumption” (F10 and B10), which represents about 45% of total
manufacturing emissions. Regarding emissions by the “clean” sectors, we rely on the IPPS
data base (see below). For the non-imputed category, we carry out the following 3-step
procedure:

(i) estimate the share of clean sectors in overall manufacturing emissions on the basis of
IPPS coefficients applied to TPP employment data

(ii) apply this share to the total of EDGAR-based manufacturing emissions (imputed plus
non-imputed categories), obtaining an estimate of “virtual” clean sectors emissions

(iii) substract the virtual amount from the non-imputed amount and spread the residual across
dirty sectors according to the IPPS-derived share of each sector in dirty emissions. If
the residual is negative, all unaffected emissions are allocated to the clean sectors.5

Steps (i) and (iii) imply that IPPS per employee intensities are assumed to be valid for
every country and year, which is inaccurate but probably closer to reality than assuming that
IPPS per dollar intensities are constant (see Sect. 3.2 for a discussion). Finally, all emissions
are scaled so that total computed manufacturing emissions match the corresponding figure
derived from Stern (2006).6 Emission intensities are obtained by dividing sectoral emissions
by the corresponding employment or output figures provided by the TPP database.7

This is the first complete data base entered in the bottom left of Table 2. It is labeled
EDGARda (where subscript a(d) corresponds to aggregated (disaggregated), the first index
referring to entities (countries or regions), the second to sectors) and covers 62 countries
and 7 industrial sectors. For comparison purposes, these emission intensities have also been

4 Note that the IPPS data is even available at the 4-digit ISIC level, giving details for more than 80 manufac-
turing sectors. However, given that our economic activity database is reported at the 3-digit level we had to
keep this level of aggregation.
5 Alternative procedures were also tested, either by using labor rather than emission shares in step (iii), or by
skipping step (i) and directly splitting the non-imputed emissions among sectors. The selected procedure is
the one that maximizes the sample correlation coefficient (at 0.94) between the 1987 US-IPPS intensities (our
unique reference case) and the corresponding EDGAR-based intensities.
6 EDGAR-based manufacturing emissions shares are applied to Stern’s 3-year moving average total estimates.
For the majority of countries, the scaling factor is close to 0.9 [the interquartile range is between 0.8 and 1.0,
with only a few outliers, see Fig. A8 (in supplementary material)].
7 For a limited number of cases where countries report positive emissions but zero employment for certain
sectors, aggregation over sectors was applied.
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Table 2 Alternative databases on emission intensities

Notes: All data bases are available for the 3 years (1990, 1995, 2000), and either in original levels (i.e. scaled
to EDGAR totals for PPS-based data—see text) or scaled so that total manufacturing emissions match those
reported by Stern (2006)
Subscript a(d) corresponds to aggregated (isaggregated), the first index referring to entities (regions or coun-
tries) the second to manufacturing sectors

either aggregated into 6 regions (EDGARaa data base) or disaggregated further into 28 sectors
(EDGARdd data base). The aggregation into regions is based on a definition of geo-economic
regions that reflects both geographic proximity and similarity in income per capita (see Table
A5 in supplementary material). The disaggregation procedure posits that the dispersion of
intensities within each EDGAR category is identical to the one observed in the IPPS base.8

These data sources provide alternative benchmarks to discuss measurement errors (see below)
and are useful when one has to work with different classifications.

3.2 IPPS-Related Data Bases

Insofar as the US IPPS emission coefficients for 1987 were carefully constructed, and in view
of the evidence reported by Hettige et al. (2001) suggesting a relative constancy of emissions
per unit labor across countries and over time for one pollutant (biological oxygen demand),
it is worth checking out to what extent this conjecture holds for SO2 in the EDGAR data
and, if so, construct an alternative data base using IPPS coefficients. The boxplots in Fig. 2
provide a first check on the relative constancy of emissions per unit of labor. It represents
the distribution of intensities across countries and regions for each one of the seven EDGAR
sectors, for either per unit labor or per USD SO2 emissions (to facilitate comparisons, each
intensity series has been scaled down by the median, so that when taking logs the interquartile
box is approximately centered at zero).

Two stylized patterns emerge. First, emission intensities by sector are more similar across
regions than across countries. This is so for both outliers, which disappear when considering

8 More precisely, it is assumed that the ratio between the emission intensity of each sector and its employ-
ment-weighted mean at the EDGAR category level is identical to the one obtained when applying US IPPS
coefficients to the country’s specific employment data.
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Fig. 2 Boxplots of EDGAR emission intensities (1990-1995-2000) Notes: See Table 1 for a description of
EDGAR categories; OTH refers to all other (clean) sectors

Table 3 Coefficient of variation
of EDGAR pollution intensities

Note: Figures refer to the
unweighted mean over
the seven EDGAR sectors

Across countries Across regions

Tonnes per Kg per 1,000 Tonnes per Kg per 1,000
employee USD employee USD

1990 1.28 1.54 0.53 0.99

1995 1.49 1.69 0.66 0.96

2000 1.56 1.86 0.79 0.98

All 3 years 1.47 1.70 0.64 0.97

regions (apart from South America for non-ferrous metals which reflects the strong influ-
ence of Chile), and for the interquartile range, which is lower across regions, in particular
for emissions per unit labor. Second, on the basis of the interquartile range measure, and
whatever the sector, emissions per USD exhibit a larger dispersion than emissions per unit
of labor.

Because the differences between the two types of intensities is less evident when outlier
values are taken into account, Table 3 uses the coefficient of variation—which factors in
outliers—as a measure of dispersion. Table 3 estimates confirm that per unit labor intensities
exhibit a smaller dispersion than intensities per USD, even though dispersion appears to be
increasing over time.

In view of the above and of the lesser dispersion across regions than across countries, as
a check, it is arguably justifiable to apply the original IPPS emissions per employee to each
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one of the six regions of the sample in the hope of minimizing errors.9 Then, in a second
step, these original intensities are scaled to insure that the resulting total of manufacturing
emissions per region exactly matches the one reported in EDGAR or obtained from Stern
(2006). As a result, total manufacturing emissions of the two versions of the IPPSad database
are by construction strictly identical to those obtained for the corresponding versions of the
EDGARda database. The same logic is applied to construct the remaining two databases of
Table 2 (IPPSaa at a more aggregated and IPPSdd at a more disaggregated level).10 Even
though we believe that IPPSad is the most reliable database amongst the IPPS-related ones
(and EDGARda for the EDGAR-derived ones), all databases are used for the sensitivity
analysis in Sect. 4.

4 Decomposing Changes in SO2 Emissions: A first Round

Assume emissions (E), are a joint product with gross output (X ). Our decomposition is fur-
ther guided by the available data which includes in addition, value-added (Q), and labor (L).
A general relation between emissions and production for sector i can then be summarized
as:

Ei = Gi [Xi (Qi (Li ))] (0.1)

In theoretical contributions (see e.g. Brock and Taylor 2005), pollution coefficients are usu-
ally defined with respect to value added or output i.e. βi = Ei/Xi or ˜βi = Ei/Qi . In the
context of cross-country comparisons over time, this raises the issue of the choice of price
and exchange rate indices.

The decomposition of the evolution of “worldwide” SO2 emissions into scale, compo-
sition and technique effects is done in two rounds. To minimize the use of questionable
data, we start the decomposition by linking emissions directly to employment. Thus we are
assuming implicitly that labor productivity and value-added per unit of output are constant
avoiding the need to bring in cross-country comparisons in a common currency. In a second
round, Sect. 5.1 links emissions to value-added and gross output bringing the decomposition
closer to the discussion of the scale, composition and technique effects found in theoretical
contributions.

4.1 Measuring Scale, Composition and Technique Effects

Let then Lkit represent employment in activity k in country i in year t , γki t emission intensity
per unit of labor and aggregate emissions at the sample-wide level. Then, emissions at the
sector, country and global levels are given by:

Ekit = Lkitγki t ; Ekt =
∑

k

Lkitγki t ; Ekt =
∑

k

∑

i

Lkitγki t (0.2)

9 We also experimented with an alternative based on fitting a regression of emission intensities on a time
trend and per capita and per capita GDP squared, systematically obtaining a poor fit leading us to abandon
this alternative route.
10 Data bases below the diagonal reflect the between-country and between-sector variation in EDGAR data,
while those above reflect the between-sector variation in the IPPS coefficients, and either the EDGAR or
STERN-based between-country variation. Finally for both sets of databases, the temporal variation is either
based on EDGAR or STERN, depending on which database has been used as the scaling benchmark.
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Let θ
Et
i t ≡ (Eit/Et ) denote the share of country in the world labor force, θ

Lit
ki t ≡ (Lkit/Lit )

the share of sector k in country i’s labor force and θ
Et
i t ≡ (Eit/Et ) the corresponding emis-

sion share for country . Then, by total differentiation of the last equation in (0.2), SO2 growth
in emissions can be decomposed into the following expression (with a “ˆ” over a variable
denoting its growth rate):

Êt = L̂ t +
∑

i

θ
Et
ki t

(

θ̂
Lt
i t

)

+
∑

i

∑

k

θ
Et
ki t

(

θ̂
Lit
ki t

)

+
∑

i

∑

k

θ
Et
ki t

(

γ̂ki t
)

(0.3)

In (0.3), the first term on the RHS is the scale effect. The second term measures the between-
country effect and will be positive if countries with the largest emission shares tend to grow
faster (in terms of labor shares) since the sum of shares is equal to unity. Likewise, the third
term measures the between-sector effect within a country and will be positive if dirty indus-
tries have higher employment growth. Finally, the fourth term measures the technique effect.

4.2 Results

When implementing (0.3), interaction terms (not shown here since they are assumed to be
negligible for small changes) are attributed proportionately across each one of the four terms.
Note also the following: (i) up to small differences reflecting the attribution of the interaction
terms, the scale effect will be the same across all data bases since the same employment data
are used throughout; (ii) likewise, by construction, total emissions are the same across sec-
toral and country aggregations and for the 10 year period covered here equal either to −9.9%
(Stern estimates in Table 4) or to +9.2% (EDGAR estimates=non-adjusted estimates in
Table 4). These limitations in the data have the following consequences. First, differences in
estimates across data sets are attributable to differences in the relative importance given to
the two composition effects and to the technique effect. Second, since like the scale effect,
the two composition effects are drawn from the same TPP data base, the differences in total
estimates (19.1%) are projected into differences in technique effects (about 20% difference
in technique effect between the two base estimates).

Table 4 concentrates on the preferred estimates coming from the EDGARda data set,
with 62 countries and 7 sectors, leaving to Sect. 4.3 the discussion over alternatives (IPPS-
derived data sets and/or other aggregation levels). Over the 1990–2000 period, results are
quite similar for the scale (around 10%) and the two composition effects (around minus 5%),
whether intensities are scaled down to STERN levels or not. The major difference comes
from the technique effect, which is negative (close to −15%) for STERN-adjusted emissions

Table 4 SO2 emissions: scale, composition and technique effects (in %; Preferred database, STERN-adjusted
or Non-adjusted intensities)

STERN-adjusted intensities Non-adjusted intensities

1990–1995 1995–2000 1990–2000 1990–1995 1995–2000 1990–2000

Scale effect 5.8 3.9 9.6 6.3 4.0 10.5

Betw. country −1.5 −1.9 −2.4 −1.0 −1.5 −3.1

Betw. sector −2.7 0.3 −3.0 −3.2 −1.0 −4.8

Technique −4.1 −10.0 −13.9 11.2 −5.1 6.6

Total effect −2.4 −7.6 −9.9 13.3 −3.6 9.2
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Fig. 3 Global manufacturing SO2 emissions (1990–2000)

but positive (around 5%) for non-adjusted ones. This leads to a sharp contrast in terms of
total emissions, which are decreasing in the STERN-adjusted case and slightly increasing in
the other case.

However, differences may be smaller than they appear. When splitting the nineties into two
sub-periods, it turns out that the decomposition pattern is quite similar between the second
sub-period (1995–2000) for non-adjusted intensities and the first sub-period (1990–1995)
for STERN-adjusted ones, as if it just took a 5-year lag for the same trend to be reflected in
the non-adjusted data set. This lagged response is further confirmed by Fig. 3, which reports
the evolution of world manufacturing SO2 emissions when introducing one by one the four
effects contributing to total emissions.11

If only scale effects had been at work, emissions would have increased whatever the data
set. Adding the technique effect leads to lower (larger) emissions in the case of STERN
(non)-adjusted intensities, while composition effects unambiguously decrease total emis-
sions. Eventually, global emissions tend to decrease, whether over the whole decade or
during the second sub-period only. This trend reflects the adoption of greener production
techniques in the majority of large polluting countries. The 5-year lag between the two data
sets is due to the methodology used by Stern (2006), which allows for a better control of
abatement activities in developing countries [see discussion in Appendix 2 (supplementary
material)].

11 Figures between base years are obtained by linear interpolation. Total emissions can be written as Et =
Lt

∑

i
∑

k θ
Lt
i t θ

Lit
ki t γki t . The curve representing the scale effect takes only world manufacturing employment

(Lt ) into account, freezing all the other terms of the double sum at their 1990 levels. This assumption is further
relaxed term by term.
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In sum, the above results suggest that the nineties witnessed a structural shift towards
cleaner activities and a shift of activities towards cleaner countries (see Sects. 5 and 6 for
a discussion). This has been accompanied by more abatement activities, which are better
captured by the Stern-adjusted intensities (probably the best estimates at hand), and have
contributed to a substantial decline in emissions in spite of the scale effect.

4.3 Robustness to Alternative Databases

As a robustness check, Table 5 contrasts the preferred estimates presented above based on
(EDGARda) with those obtained when aggregating across sectors [similar results are obtained
for non-adjusted emissions, see Table A6 in the Appendix (in supplementary material)]. Com-
paring lines 1 and 2 or 5 and 6 shows very little difference. Thus emission intensities are quite
homogenous inside the 7 EDGAR sectors and disaggregating further to the 28 ISIC sectors
does not change the picture. This is not surprising given that in the EDGAR classification
dirty sectors are considered explicitly, while all clean sectors, which have smaller differences
in intensities, are lumped together into one sector.

However aggregating across countries (comparing lines 2 and 3 or 4 and 5) does increase
the magnitude of the negative between-country composition effect. This suggests that the
within-region structural shift has been in the opposite direction to the global one, i.e. intra-
regional production has shifted on average towards the dirtiest countries within each region.
Thus, working at the aggregated level in terms of geographic entities may lead to a small
overestimation of the composition effects.

Comparing EDGAR and IPPS data sets at the same level of aggregation (i.e. lines 1 and 4
or 3 and 6) does not alter the between-country effect but leads to a stronger technique effect
in the case of EDGAR (or equivalently to a stronger between-sector effect in the case of
IPPS) which is to be expected since EDGAR is the data set that includes temporal variation
in emission-intensity data.

In sum, while there are some differences when weights are altered, these are small. Over-
all, as cross-country and time variation of emission intensities is basically derived from the
EDGAR database, our preferred set of intensities is EDGARda (line 2 of Table 5), which
matches most closely the original data source.

Table 5 SO2 emissions scale, composition and technique effects across databases (1990–2000, STERN-
adjusted total emissions)

Database 1990–2000 Growth decomposition (%)

Entities Sectors Scale Between Between Technique Total
effect country sector

1 EDGAR 62 28 9.6 −2.5 −2.7 −14.3 −9.9

2 EDGARda 62 7 9.6 −2.4 −3.0 −13.9 −9.9

3 EDGARaa 6 7 9.5 −4.4 −2.4 −12.6 −9.9

4 IPPSdd 62 28 9.5 −2.4 −3.7 −13.3 −9.9

5 IPPSad 6 28 9.5 −4.4 −4.4 −10.5 −9.9

6 IPPSaa 6 7 9.5 −4.4 −4.2 −10.8 −9.9

Note: The line in bold characters indicates the preferred database
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5 Alternative Decompositions

Any decomposition exercise entails decisions, some of which are suggested by the data, others
that may seem arbitrary. This section presents two other decompositions. The first (Sect. 5.1)
carries out the decomposition using gross output and value-added instead of labor as scaling
factor. The second (Sect. 5.2) explores the sensitivity of results to defining the ‘between
sector’ effect at the aggregate level (and the ‘between country’ effect at the disaggregated
level).

5.1 Factoring in Productivity Changes12

We now report results when using either value added or output as scaling variables. In Eq. 0.3,
L and γ now represent, respectively value added (or output) and emission intensity per dollar
of value added (or output).

Under this alternative, price indices are needed for comparisons across sectors and
exchange rate indices are needed for cross-country comparisons. Several alternatives were
tested, depending on the type of price indices and exchange rates considered.13 We report
here the preferred set of estimates which are based on the market exchange rate and a sec-
tor-specific deflator at the world level extracted from the TPP database (see Appendix 4 for
further details in supplementary material).

Table 6 contrasts these new results with the earlier ones and reports also the range of
results obtained when changing either the price deflator or the exchange rate. Three main
differences with our earlier results emerge: first the scale effect becomes larger, second, as
expected, the magnitude of the negative technique effect is magnified; third, there is a large
change in the ‘between-country’ effect and practically no change in the ‘between-sector’
effect. Finally, these broad differences are quite robust to the choice of price indices and
exchange rates.

Three effects interact in determining the pattern of results in Table 6. First, the differ-
ence in scale effects in column 1 reflects the combination of a worldwide (manufacturing)
increase in labor productivity ([13.7–9.5]), and an increase in the round-aboutness of produc-
tion activities (i.e. an increase in the gross-output to value-added ratio [22.2–13.7]) Second,
is an ‘overall’ labor productivity effect that would occur in a one-sector, one-country world.
In such a situation, the increase in the scale effect in rows 2 and 3 would be reflected by an
equivalent (but of opposite sign) technique effect in column 4, i.e. increases in labor pro-
ductivity would be matched one-for-one by decreases in emissions intensities. Third are the
composition effects that result from a multi-country, multi-sector world. Since the ‘between-
sector’ effect is almost identical regardless of the choice of scaling, we concentrate on the
determinants of the differences in ‘between-country’ effects.

As explained in Appendix 5 (in supplementary material), the composition effects include
two dimensions: first labor reallocations (across sectors and countries); and second the dis-
tribution of productivity gains across sectors and countries. These effects are reported in
Table 7. Overall, it turns out that the two sources of differences reinforce each other. For exam-
ple, the difference in the ‘between-country’ effect when comparing scaling by employment

12 We thank an anonymous referee for suggesting this analysis.
13 As argued by Levinson (2007) in the case of the US, the use of an economy-wide price deflator would lead
to overstate the technique effect in pollution abatement because of the increase in the relative price of highly
polluting sectors like petroleum, while the use of industry-specific deflators will tend to overstate the green
shift towards cleaner products because of the changing nature of the products in relatively clean industries like
computers.
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Table 6 Results with alternative scale measures (1990–2000 Growth decomposition, %)

Scale measure Scale Between Between Technique Total
effect (1) country (2) sector (3) (4) (5)

1 Employment
(from Table 5
row 2)

9.5 −2.4 −3.0 −13.9 −9.9

2 Value-added
(range)

13.7 (13.5/20.7) 24.9 (15.54/24.9) −4.0 (−9.1/−3.2) −44.6 (−45.4/−37.6) −9.9

3 Output (range) 22.2 (21.3/30.4) 21.1 (10.8/21.1) −2.8 (−7.5/−1.9) −50.4(−51.6/−43–9) −9.9

Note: Deflation of current USD values by a world-average sector-specific price index; range in parenthesis from
combining different types of price indices and exchange rates (see Appendix 4 for details in supplementary
material)

Table 7 Accounting for productivity changes (1990–2000 growth decomposition, %)

Factors compared Scale effect Between country Between sector Technique Line total

Employment-value added

1 Total difference (line
1–line 2, Table 6)
of which:

−4.2 −27.4 1.0 30.6 0

2 Sources of global
productivity gains

−17.5 −0.1 21.7 4.2

3 Clean bias of
productivity gainsa

−10.0 1.0 8.9 0

Employment-gross output

4 Total difference (line
1–line 3, Table 6)
of which:

−12.7 −23.5 −0.3 36.5 0

5 Sources of global
productivity gains

−17.5 −0.5 30.7 12.7

6 Clean bias of
productivity gainsa

−6.0 0.2 5.8 0

See Appendix 5 (in supplementary material) for the decomposition formulas
a A positive (negative) entry means a bias towards clean (dirty) sectors

with scaling by value-added [−27.4] comes from manufacturing labor being reallocated
towards less productive countries [−17.5] and productivity gains being large in ‘dirty coun-
tries’ [−10.0]. Similar decomposition results are obtained when comparing scaling by labor
with scaling by gross output. The small magnitude for the ‘between sector’ effect reflects
the combination of uniform productivity changes and labor allocations across manufacturing
sectors.

In sum, although the dubious quality of price deflators and exchange rates make it hard to
articulate precise figures, this subsection suggests that the negative between-country effect
identified in Table 5 must be taken with caution. As soon as differences in labor productivity
are controlled for, it turns out that composition effects across countries have had a positive
contribution to the growth in world SO2 emissions, not a negative one. This is so because
over the nineties, on average, less productive countries have been gaining labor-manufactur-
ing shares, and because productivity gains have been larger in the dirtiest countries.
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Table 8 Alternative decompositions of the composition effect (1990–2000, %)

Scale measure Between-country effect Between-sector effect

Original Alternative Average Original Alternative Average

(1) (2) (3) = 0.5*[(1) + (2)] (4) (5) (6) = 0.5*[(4) + (5)]

Employment −2.4 −6.5 −4.5 −3.0 0.8 −1.9

Value-added 24.9 24.1 24.5 −4.0 −2.8 −3.4

Output 21.1 19.7 20.4 −2.8 −1.3 −2.0

Notes: Columns (1) and (4) are reported results from Table 6 (between effect defined across countries);
columns (2) and (5) are the corresponding figures when the between effect is defined across sectors; columns
(3) and (6) are simple averages of the two preceding ones

5.2 A More Balanced Decomposition Formula?

The basic decomposition formula used until now defines arbitrarily the between-country
effect at the aggregate level (country shares) and the “between-sector” effect at the disag-
gregated level (country-specific sector shares). This means that the “between-sector” effect
could also have been called a “within-country” effect. Apart from terminological issues, this
also means that the opposite convention could have been proposed, defining the between-
sector effect at the aggregate level and the “between-country” effect (in fact a “within-sector”
effect) at the disaggregated level, as in the following expression:

Êt = L̂ t +
∑

k

θ
Et
ki t

(

θ̂
Lt
kt

)

+
∑

i

∑

k

θ
Et
ki t

(

θ̂
Lkt
ki t

)

+
∑

i

∑

k

θ
Et
ki t

(

γ̂ki t
)

(0.4)

Results obtained on the basis of this alternative growth decomposition formula are reported
in columns (2) and (5) of Table 8. But for small differences due to interaction terms, the for-
mula used (either Eq. 0.3 or 0.4) should not affect the magnitude of the scale and technique
effects, which are therefore not reported in the table. Moreover, as the choice between the
two versions is an arbitrary one, columns (3) and (6) report the average value of each effect.

Globally, differences are rather small, in particular when output or value added are used
as scaling variables. Differences are somewhat larger when using employment, and suggest
that the shift towards cleaner countries (and cleaner sectors) might have been understated
(overstated) by the original approach. However the differences are not large and the average
outcomes are perfectly in line with the other results commented so far.

6 Correlates of the composition Effect14

This section explores some of the correlates of the composition effect identified above. This
is only a first exploration limited by data availability for manufacturing sectors over a large
number of countries. Several driving factors can be identified. First, composition effects
may be induced by shifts in relative preferences, leading to increased demand for certain
goods. Second, composition effects might be affected by the trade orientation of the sector,
here captured by trade intensity, reflecting patterns of specialization across countries. Third,

14 We thank an anonymous referee for having suggested this extension. A similar exercise regarding the
technique effect was discarded because of the lack of available indicators regarding environmental and
industrial policies at a sufficiently disaggregated level.
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relative prices of goods might change because of other reasons, for instance changes in the
cost structure of producers which can lead to shifts in relative supplies.

Besides finding appropriate proxies to capture these channels, any exercise is complicated
by the fact that these channels are interdependent; as for instance changes in preferences
would also lead to changes in relative prices. We explore these channels in a single equation
framework that basically seeks to establish the relative importance of changes in relative
prices vis-à-vis changes in trade intensity in shaping composition effects.15 In this set-up, the
two components of the contribution of country i sector k to the overall composition effect are
considered separately.16 The explanatory variables are the growth of the index of revealed
comparative advantage (RCA) and of the price index and all specifications include country
and sector dummies.17

Results are reported in Table 9. Columns (1) and (2) report results with respect to the
growth rates in economic activity shares. As expected, whatever the scaling factor (labor or
value-added), both variables are positively correlated with scale. RCA growth has a positive
and highly significant effect in all specifications and the effect is slightly stronger for value-
added shares than for labor shares. The price index growth rate has a similar impact although
it is not significant on labor shares. The respective role of the two regressors is clarified by
two additional statistics: standardized coefficients and the decomposition of Fields (2003).
Looking at standardized coefficients, the labor share growth rate increases by 0.4 standard
deviations following an increase of the RCA growth rate by one standard deviation, while
the corresponding increase is 0.2 in the case of the price index growth rate. Hence the rel-
ative importance of the two variables is roughly two to one in the labor case, while it is of
similar magnitude in the case of value-added (standardized coefficient of 0.3). The Fields
decomposition reports how much of the total variance is explained by our explanatory vari-
ables.18 It turns out that 17% of the total sum of square of labor growth is accounted for
by RCA growth, while only 5% are accounted for by changes in relative prices. Concerning
value-added shares, we find that roughly 11% of the total sum of squares can each time be
attributed to RCA growth and price changes.

The remaining two columns of Table 9 give the corresponding results when emission
shares are used. Significant impacts only appear when taking the log of the explained vari-
able (most of these shares are clustered between 0 and 0.05), and they are negative for both
RCA and prices growth rates. Regarding their relative importance, the price index growth
rate seems to have more explanatory power than the RCA growth rate on initial emission
shares.

In short, even if we do not find a significant impact of prices or trade on the total compo-
sition effect over the sample period, we identify significant correlates on the two constitutive
components of this effect. On the one hand, and quite intuitively, we find that the general
allocation of labor and production at the world-wide level tends to follow price increases

15 Changes in preferences are not identified directly over the relatively short time span of 10 years in addition
to what would be captured by sector dummies and relative prices.
16 Using the product of the growth rate in economic activity and emission shares does not give any significant
results. An intuitive explanation for this is given by the opposite regression coefficients found for the two
separate components (see Table 9).
17 Explanatory variables are probably not exogenous and the RCA index captures both trade policy and com-
parative advantage factors. The RCA index for a sector country combination is the ratio of the share of sector
k in the exports of country i to the share of sector k in total world (sample) exports.
18 Results for the more general Shapley decomposition (Shorrocks 1999) are fairly similar but are only
available for specifications without country dummies. See Israeli (2007) for a comparison between the two
methods.
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Table 9 Determinants of the composition effect

Dependent variable:

Growth in economic activity Emission share

θ̂
Lt
ki t θ̂

Qt
kit θ

Et
ki t In(θ

Et
ki t )

labor (1) value-added (2) (3) (4)

RCA growth rate:

Estimated coefficient 0.008*** 0.011*** −0.000*** 0.003***

Robust standard error 0.0002 0.0004 0.000 0.001

Standardized coefficienta 0.424 0.341 −0.027 −0.056

Fields decompositionb 0.174 0.11 0.0007 0.012

Price index growth rate:

Estimated coefficient 0.199* 0.484** −0.0001 −0.255***

Robust standard error 0.104 0.148 0.0001 0.061

Standardized coefficienta 0.224 0.331 −0.014 −0.096

Fields decompositionb 0.053 0.107 0.0008 0.020

R-squared 0.49 0.44 0.69 0.86

Number of observations 423 423 423 415

All specifications include a complete set of country and sector dummies which increase the explanatory power
of the regressions, but have little impact on the estimated values of the other variables
a Standardized coefficients are regression coefficients of standardized variables (with a mean of zero and a
standard deviation of 1)
b See text
* Significant at 10%; ** significant at 5%; *** significant at 1%

and export performance as measured by RCAs. On the other hand, the allocation of emission
seems to follow a reverse pattern, i.e. price increases and export growth are associated with
lower emissions. Note that the decrease in the price of petroleum products during the 90s
and the high transport costs in polluting sectors are both consistent with this reverse pattern.

7 Conclusions

Extracting the best out of the available information, we constructed a set of original databases
on SO2 intensities over the nineties, which is consistent with the most recent estimates of
national emissions reported by Stern (2006), and allows for the first time to relate manufac-
turing activity with SO2 emissions taking detailed composition effects into account.

Beyond indicating the importance of the choice of scaling variables in the decomposition,
several growth decomposition exercises establish a number of stylized facts that help to iden-
tify the driving factors that contributed to the decrease in SO2 emissions during the sample
period. First, the scale and technique effects always work in opposite directions while the
sign of the composition effect depends on scaling assumptions.

Second, using labor as the scaling factor, both composition effects are negative and rather
small in magnitude, adding an additional 5% to the global decrease in world emissions (−10%
in total). In other words, a global shift of employment towards cleaner sectors and cleaner
countries has contributed to reduce worldwide pollution during the sample period.
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Third, the choice of scaling factor matters suggesting the usefulness of experimenting
with several scaling factors whenever possible. When value added or output is used as the
scaling factor, the picture changes, with a magnification of the scale and technique effects
and a between-country effect that becomes strongly positive. This reflects both the increase
in global productivity worldwide and the sources of this productivity gain, namely a shift
of output towards low-productivity countries and a bias of productivity gains towards dirty
countries. Note that this pattern is perfectly compatible with the employment-based decom-
position, because large emerging manufacturing players such as China and India can be
simultaneously considered as either clean or dirty depending on intensities being expressed
in terms of emissions per unit labor or emissions per dollar. Finally, limited exploration of the
correlates of the composition effect, suggests that sectoral price increases and export growth
are associated with lower emissions.

All in all, given the available data, it appears that the above-mentioned patterns have been
shown to be fairly robust across databases and selection of decomposition methods, but that
the choice of scaling variables impacts strongly on the split of the composition effects into
its constituent parts.
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