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Abstract Consider a scheduling problem (P ) which consists of a set of jobs to be performed
within a limited number of time periods. For each job, we know its duration as an integer
number of time periods, and preemptions are allowed. The goal is to assign the required
number of time periods to each job while minimizing the assignment and incompatibility
costs. When a job is performed within a time period, an assignment cost is encountered,
which depends on the involved job and on the considered time period. In addition, for some
pairs of jobs, incompatibility costs are encountered if they are performed within common
time periods. (P ) can be seen as an extension of the multi-coloring problem. We propose
various solution methods for (P ) (namely a greedy algorithm, a descent method, a tabu
search and a genetic local search), as well as an exact approach. All these methods are
compared on different types of instances.

Keywords Job-scheduling · Multi-coloring · Tabu search · Genetic algorithm

1 Introduction

In this paper, we consider a scheduling problem (P ) where a set of jobs have to be per-
formed within a limited number of time periods. For each job, we know its duration as an
integer number of time periods. Preemptions are allowed (i.e. it is possible to perform a job
within non consecutive time periods). Two types of costs are considered: assignment costs
and incompatibility costs. When a time period is assigned to a job, an assignment cost is
encountered. In addition, for some pairs of jobs, incompatibility costs are encountered if
they are performed within common time periods (i.e. the realization of the two jobs overlap
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in time). The goal is to perform all the jobs at minimum cost. Such a problem can be seen as
an extension of the problem studied in Zufferey et al. (2012), for which all the jobs have a
duration of one time period. Problem (P ) is a new scheduling problem and there is no liter-
ature on it. The reader desiring a review on scheduling models and algorithms is referred to
Pinedo (2008). Problem (P ) can also be seen as an extension of the multi-coloring problem
(also known as the set-coloring problem, for which there is no cost). Relevant references for
the multi-coloring problem with applications in scheduling and in frequency assignment are
Dorne and Hao (1998), Aardal et al. (2003), Halldorsson (2004), Gandhi et al. (2005), and
Chiarandini and Stuetzle (2007). Problem (P ) can finally be seen as a project management
problem or a project scheduling problem. The reader interested in a general project man-
agement book with applications to planning and scheduling is referred to Kerzner (2003).
Finally, the reader interested in project scheduling is referred to Icmeli et al. (1993), Kolisch
and Padman (2001), Demeulemeester and Herroelen (2002), and Lancaster and Ozbayrak
(2007).

The paper is organized as follows. In Sect. 2, we formally present and position problem
(P ), and we show the links between (P ) and the multi-coloring problem. In Sect. 3, we
design two mathematical models for (P ) to be solved by exact methods/solvers. In Sect. 4
are proposed for (P ) a constructive greedy algorithm, local search methods (namely a de-
scent algorithm and a tabu search), and a population based method (namely a genetic local
search). Results are reported in Sect. 5, where we also compare the proposed methods with
other existing algorithms. We end the paper with a conclusion in Sect. 6.

2 Presentation and positioning of problem (P )

In this section, we formally describe problem (P ), then we present the links between (P )

and the multi-coloring problem, and we finally position (P ) according to its practical rel-
evance and according to classical scheduling problems (based on the well-known notation
α | β | γ ).

2.1 Formal description of (P )

Problem (P ) consists in a set V of n jobs to be performed, at minimum cost, within a discrete
horizon of k time periods, each time period having the same duration (e.g., a day, an hour,
a minute, etc.). No precedence constraints are considered and preemptions are allowed (i.e. it
is possible to perform a job within nonconsecutive time periods, and interruptions are only
allowed at integer time points). For each job j , we know its integer duration pj . The goal
is to assign pj (not necessarily consecutive) time periods to each job j while minimizing
assignment and incompatibility costs. An assignment cost aj,t occurs if job j is performed
(partially or totally) within time period t . It represents for example the cost of the resources
(e.g., staff, machines) which have to perform job j at period t . In addition, let cm

j,j ′ > 0
(with m ∈ N

�) denote an incompatibility cost between incompatible jobs j and j ′, which is
to be paid if both jobs have m common time periods. Note that this cost may be ∞ for jobs
which can in no way be executed at the same time period. For compatible jobs j and j ′, we
assume that cm

j,j ′ = 0 for all m. Further, for each job j , let Ij denote the set of jobs j ′ which
are incompatible with job j . We assume that cm

j,j ′ = cm
j ′,j for all j, j ′ ∈ V . Hence, j ∈ Ij ′

implies j ′ ∈ Ij for all j, j ′ ∈ V . The incompatibility costs cm
j,j ′ represent for example that

the same resources have to perform jobs j and j ′, thus additional resources are requested in
order to be able to perform both jobs within common time periods. Thus, it is reasonable to
assume that cm+1

j,j ′ ≥ cm
j,j ′ for all m.
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In order to represent a solution s using a maximum of k time periods, we associate with
each time period t ∈ {1, . . . , k} a set Jt containing the jobs which are performed at time
period t . It means that a single job j has to belong to pj sets of type Jt in order to be
totally performed. Let δm

j,j ′ be equal to 1 if jobs j and j ′ are performed within m common
time periods, and 0 otherwise. Thus, a solution s can be denoted s = (J1, . . . , Jk), and the
associated objective function f (s) to minimize is:

f (s) =
∑

t

∑

j∈Jt

aj,t +
∑

j<j ′,m
cm
j,j ′ · δm

j,j ′

=
k∑

t=1

∑

j∈Jt

ajt +
n−1∑

j=1

∑

j ′∈{j+1,...,n}∩Ij

min {pj ,pj ′ }∑

m=1

cm
jj ′ · δm

jj ′ (1)

2.2 Links between (P ) and the multi-coloring problem

Problem (P ) can be considered as an extension of the k-multi-coloring problem, which
can be defined as follows from the k-coloring problem. First, the k-coloring problem of a
graph G consists in assigning a single color in {1, . . . , k} to each vertex such that adjacent
vertices have different colors. The graph coloring problem consists in finding the smallest
k for which a k-coloring exists. Such a coloring problem is NP-hard (Garey and Johnson
1979). In the k-multi-coloring problem, each vertex has to receive a predefined number of
colors in {1, . . . , k} such that adjacent vertices have no common color (a conflict occurs if
two adjacent vertices have at least one color in common). The graph multi-coloring problem
consists in finding the smallest k for which a k-multi-coloring exists.

As mentioned in Halldorsson (2004), the multi-coloring problem can be reduced to graph
coloring by replacing each vertex j by a clique of size pj (where a clique is a set of mu-
tually adjacent vertices). Edges are then replaced with complete bipartite graphs between
the corresponding cliques (a graph is bipartite if its vertices can be partitioned in two sets
such that there is no edge in each of the two sets). Such a transformation both increases the
size of the graph and embeds an unwanted symmetry into the problem. Thus, it is useful to
develop specialized algorithms for the multi-coloring problem, and therefore it is also useful
to develop specialized algorithms for problem (P ).

The correspondence between problem (P ) and the k-multi-coloring problem is obvious:
a vertex represents a job, a color is a time period, and the required number pj of colors
to assign to vertex j is the duration of job j . Apart from the objective function, the main
differences between these two problems are the following: in problem (P ), conflicts are
allowed but lead to incompatibility costs, and, in addition, assignment costs are also con-
sidered (while they are all equal in the k-multi-coloring problem and can thus be ignored).
Therefore, problem (P ) can be considered as an extension of the k-multi-coloring problem,
which means that it is also NP-hard. From now on, we will indifferently use the scheduling
terminology (e.g., jobs, time periods) and the graph terminology (e.g., vertices, colors).

Among the few existing methods for the multi-coloring problem, tabu search was shown
to provide very competitive results (e.g., Dorne and Hao 1998, Chiarandini and Stuetzle
2007). Among the best methods for the standard graph coloring problem (many algorithms
exist, see Malaguti and Toth 2010 for a survey), we mention two tabu search methods
(Hertz and de Werra 1987; Bloechliger and Zufferey 2008), an adaptive memory algorithm
(Malaguti et al. 2008), a genetic local search algorithm (Galinier and Hao 1999), an ant local
search (Plumettaz et al. 2010), a variable space search (Hertz et al. 2008), and a memetic al-
gorithm (Lu and Hao 2010). All these methods are metaheuristics which rely on tabu search.
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For these reasons, it seems appropriate to propose tabu search algorithms and genetic local
search approaches for problem (P ).

2.3 Positioning and practical relevance of (P )

The classical three-fields notation α | β | γ is well-known in the scheduling community
(Pinedo 2008): field α represents the configuration of the machines, field β represents the
constraints and specific characteristics of the problem, and field γ represents the objective
to optimize. With such a notation, problem (P ) could be denoted Pm | int-pj , int-prmp |
C(aj,t , c

m
j,j ′), where Pm holds for m parallel identical machines (with m large enough to be

able to simultaneously perform as many jobs as desired), pj holds for integer processing
times int-pj , int-prmp holds for preemptions which are only allowed at integer time points,
and C(aj,t , c

m
j,j ′) represents a cost function involving the assignment costs (aj,t ) and the

incompatibility costs (cm
j,j ′).

As the multi-coloring problem can be viewed as roots of problem (P ), all the applica-
tion domains of the former problems can be relevant for the latter problem, which include
scheduling file transfers (Coffman et al. 1985) or frequency assignment (Aardal et al. 2003).
More generally, all the application domains of graph coloring can be relevant for problem
(P ) (e.g., Gamst and Rave 1982, Leighton 1979, Stecke 1985, Zufferey et al. 2008, Burke
et al. 2010, and Duives et al. 2011).

Problem (P ) has obvious applications in industries where: (1) parallel machines are con-
sidered; (2) preemptions are allowed; (3) overlapping some processing times is costly be-
cause it requires additional resources to augment the production capacity; (4) the processing
cost of a job depends on the time slot it is performed (and thus earliness and tardiness is-
sues can also be considered). These four specific features of (P ) are now briefly discussed
according to the existing literature. Most of the remaining references of the current section
pointed out the practical relevance of the associated problems.

Parallel machines Most of the scheduling research dealing with multiple objectives fo-
cuses on single machine scheduling, and not as much research has been done on parallel
machine problems with multiple objectives (Pinedo 2008). However, as stressed in T’Kindt
and Billaut (2001), parallel machines scheduling problems are important because in prac-
tice there are often multiple resources dedicated to the processing of some operations. In
Mendes et al. (2002), some metaheuristics are compared for a parallel machine scheduling
problem while minimizing the makespan. Despite its relevance in the chemical, paper and
textile industries, only few algorithms have been proposed to tackle this problem.

Preemptions In scheduling problems, when preemptions are allowed, a job can be stopped
and restarted later. Preemptions are particularly relevant when the considered production
process has negligible setup times, which is for instance the case with automated production
systems. Several papers have tackled scheduling problems with preemption possibilities.
A few of them are now mentioned. Liu et al. (2002) study the single machine scheduling
problem with preemptions, release dates, preemption penalties, and delivery times, where
the objective is to minimize the delivery time of the last job. Schuurman and Woeginger
(1999) studied the problem of scheduling n jobs on m machines with setup times. Shachnai
et al. (2002) impose a maximum number of preemptions in a multiprocessor scheduling
environment. In Mohammadi and Heydari (2011), the authors propose an exact approach for
a single machine problem with release dates and deadlines. The cost function depends on the
completion time of the jobs and the number of preemptions. In Sun et al. (2005), the authors
study the problem of scheduling jobs on a single machine with availability constraints and
preemption possibilities. The objective is to minimize total weighted job completion times.
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Incompatibility costs and production capacity The consideration of incompatibility costs
can have an important impact in a competitive make-to-order environment, where a man-
ufacturer should tune the production capacity efficiently, satisfy the expectations of cus-
tomers, and gain the maximum revenue from the incoming orders (jobs). Hence, the question
is which orders to accept and in what sequence to process them to maximize the revenues.
The practical relevance and importance of order acceptance in make-to-order systems was
underlined in Rogers and Nandi (2007) and Zorzini et al. (2008). For a recent review on
the trade-off “which orders to accept” and “how to schedule them”, the reader is referred
to Slotnick (2011). As mentioned in Yang and Geunes (2007), only a small amount of past
research considers demand management decisions in a production scheduling context. In
order acceptance problems, if a job j is rejected, a penalty cost in incurred (or the revenue
associated with j is lost). The consideration of incompatibility costs can obviously enhance
the production capacity in such production environment, as instead of encountering penalty
costs for rejected jobs, incompatibility costs could be paid if additional resources are used
at some specific time periods (the ones for which incompatible jobs are performed).

Incompatibility costs can also be defined according to additional machine activation
costs. In Panwalkar and Liman (2002), the authors consider a number of identical machines
that can be activated to perform the work. Each machine that is activated incurs a fixed
machine activation cost. A component of the objective function is the sum of machine ac-
tivation costs. In Dosa and He (2006), the authors consider a problem for which rejection
cost (a penalty cost is associated with each non performed job) and machine cost (buying
new machines is possible if a cost is paid) are taken into account. In Chen (2004), the author
considers a scheduling problem on parallel machines with resource allocation costs.

Assignment costs and earliness/tardiness penalties The assignment costs can be fixed in
order to account for earliness and tardiness costs. Earliness and tardiness costs are crucial
elements of many scheduling problems in practice, but they are only beginning to be simul-
taneously considered in the literature (e.g., Beck and Refalo 2003, Yang et al. 2004, Feng
and Lau 2008, Shabtay 2008, Toksari et al. 2010). Consider that with each job j are asso-
ciated four information: (1) an available date Rj (it is not possible to start j before Rj ),
(2) a release date rj (it is possible to start j before rj if an earliness cost is paid), (3) a due
date dj (it is possible to complete j after dj if a tardiness cost is encountered), (4) a dead-
line Dj (it is not possible to finish j after Dj ). The following relationship is likely to occur:
Rj < rj < dj < Dj . The earliness costs can represent urgent transportation cost to get the
raw material from a supplier earlier than rj (such costs are decreasing with time, that is
from time period Rj to time period rj − 1). The tardiness costs can represent penalty costs
associated with late deliveries to the clients (such cost are increasing with time, that is from
time period dj + 1 to time period Dj ). To account for the hard constraints (i.e. Rj and Dj ),
assignment cost aj,t could be set to an arbitrary large number M for each t < Rj and each
t > Dj . To represent the earliness costs, aj,t can be set to a decreasing function when t

varies from Rj to rj − 1. To represent the tardiness costs, aj,t can be set to an increasing
function when t varies from dj + 1 to Dj .

3 Exact methods for problem (P )

The incompatibility cost component of the objective function f is non decreasing and gener-
ally non linear with the number of conflicts. In this section, we propose two integer programs
for (P ). The first one is based on a linear incompatibility cost component, whereas the sec-
ond is general. The decision variables are the following: xj,t = 1 if color t is assigned to
vertex j , and 0 otherwise.
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3.1 Linear incompatibility costs

If the incompatibility costs are linear with the number of conflicts, they can be rewritten
as follows: cm

j,j ′ = m · cj,j ′ (with cj,j ′ ≥ 0). With those penalties, one obtains the following
quadratic binary program:

minimize f =
n∑

j=1

(
k∑

t=1

aj,t · xj,t +
∑

j ′∈Ij

j<j ′

cj,j ′ ·
k∑

t=1

xj,t · xj ′,t

)

constraints
k∑

t=1

xj,t = pj ∀j

variables xj,t ∈ {0,1} ∀j, t

(2)

When using this quadratic formulation with CPLEX 12.4, even the smallest problems
cannot be solved within reasonable time and memory limits. However, this formulation can
be linearized. Using the notation e = {j, j ′}, the product xj,t · xj ′,t of two binary variables
can be linearized using a standard technique as follows:

he,t ≥ xj,t + xj ′,t − 1

he,t ≤ xj,t

he,t ≤ xj ′,t

he,t ∈ {0,1}

(3)

With these conditions, we have he,t = xj,t · xj,t ′ for every possible conflict e = {j, j ′}.
Note that only the first inequality of (3) is necessary. The two others are implicit since the
associated coefficients in the objective function are all positive. Using this formulation, the
smallest problems can be efficiently solved by CPLEX 12.4.

3.2 Non-linear incompatibility costs

The general problem (P ) has an arbitrary, albeit monotone, objective function. We now
present a linear program to model this objective function. The basic idea is to encode the
number of conflicts on each edge in unary notation.

For this, we introduce further helper variables. Let Hj,j ′ be the total number of con-
flicts on an edge e. This number Hj,j ′ is then encoded as a sum of binary variables

He = y1
j,j ′ + y2

e + y3
e + · · · + y

Mj,j ′
e where Mj,j = min{pj ,pj ′ } is the maximum num-

ber of conflicts possible on the edge e = [j, j ′]. We further impose that yi
e ≥ yi+1

e for
i ∈ {1, . . . ,Me − 1}. This implies that exactly the first He variables yi

e will be set to one
to represent He . The objective function can now be rewritten in a linear fashion and the
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problem formulation becomes the following (where E is the set of edges in the graph):

minimize f =
∑

j,t

aj,t · xj,t +
∑

[j,j ′]∈E|j<j ′

(
c1
j,j ′ · y1

j,j ′ +
Mj,j ′∑

i=2

yi
j,j ′ · (ci

j,j ′ − ci−1
j,j ′

)
)

constraints
∑

t

xj,t = pj ∀j ∈ V

hj,j ′,t ≥ xj,t + xj ′,t − 1 ∀[
j, j ′] ∈ E, j < j ′, t

∑

t

hj,j ′,t =
Mj,j ′∑

i=1

yi
j,j ′ ∀[

j, j ′] ∈ E, j < j ′, t

yi
j,j ′ ≥ yi+1

j,j ′ ∀[
j, j ′] ∈ E, j < j ′, i = 1, . . . ,Mj,j ′

variables xj,t ∈ {0,1} ∀j, t

hj,j ′,t ∈ {0,1} ∀[
j, j ′] ∈ E, j < j ′,1 ≤ t ≤ k

yj,j ′,i ∈ {0,1} ∀[
j, j ′] ∈ E, j < j ′, i = 1, . . . ,Mj,j ′

(4)

It is easy to check that the big parenthesis in the second sum of the objective function

equals indeed c
Hj,j ′
j,j ′ .

3.3 Extracting lower bounds

The models presented above can either be solved to optimality for smaller instances, or used
to extract lower bounds for larger instances.

For the general problem and larger instances, the gaps are big (typically 50 % and more).
In some cases, one obtains better lower bounds by relaxing the problem with a linear approx-
imation of the objective function as follows. We replace the coefficients cm

j,j ′ by such that

c′1
j,j ′ := minm

cm
j,j ′
m

and c′m
j,j ′ := m · c′1

j,j ′ for m ≥ 2. In other words, the conflicts costs c′
correspond to the steepest linear function which never overestimates the original non-linear
conflict cost function (i.e. the least steep linear function which coincides with the original
conflict cost function in at least one point).

The optimal solution of this relaxed problem is clearly inferior (or equal) to the optimal
solution of the original problem. The relaxed problem however is much easier to solve, and
therefore it might provide better lower bounds considering memory and CPU-time limits.

4 Heuristics for problem (P )

In this section, we propose four solution methods for problem (P ): a greedy algorithm, a
descent method, a tabu search and a genetic local search.

4.1 Greedy algorithm

The following constructive heuristic has been implemented. Starting with an empty solution
(where no color is assigned to any vertex), the best assignment (vertex j , color t ) is per-
formed at each step, i.e. the assignment which leads to the smallest augmentation of f . If
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several vertices satisfy this condition, the vertex with the smallest number of available col-
ors is selected (a color t is defined as available for a vertex j if t is not used in the vertices
adjacent to j ). Ties are then broken randomly. Note that such a way of selecting the ver-
tices leads to much better results than a random selection. Such a Greedy(P ) heuristic can
be considered as a generalization of the DSATUR standard coloring algorithm proposed in
Brélaz (1979), where at each step, the next vertex to color (with the smallest possible color
which does not create any conflict) is the one with the largest number of different colors
represented in the set of its adjacent colored vertices.

4.2 Local search methods

We propose below two local search algorithms for (P ): a descent method and a tabu search,
respectively denoted by Descent(P ) and Tabu(P ) .

A local search can be described as follows. Let f be an objective function which has to
be minimized. At each step, a neighbor solution s ′ is generated from the current solution
s by performing a specific modification on s, called a move. All solutions obtained from
s by performing a move are called neighbor solutions of s. The set of all the neighbor
solutions of s is denoted N(s). First, a local search needs an initial solution s0 as input.
Then, the algorithm generates a sequence of solutions s1, s2, . . . in the search space such
that sr+1 ∈ N(sr). The process is stopped for example when an optimal solution is found
(if it is known), or when a fixed number of iterations have been performed. Some famous
local search algorithms are the descent method, simulated annealing, variable neighborhood
search, and tabu search.

In a descent method, the best move (among all possible candidate moves) is performed
at each iteration and the algorithms stops as soon as a local optimum is reached. In a tabu
search, when a move is performed from sr to sr+1, it is forbidden (with some exceptions)
to perform the inverse of that move during τ (parameter) iterations: such forbidden moves
are called tabu moves. The solution sr+1 is computed as sr+1 = arg mins∈N ′(sr ) f (s), where
N ′(s) is a subset of N(s) containing solutions which can be obtained from s by performing
a non tabu move. Many variants and extensions of this basic tabu search algorithm can be
found for example in Glover and Laguna (1997). More generally, the reader is referred to
Gendreau and Potvin (2010) and Osman and Laporte (1996) for the metaheuristics literature,
and to Zufferey (2012) for guidelines helping to efficiently design a metaheuristic.

In order to propose a local search for problem (P ), we mainly have to define the search
space, the way to generate an initial solution, the neighborhood structure (i.e. the nature of a
move), the stopping criterion, and, in the case a tabu search is designed, the way to manage
the tabu tenures.

Search space A feasible solution is any assignment of the correct number of colors to
each vertex. The search space is the set of all the feasible solutions of (P ), and the associ-
ated objective function is simply f as defined in (1). Note that feasible solutions may have
an infinite objective value, as some incompatibility costs are set to ∞ in the considered in-
stances. Such infinite costs represent the situation where it is logistically impossible to have
a certain number of common time periods for the processing of some pairs of jobs.

Initial solution The initial solution for Descent(P ) and Tabu(P ) is a random assignment
of pj colors to each vertex j .
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Table 1 Time limit and
parameters used for Tabu(P ) on
the multi-coloring instances

n T N K τ1

≤30 300 s 0.5 0.5 20

50 600 s 0.5 0.5 30

100 1200 s 0.3 0.5 40

200 3600 s 0.2 0.5 50

Neighborhood structure A neighbor solution is produced by changing exactly one color on
a vertex. In other words, a move consists in replacing, for a single job j , a time period t with
another time period t ′. Such a move can be denoted by (j, t, t ′). For the current solution s, let
Cj be the set of time periods associated with job j , and let nj,j ′ be the number of common
time periods between jobs j and j ′, i.e. nj,j ′ = |Cj ∩ Cj ′ |. Knowing the current solution
s and its value f (s), it is now straightforward to develop an incremental computation to
evaluate a candidate neighbor solution s ′ obtained from s by replacing t with t ′ for j :

f
(
s ′) = f (s)− aj,t + aj,t ′ −

∑

j ′∈Ij |t∈Cj ′

(
c

nj,j ′
j,j ′ − c

(nj,j ′ −1)

j,j ′
)+

∑

j ′∈Ij |t ′∈Cj ′

(
c

(nj,j ′ +1)

j,j ′ − c
nj,j ′
j,j ′

)
(5)

In Descent(P ), starting with a random initial solution, the best move is selected at each
iteration (i.e. an exhaustive search is performed), by using the above incremental compu-
tation to evaluate all the possible candidate moves. In Tabu(P ), we avoid the exhaustive
search strategy at each iteration. Instead, we propose to control the size of the evaluated set
of candidate moves by two parameters N and K , which respectively indicate the consid-
ered proportion of jobs and time periods. Such parameters seem to be critical to the search
process. For larger instances, it pays off to choose N smaller, down to 0.1 for very large
instances.

Stopping criterion The stopping condition of all (meta)heuristics is a time limit of T sec-
onds, where T depends on the number of vertices of the graph. T was chosen such that (in
preliminary experiments) the improvement after this amount of time was negligible. In order
to apply Greedy(P ) for T seconds, we restart is as soon as a complete solution is found (as
long as the time limit is not reached). At each iteration of Greedy(P ), several equivalent
options usually occur. As such ties are randomly broken, two runs of Greedy(P ) are likely
to provide two different solutions. Similarly, in order to perform Descent(P ) for T seconds,
we restart it with another random initial solution as soon as a local optimum is reached. At
the end, the best encountered solution within T seconds is given as output.

Tabu tenures Assume that move (j, t, t ′) has just been performed. The moves (j, t, t ′) and
(j, t ′, t) are then forbidden for a given number τ1 of iterations (parameter, which will be
tuned depending on the size of the instance). Preliminary experiments on random instances
showed that τ1 ∈ [1,50] is suitable, with small tenures for small instances, and large tenures
for large instances.

Parameter settings The parameters N , K and τ1, as well as the time limit T (in seconds,
which will be the same for all the methods), are given in Table 1 and depend on the number
n of vertices.
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Algorithm 1 Genetic local search

Generate an initial population M of solutions.

While a stopping condition is not met, do:

1. create offspring solutions from M by using a recombination operator;
2. improve the offspring solutions by the use of a local search operator;
3. update M by the use of the improved offspring solutions.

4.3 Genetic local search

In this subsection, we first briefly present the main ingredients of a genetic local search al-
gorithm. Then we adapt such algorithm to problem (P ), and the resulting method is denoted
GLS(P ). A basic version of a genetic local search (which is close to the adaptive memory
algorithm proposed in Rochat and Taillard 1995) is summarized in Algorithm 1, where per-
forming steps (1), (2) and (3) is called a generation. Therefore, in order to design a genetic
local search for a problem, we have to define: the way to initialize the population M of
solutions, the recombination operator, the intensification (or local search) operator, and the
population update operator. The reader interested in more detail about genetic (local search)
algorithms is referred to Gendreau and Potvin (2010).

Initialization of M Based on preliminary experiments, we propose to work with a popula-
tion M of size 6. Each initial solution is randomly generated and then improved by Tabu(P )

performed during 10,000 iterations without improvement of the best visited solution.

Recombination operator The recombination operator consists in two phases. In the first
phase, a set E (M) of elite solutions is generated from the solutions in M as follows. First,
the p (parameter tuned to 3) best different solutions of M are put in E (M). Two solutions
are considered equal if they have the same (32-bit) hash value (as defined below). If there
are no p different solutions but only p − q , then q random solutions are created to complete
E (M). In addition, if the very best solution s� found so far is not included in E (M), its worst
solution is replaced by s�. In the second phase, |M| new solutions are generated by crossing
two randomly selected solutions of E (M). The crossing of two solutions is performed by
assigning to each vertex the colors of the corresponding vertex in either the first or the
second solution (random choice).

Intensification operator It is a procedure close to Tabu(P ), which will be applied on any
offspring solution. The difference relies in the fact that a second way of managing the tabu
tenure is also used, which works as follows. For each solution, we compute a 20-bits hash
value. Then we forbid to visit solutions with the same hash value for τ2 (parameter) itera-
tions. The hash value is computed as follows: for each vertex j and each color t , a 32-bit
random value rj,t is generated. The hash value of a solution is then computed by xor-ing
(bit-wise addition in F2) the corresponding values as follows:

hash =
⊕

j has color t

rj,t ⊕ denotes bit-wise xor (6)

This hash function is very easy to update after a move (two xor operations are in fact suffi-
cient). The used 20-bit hash value is simply the lower 20 bits of the 32-bit hash value. Pre-
liminary experiments showed on the one hand that GLS(P ) performs better when both tabu
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Table 2 Parameters used for Tabu(P ) within GLS(P )

Tabu scheme Tenure τ Vertex fraction N Color fraction K

1 τ1 = 10 + n
2 + 20 · u 0.1 + 0.2 · u + 5

n 0.4 + 0.2 · u
2 τ2 = 2 · n + 400 · u

schemes are used as intensification mechanisms, and on the other hand that τ2 ∈ [10,800]
was found to be suitable. Note however that with small values of τ2, the algorithm often
fails to find a solution with a finite objective function value (as some costs are set to ∞
in the used instances), but finds good solutions if non infinite values are reached. For large
values of τ2, the algorithm usually finds a solution with a finite objective function value, but
the quality of those solutions however vary a lot, and are generally not as good as with the
first tabu scheme (i.e. based on τ1). For this reason, the τ2 tabu scheme is only used as an
intensification operator within GLS(P ).

At each iteration, the used tabu scheme is randomly chosen with equal probability. The
tabu tenures τ1 and τ2, as well as the parameters fixing the explored neighborhood fraction,
namely N and K , are first randomly chosen in sensible intervals according to Table 2, where
u denotes a random generated value in [0,1]. Then, the tabu search parameters associated
with an offspring solution are copied from the parameters of one of the parent solutions.
With a certain probability (tuned to 20 %), the scheme and its associated parameters are
again randomly chosen according to Table 2.

As we would like to perform a significant number of generations, we have to perform
Tabu(P ) for a short time during each generation. Such a strategy will balance the roles
associated with the recombination operator and the intensification operator (Tabu(P )). Let it
(parameter) be the number of iterations without improvement performed by Tabu(P ) at each
generation of GLS(P ). Preliminary experiments showed that it = 100,000 is a reasonable
choice, which corresponds on small instances to a fraction of a second, and up to several
minutes on large instances.

Population update operator As |M| solutions are produced at each generation by the re-
combination operator, all the population is renewed (except for the very best solution, which
is always part of the population).

5 Results

In this section, we first present the considered instances, and then discuss the obtained results
of Greedy(P ), Descent(P ), Tabu(P ), GLS(P ), as well as the proposed exact methods.

5.1 Generation of instances

We use a file format which is inspired by the well-known DIMACS graph format. Three
types of instances are generated: 32 random instances, 10 trivial instances (which are con-
structed such that they can be optimally solved by a greedy algorithm), and 10 linear in-
stances (for which the incompatibility costs are linear with the number of conflicts). In
addition, existing instances from the literature (see Zufferey et al. 2012) are also tackled,
but only one color per vertex is allowed for such instances, which are divided into 14 large
instances (with n ≥ 300) and 90 small instances (with n ≤ 100).
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5.1.1 Random instances

The 32 random instances are generated giving the following information: the number n of
vertices, the density d (probability that an edge exists between two arbitrary vertices), the
minimal number pmin of colors per vertex, the maximal number pmax of colors per vertex,
and the total number k of colors. The costs aj,t are chosen uniformly at random in the
interval [0,1]. The number of colors pj for vertex j is chosen uniformly between pmin and
pmax (inclusively). The penalties cm

j,j ′ are generated sequentially for m = 1,2, . . . as follows:

c0
j,j ′ = 0, then cm

j,j ′ is set to ∞ with probability m
p̂

, where p̂ = min{pj ,pj ′ }. Otherwise cm
j,j ′ is

set to cm−1
j,j ′ plus a real uniform random value in [1,11] (which implies that if cm−1

j,j ′ = ∞, then
cm
j,j ′ = ∞). For m ≥ min{pj ,pj ′ }, all the cm

j,j ′ penalties are set to ∞. 32 random instances
of different sizes and densities have been generated. They have been selected by briefly
running GLS(P ) such that a solution having a finite objective function could be found, but
not instantly.

5.1.2 Trivial instances

The 10 trivial instances are constructed such that the optimum is known. They are called
trivial because they can be optimally solved in a greedy fashion. The following values are
again given: n,d,pmin,pmax, k. The pj ’s and the aj,t ’s are generated as in the random in-
stances. Then, for each vertex j , the pj “cheapest” colors are assigned (i.e. those for which
aj,t is the smallest). Let dj denote the difference between the last color assigned to j and
the next cheapest, non-assigned color. Then edges are randomly assigned with the constraint
that at most two conflicts per color are allowed. This process is repeated until either the de-
sired density is obtained, or 5 · n2 attempts to add an edge have been performed. Penalties
are set to ∞, except on conflicting edges [j, j ′]. Let m̂ be the number of conflicts for ver-

tex j . Then the penalties are set to
m·min{dj ,dj ′ }

m̂
for m ≤ m̂. This guarantees that the conflicts

are cheaper than any other choice of colors. For larger m, the penalties are also set to ∞. As
a consequence the assignment costs aj,t are considerably larger than the conflict costs cm

j,j ′
which become negligible.

5.1.3 Linear instances

The 10 linear instances have linear penalties, so they can be solved by linear programming
more easily. Again are given n,d,pmin,pmax, k. The pj ’s and the aj,t ’s are generated as in
the random instances. Edges are generated randomly, up to the desired density. The penalty
c1
j,j ′ is set to a uniform random number in [1,11]. Then cm

j,j ′ = m · c1
j,j ′ for m ≥ 2.

5.1.4 Names of the instances

The file-names starts with the name of the generating algorithm (e.g., random, trivial or
linear), followed by n, d , k, pmin, pmax, and the random seed used to generate the instance.
For example random-n10-d50-k12-m2-M5-r2121 is a random instance with n = 10
vertices, a density d of 0.5, allowing a total of k = 12 different colors, with pmin = 2 to
pmax = 5 colors per vertex. The random seed used to generate this instance was 2121.
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5.1.5 Existing instances from the literature

We are not aware of existing instances for our multi-coloring problem. However, Zufferey
et al. (2012) have described a simplified problem with the difference that only one color per
vertex is allowed. Since their problem setting is just a special case of (P ), we can apply our
methods without any change to their instances (which can be converted in a straightforward
manner into the format used for our experiments). There are 14 large (from 300 to 1000
vertices) instances well-known from plain graph coloring with the additional costs associ-
ated. These instances have the prefix dsjc, flat and leighton. There are another 90 generated
smaller instances (from 10 to 100 vertices, to be colored with 2 to 10 colors). Their prefix
is generated. They are in fact random graphs with density 0.5. Each cost aj,t is an integer
randomly generated in [0,200], and each incompatibility cost cj,j ′ is an integer randomly
generated in [0,1000] (in a uniform way for both types of costs).

5.2 Test design

All tests presented here were executed on an Intel® Core™ i7-2620M CPU @ 2.70 GHz
with 4 GB of RAM (DDR3). The processes are single threaded, so up to 4 tests could be
conducted simultaneously on this 2-core 4-threads processor. The stopping criterion was
the effectively consumed CPU-time reported by the system. For each instance, we report
the very best objective function value f � ever found by our algorithms, which includes all
preliminary tests, final tests and other test (over 100,000 runs), and some of them allowing
for more CPU-time than for the tests reported here. We indicate the results of our algorithms
as the average over 10 runs of the percentage gap above f �.

5.2.1 Exact methods

We used CPLEX 12.4 on the same machine to attempt to solve the instances where possi-
ble. Otherwise we indicate the best lower bound found by either the exact model (indicated
by † in the table) or the linear approximation (indicated by ‡). Note that the time limit al-
lowed for the CPLEX solver will however be 4 hours (at 4 threads, so roughly 16 hours of
CPU-time), and not T seconds, as it is the case for the solution methods. Note that for many
instances, the CPLEX solver runs out of memory before the 4 hours are used. The solvable
instances can be found in Tables 3 and 4 (marked by opt). Optimal f �-values are underlined.
All trivial instances can be optimally solved by CPLEX very quickly (240 seconds for the
largest instance trivial-n200-d50-k22-m2-M6-r643). With the exception of the random in-
stance n20-d50-k15-m2-M5-r43 (solved to optimality by CPLEX), the upper bounds found
by CPLEX before running out of memory or time were considerably higher than the bounds
obtained by our heuristics. Note that with one exception, our proposed metaheuristics (i.e.
Tabu(P ) and GLS(P )) find an optimal solution where CPLEX does.

5.2.2 Multi-coloring instances

For the multi-coloring instances (namely random, linear and trivial), 10 runs were per-
formed with each of the following methods: Greedy(P ), Descent(P ), Tabu(P ) and GLS(P ).
Remind that the time limit T (in seconds) is 300 for n ≤ 30, 600 for n = 50, 1200 for
n = 100, and 3600 for n = 200 (see Table 1 in Sect. 4.2).
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Table 3 Results on the random instances

Instances random f � Lb / Ub Tabu(P ) GLS(P ) Descent(P )

n10-d50-k12-m2-M5-r42 41.5 opt 0.0 % 0.0 % 1.3 %

n10-d50-k12-m2-M5-r2121 39.63 opt 0.0 % 0.0 % 0.8 %

n10-d50-k13-m2-M5-r2323 20.12 opt 0.0 % 0.1 % 2.4 %

n20-d20-k9-m2-M5-r44 120.41 opt 1.8 % 0.3 % 1.4 %

n20-d20-k12-m3-M5-r42 59.04 opt 2.9 % 0.2 % 4.7 %

n20-d50-k15-m2-M5-r43 59.31 58.84 (opt) 1.3 % 0.5 % 4.8 %

n20-d50-k15-m3-M5-r42 108.43 83.01‡ / 110.96 1.8 % 0.9 % 7.8 %

n20-d80-k20-m2-M5-r42 312.27 118.61‡ / 322.30 1.4 % 0.9 % ∞
n20-d80-k21-m3-M6-r42 410.25 130.1646‡ / 486.78 1.1 % 0.7 % 3.1 %

n30-d20-k12-m3-M5-r4242 183.19 150.56† / 181.95 3.7 % 2.1 % 19.0 %

n30-d20-k13-m1-M6-r123456 51.09 opt 5.7 % 0.9 % 5.0 %

n30-d50-k17-m1-M6-r21 249.5 127.37† / 260.75 1.1 % 0.8 % 18.8 %

n30-d50-k17-m2-M5-r42 221.24 74.72† / 310.14 2.1 % 1.0 % 20.6 %

n30-d80-k22-m2-M5-r314159 625.06 73.82† / 781.23 1.0 % 0.8 % 13.9 %

n30-d80-k24-m2-M6-r55555 677.98 84.09‡ / 911.32 0.5 % 0.6 % 13.3 %

n50-d20-k16-m1-M6-r1024 242.83 155.28† / 284.90 7.5 % 2.7 % 43.4 %

n50-d20-k24-m3-M8-r77 133.52 94.52‡ / 161.92 17.1 % 4.5 % 64.2 %

n50-d50-k16-m2-M4-r4321 860.54 70.79‡ / ∞ 2.0 % 3.0 % ∞
n50-d50-k20-m2-M6-r1024 1828.71 225.90‡ / ∞ 0.9 % 2.6 % ∞
n50-d80-k23-m1-M4-r123 608.38 39.51‡ / ∞ 1.1 % 1.0 % ∞
n50-d80-k28-m2-M6-r888 1674.88 92.22† / 2410.44 0.8 % 1.5 % ∞
n100-d20-k25-m3-M6-r9876 406.81 133.22† / 1242.84 5.5 % 4.8 % 116.3 %

n100-d20-k28-m2-M6-r42 162.47 97.87† / ∞ 25.1 % 11.8 % 127.8 %

n100-d50-k23-m2-M4-r54321 2264.0 44.97† / ∞ 2.7 % 4.6 % ∞
n100-d50-k33-m3-M7-r12345 5026.92 81.56† / ∞ 2.0 % 3.9 % ∞
n200-d20-k23-m1-M5-r6245 2108.69 106.53† / ∞ 3.7 % 5.4 % ∞
n200-d20-k31-m2-M7-r98761 3610.31 152.71† / ∞ 4.8 % 4.4 % ∞

Random instances Test results on the random instances are reported in Table 3. For each
method, we report the percentage gap relative to f � (where the best results are indicated
in bold face). On instances up to 30 vertices, GLS(P ) clearly outperforms Tabu(P ). On
larger instances, the two methods perform comparably. Note that Greedy(P ) never manages
to find a solution with a finite objective function value. Descent(P ) finds solutions with a
finite objective function value on most smaller instances, but is always outperformed by both
Tabu(P ) and GLS(P ).

Linear instances Results on the linear instances are reported in Table 4. We have very
similar results as with the random instances. Since there is no infinite incompatibility cost,
every solution has a finite objective function value. Greedy(P ) performs very poorly, and
so does Descent(P ) on instances with 50 or more vertices.

Trivial instances Remind that the trivial instances are built such that they can be optimally
solved by a greedy algorithm (thus, f � denotes here the optimal value of f ). The results are
reported in Table 5. As expected, Greedy(P ) solves all the instances by their very construc-
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Table 4 Results on the linear instances

Instances linear f � Lb / Ub Tabu(P ) GLS(P ) Greedy(P ) Descent(P )

n10-d50-k9-m2-M5-r42 62.37 opt 0.0 % 0.0 % 84.6 % 0.0 %

n10-d80-k14-m2-M5-r43 44.66 opt 0.2 % 0.0 % 181.4 % 3.9 %

n20-d50-k14-m2-M5-r113 81.99 67.68 / 82.49 1.4 % 0.5 % 217.6 % 2.9 %

n20-d80-k17-m2-M5-r13 181.12 95.2 / 199.17 1.3 % 0.7 % 138.9 % 2.4 %

n30-d50-k20-m2-M6-r422 146.02 68.77 / 171.37 1.6 % 1.9 % 348.2 % 14.4 %

n30-d80-k30-m3-M6-r745 438.28 73.53 / 640.02 0.6 % 1.0 % 166.3 % 8.8 %

n50-d20-k17-m2-M6-r5432 134.16 81.73 / 162.46 16.8 % 3.5 % 531.9 % 29.3 %

n50-d50-k22-m1-M4-r123 85.94 38.73 / 183.59 2.4 % 3.0 % 1075.2 % 43.2 %

n100-d20-k20-m1-M5-r53412 170.84 85.18 / 449.86 7.7 % 7.5 % 1096.5 % 66.3 %

n200-d20-k25-m1-M5-r54321 883.17 100.9121 / ∞ 1.8 % 3.7 % 696.1 % 65.3 %

Average 222.85 3.38 2.18 453.67 23.65

Table 5 Results on the trivial instances

Instances trivial f � Tabu(P ) GLS(P ) Greedy(P ) Descent(P )

n10-d50-k10-m3-M7-r42 16.2 0.0 % 0.0 % 0.0 % 0.0 %

n10-d80-k12-m3-M7-r123 9.92 0.0 % 0.0 % 0.0 % 0.0 %

n20-d50-k15-m3-M7-r532 25.88 0.0 % 0.0 % 0.0 % 0.0 %

n30-d50-k15-m2-M5-r32 19.2 0.0 % 0.0 % 0.0 % 0.0 %

n30-d50-k20-m3-M8-r543 26.45 0.0 % 0.0 % 0.0 % 0.0 %

n50-d50-k20-m3-M8-r312 45.39 15.1 % 0.0 % 0.0 % 0.0 %

n100-d20-k18-m2-M5-r532 50.3 1.8 % 0.0 % 0.0 % 0.0 %

n100-d50-k25-m2-M6-r432 40.84 254.7 % 58.7 % 0.0 % 0.0 %

n200-d20-k18-m2-M6-r432 112.31 46.8 % 2.8 % 0.0 % 0.0 %

n200-d50-k22-m2-M6-r643 89.55 293.6 % 176.3 % 0.0 % 0.0 %

Average 43.6 61.2 23.78 0.0 0.0

tion. Surprisingly, Descent(P ) solves all the instances as well. Not all the trivial instances
are solved by Tabu(P ) and GLS(P ) . This is due to the fact that those methods start with a
completely random solution. GLS(P ) outperforms Tabu(P ), probably because GLS(P ) can
be seen as a kind of tabu search with restarts (and with much more diversification potential).
For those particular instances, Tabu(P ) and GLS(P ) will of course find optimal solutions if
they start with at least a greedily constructed solution. However, especially for GLS(P ), ran-
dom starting points in the solution space are crucial ingredients for the method (particularly
from a diversification standpoint).

5.2.3 Single color instances

Large instances For the dsjc, flat and leighton instances, we have set the time limit to
60 minutes (which corresponds to the one used in Zufferey et al. 2012). The parameters
for Tabu(P ) and GLS(P ) have been set as described in Table 6. Results can be found in
Table 7. We report the name of the instance, the number n of vertices, the density d , the
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Table 6 Parameters used for the large single color instances

Instances Tabu(P ) GLS(P )

dscj, flat, leighton (τ1,N,K) = (50,0.2,0.5) it = 2 · 105, |M| = 6, E (M) = 3

Generated (τ,N,K) = (15,0.5,0.5) it = 2 · 105, |M| = 6, E (M) = 3

Table 7 Results on the large instances with a single color per vertex

Instance n d k f � Tabu(P ) GLS(P ) TabuDiv

DSJC1000.1 1000 10 13 183051 1.5 % 4.2 % 9.4 %

DSJC1000.5 1000 50 55 193379 1.8 % 1.3 % 21.7 %

DSJC1000.9 1000 90 149 117118 7.0 % 1.8 % 40.5 %

DSJC500.5 500 50 32 81257 2.3 % 4.6 % 11.0 %

DSJC500.9 500 90 84 51873 2.0 % 3.2 % 10.5 %

flat1000_50_0 1000 49 33 600245 0.6 % 0.9 % 8.1 %

flat1000_60_0 1000 49 40 401674 1.1 % 1.2 % 11.9 %

flat1000_76_0 1000 49 55 187837 2.2 % 1.5 % 23.4 %

flat300_28_0 300 48 19 57372 6.6 % 5.5 % 7.9 %

le450_15c 450 17 10 123022 1.7 % 3.2 % 5.4 %

le450_15d 450 17 10 123131 1.6 % 3.3 % 4.2 %

le450_25c 450 17 17 45927 13.5 % 2.4 % 19.0 %

le450_25d 450 17 17 44902 14.7 % 4.4 % 18.8 %

Average 4.4 % 2.9 % 14.8 %

allowed number k of colors, f � as usually defined, followed by the average result (over 10
runs) for Tabu(P ) and GLS(P ). Finally, TabuDiv indicates the average values (over 5 runs)
obtained by the tabu search proposed in Zufferey et al. (2012). Both our methods clearly
outperform TabuDiv. This is remarkable insofar that our methods were designed to solve
multi-coloring problem but seems to handle single coloring instances just as well. Both
Tabu(P ) and GLS(P ) perform about equally, except on the two leighton450_25 instances,
where GLS(P ) outperforms Tabu(P ).

Small instances For such generated instances, the time limit is set to n·k
2 seconds, which

roughly corresponds to half the CPU-times reported in Zufferey et al. (2012). As an example,
for the instance with n = 30 vertices to be colored with k = 8 colors, 120 seconds of CPU-
time were used. We used a tabu tenure of τ1 = 50 and we limit the neighborhood exploration
using N = K = 0.5. The average results (over 10 runs) can be found in Table 8. Note that we
only report the cases where one of our two metaheuristics (namely Tabu(P ) and GLS(P ))
did not produce the same objective function value as the basic tabu search proposed in
Zufferey et al. (2012), which we will name here TabuBasic. Results marked with † mean
that the median of all runs is the same as the result of TabuBasic (i.e. the same value was
obtained in at least 60 % of the runs). Results marked with ‡ mean that the same value as the
result of TabuBasic was obtained at least once. Bold results are better than those obtained
with TabuBasic. Italic results mark the best result among Tabu(P ) and GLS(P ). Results
with a � have been shown to be optimal by means of a commercial MIP-solver. We can
observe that for many of the larger generated instances, our methods found new best upper
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Table 8 Results on the small instances with a single color per vertex

k 2 3 4 5 6 7 8 9 10

n = 50 Tabu(P ) ‡7282 †5005 ‡3734 ‡2774 ‡2184

GLS(P ) †7268 †5004 †3689 †2738 †2148

f � 7268 5004 3680 2738 2148

TabuBasic 7268 5004 3680 2738 2148

n = 60 Tabu(P ) †26729 †10952 †7294 5754 ‡4181 ‡3273

GLS(P ) †26723 †10949 †7289 ‡5672 †4083 †3233

f � 26723 10944 7273 5635 4083 3194

TabuBasic 26723 10944 7273 5635 4083 3249

n = 70 Tabu(P ) †121075 †40015 ‡17579 ‡12325 ‡8886 ‡6479 5042

GLS(P ) †121072 †40017 ‡17577 ‡12337 †8794 6416 ‡4942

f � 121072 40015 17552 12304 8794 6405 4860

TabuBasic 121072 40015 17552 12304 8794 6428 4860

n = 80 Tabu(P ) †157895 †85365 †34294 ‡23711 16668 11675 ‡8317 6851

GLS(P ) †157858 †85387 †34365 †23665 16677 11555 †8273 6714

f � 157858 85365 34294 23597 16597 11546 8273 6648

TabuBasic 157858 85365 34294 23597 16692 11595 8273 6693

n = 90 Tabu(P ) †107039 †67018 †44092 †29635 †20712 15481 11771 8610

GLS(P ) †107077 ‡67131 †44175 †29695 ‡20911 15436 11844 8597

f � 107039 67012 44092 29635 20712 15325 11522 8533

TabuBasic 107039 67012 44092 29635 20712 15374 11816 8599

n = 100 Tabu(P ) †256048 †142070 †90039 †60588 42158 30494 22494 16612 12423

GLS(P ) †256040 †142300 †90157 ‡60842 42594 30690 22491 16755 12459

f � 256040 142070 90039 60588 42072 30428 22312 16467 12235

TabuBasic 256040 142070 90039 60588 42417 30544 22554 16552 12423

bounds and outperformed TabuBasic. On almost all other instances, our methods confirmed
in at least half of all runs the best upper bounds. On small instances, GLS(P ) obtained better
results than Tabu(P ). However, on larger instances, the situation is mostly reversed.

6 Conclusion

In this paper, we consider a job scheduling problem (P ) where for each job, we have to
assign its requested number of time periods, and preemptions are allowed. Assignment and
incompatibility costs have to be minimized over a given time horizon. This problem is dif-
ficult and is strongly connected with the multi-coloring problem. Two exact approaches are
first proposed: one designed for linear incompatibility costs, and one for the general case.
The exact approaches are mostly limited to 20 jobs, which indicates that (meta)heuristics are
necessary for larger instances. Various solutions methods are thus proposed to tackle (P ):
a greedy heuristic, a descent method, a tabu search and a genetic local search. The obtained
results showed that the genetic local search is the best method on the smaller instances (up
to 50 jobs), and tabu search is the best on the larger instances (from 100 jobs). In addition,
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these two methods outperform the ones proposed in Zufferey et al. (2012), where a single
time period has to be assigned to each job. Among the possible extensions, one can mention
the consideration of precedence constraints and other types of costs. There are also many
avenues of research in job scheduling under uncertainty.
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