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The Approximation and Computation of a Basis
of the Trace Space H 1/2
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We present a method for construction of an approximate basis of the trace
space H 1/2 based on a combination of the Steklov spectral method and a
finite element approximation. Specifically, we approximate the Steklov eigen-
functions with respect to a particular finite element basis. Then solutions of
elliptic boundary value problems with Dirichlet boundary conditions can be
efficiently and accurately expanded in the discrete Steklov basis. We provide
a reformulation of the discrete Steklov eigenproblem as a generalized eigen-
problem that we solve by the implicitly restarted Arnoldi method of ARPACK.
We include examples highlighting the computational properties of the proposed
method for the solution of elliptic problems on bounded domains using both
a conforming bilinear finite element and a non-conforming harmonic finite ele-
ment. In addition, we document the efficiency of the proposed method by
solving a Dirichlet problem for the Laplace equation on a densely perforated
domain.
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1. INTRODUCTION

The purpose of this paper is to present a technique for solving the elliptic
problem

−∇ · (a(x)∇u(x)) = 0 in Ω,

u = g on ∂Ω
(1.1)

by combining a finite element approximation of the elliptic operator with
the Steklov spectral method developed by Auchmuty [1]. As we will out-
line in Sec. 2, the solution can be represented in the form

u(x)=
∞∑

j=0

cju
j (x) with cj = (1+ δj )

∫

∂Ω

ρ(s)g(s)T uj (s) dS for j �0,

where
{(
δj , u

j
)}∞
j=0 denotes the family of eigenpairs for the Steklov

eigenproblem associated with (1.1). Here, T denotes the trace operator
H 1(Ω) �→H 1/2(∂Ω), and dS denotes the invariant infinitesimal surface ele-
ment. We assume the domain Ω is bounded and simply connected having
a Lipschitz boundary, and we restrict ourselves to the case Ω⊂R

2. In two
dimensions, dS represents the arc-length along the boundary ∂Ω.

For the sake of simplicity, we present our methodology only for the
harmonic Dirichlet problem, i.e., with the coefficient a= I, where I is the
identity matrix. The generalization of this approach to coefficients satisfy-
ing the following conditions is straightforward:

(i) a: Ω �→M2×2(R),a=aT ,a∈L∞(Ω, IR2×2),

(ii)
∑
i,j ai,j (x)ψiψj ��0 |ψ |2 for all ψ ∈ IR2, and for a.a. x ∈Ω,

(iii) |a(u, v)|��1 ‖u‖H 1(Ω) ‖v‖H 1(Ω).

Here a(·, ·) is the bilinear form corresponding to the weak form of the
differential operator appearing in (1.1). Futhermore, the Steklov spec-
tral method can be applied to problems with non-trivial right-hand sides
by using linearity (or superposition) and standard methods. We refer to
Auchmuty [1] for details.

The outline of this paper is as follows. In Sect. 2, we describe the
spectral representation of solutions to (1.1) using Steklov eigenfunctions, a
technique developed by Auchmuty [1]. In Sect. 3, we develop the discrete
Steklov spectral method using a finite element implementation. The dis-
crete Steklov eigenfunctions are written with respect to the finite element
basis, and the discrete Steklov eigenvalues solve a generalized eigenvalue
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problem. In Sect. 4, we present the discrete Steklov spectral method solu-
tion to (1.1) computed on the unit disk, and in Sect. 5, we present com-
putations performed on a highly perforated domain. Finally, in Sect. 6,
we discuss the potential advantages of using the discrete Steklov spectral
method and give some possibilities for future work.

2. STEKLOV EIGENPAIRS

Our approach to solving the elliptic problem (1.1) combines the infi-
nite dimensional Steklov spectral representation of the solution u(x) with
a finite dimensional finite element implementation. In this section, we
describe the spectral representation of u(x) with respect to Steklov eigen-
functions.

First, the harmonic Steklov eigenproblem for a domain Ω is defined
to be that of finding non-trivial solutions (δ, u) of the system

−�u(x) = 0, x ∈Ω,
∇u(s) ·n(s) = δρ(s)u(s), s ∈ ∂Ω, (2.1)

where ρ ∈ L∞(∂Ω) is positive on ∂Ω and satisfies
∫
∂Ω
ρ(s) dS = 1. The

value δ is the harmonic Steklov eigenvalue, and the function u is the corre-
sponding eigenfunction. The weak form of (2.1) is to find non-trivial (δ, u)
in IR×H 1(Ω) satisfying

∫

	

∇u(x) ·∇v(x) dx− δ
∫

∂Ω

ρ(s)u(s)v(s) dS=0, ∀v∈H 1(Ω). (2.2)

We observe that δ0= 0 is a simple eigenvalue of (2.2) with the associated
eigenfunction u0≡1. Furthermore, substituting v=u in (2.2), demonstrates
that the harmonic Steklov eigenvalues are positive.

Auchmuty [1] proves that there exists a countable increasing sequence
of eigenvalues with the property that each eigenvalue δj has finite multi-
plicity and δj→∞ as j→∞. The j th eigenpair (δj , uj ) of (2.1) is con-
structed using the variational principle

γj
def= sup

u∈Bj

∫

∂Ω

ρ(s)(T u(s))2 dS, (2.3)

where

Bj =
{
u∈H 1(Ω) :

∫

Ω

|∇u(x)|2 dx+
∫

∂Ω

ρ(s) (T u(s))2 dS�1 and
∫

∂Ω

ρ(s)T u(s) T uk(s) dS=0 for 0�k<j
}
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is a unit ball of H 1(Ω)-functions which are orthogonal to the first j
eigenfunctions. The eigenfunction uj (x) is the maximizer of (2.3) and the
corresponding eigenvalue satisfies

δj = 1
γj
−1 for j �0. (2.4)

This family of eigenfunctions
{
uj
}∞
j=0 is orthogonal with respect to the

boundary inner product

〈u, v〉ρ def=
∫

∂Ω

ρ(s)T u(s)T v(s) dS (2.5)

and orthonormal with respect to the F-inner product

F(u, v) def=
∫

Ω

∇u(x) ·∇v(x) dx+
∫

∂Ω

ρ(s)T u(s)T v(s) dS, (2.6)

which is equivalent to the inner product on H 1(Ω), [1].

Lemma 2.1. Let
{(
δj , u

j
)}∞
j=0 denote the family of eigenpairs for the

Steklov eigenproblem (2.1). Then

〈uj , uk〉ρ =
∫

∂Ω

ρ(s)T uj (s)T uk(s) dS= 1
1+ δj δjk (2.7)

and

F(uj , uk)=
∫

Ω

∇uj (x) ·∇uk(x) dx+
∫

∂Ω

ρ(s)T uj (s)T uk(s) dS= δjk. (2.8)

The proof of this lemma is straightforward and left to the reader. We
point out that, according to Lemma 2.1, the eigenfunctions are orthonor-
mal with respect to the F-inner product on H 1(Ω), but they are merely
orthogonal on the boundary ∂Ω. However, with a simple scaling of the
eigenfunctions, we can achieve orthonormality on the boundary while sac-
rificing the orthonormality in the interior. Namely, let us rescale each
eigenfunction uj by

√
1+ δj , and let us define vj (x)=√1+ δj uj (x). Then

it is easy to show that

〈vj , vk〉ρ = δjk
and

F(vj , vk)= δjk

(1+ δj ) .
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We will see in the next section, that the computed discrete eigenfunc-
tions are orthonormal on the boundary ∂Ω, and we are careful to dis-
tinguish between the computed eigenfunctions {vjh} and the corresponding
eigenfunctions {ujh} that are orthonormal in the interior of Ω. The dif-
ference in orthonormality arises from the construction of the eigenfunc-
tions, and essentially, one is free to choose between F-orthonormality and
ρ-orthonormality.

In the context of this section, it is the F-orthonormality of the eigen-
functions {ujh} that provides the link between the Steklov eigenvalue prob-
lem (2.1) and the elliptic problem (1.1), as we discuss presently. Let us
denote by HF (Ω) the subspace of H 1(Ω) that is F-orthogonal to H 1

0 (Ω).
Then we obtain the decomposition

H 1(Ω)=H 1
0 (Ω)⊕F HF (Ω).

The fundamental result upon which the Steklov spectral method is based
is that the F-orthonormal harmonic Steklov eigenfunctions

{
uj
}∞
j=0 pro-

vide a basis for the space HF (Ω) [Theorem 7.3, [1]].
Returning to the elliptic problem (1.1), the weak form reads as fol-

lows: find u∈H 1(Ω), u=g on ∂Ω in the sense of traces, such that

∫

	

∇u(x)∇ϕ(x) dx=0, ∀ϕ ∈H 1
0 (Ω).

In other words, u∈H 1(Ω) satisfies

F(u, ϕ)=0, ∀ϕ ∈H 1
0 (Ω).

Hence, the solution u is in HF (Ω), and we can represent u in terms of the
Steklov HF (Ω)-basis. We point out that the trace space H 1/2(∂Ω) consists
of all functions g for which this weak formulation has a solution. Since
the trace of the solution u∈HF (Ω) is equal to g∈H 1/2(∂Ω), we can iden-
tify H 1/2(∂Ω) with HF (Ω). Furthermore, the Steklov eigenfunctions pro-
vide a basis for H 1/2(∂Ω) in the sense of traces.

Now, we represent the solution u(x) in terms of the Steklov HF (Ω)-
basis functions as follows:

u(x)=
∞∑

i=0

cju
j (x) (2.9)
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for some coefficients cj yet to be determined. By the compactness of the
trace operator T , the trace of u on ∂Ω is given by

T u=
∞∑

j=0

cjT u
j . (2.10)

Multiplying (2.10) by ρT uk and integrating over ∂Ω yields, in view of the
orthogonality (2.7), the following formula for the coefficients cj

cj = (1+ δj )〈g,T uj 〉ρ for j �0. (2.11)

At this point we have a complete expression for the Steklov spectral rep-
resentation of the solution u(x) to the elliptic problem (1.1). We summa-
rize the above exposition in the following theorem (see also Auchmuty
[Theorem 9.1, 1]).

Theorem 2.2. Let us consider the elliptic problem (1.1) with the coef-
ficient a= I. Let

{(
δj , u

j
)}∞
j=0 denote the family of eigenpairs for the Stek-

lov eigenproblem (2.1). Then problem (1.1) is uniquely solvable if and
only if

∞∑

j=0

(
1+ δj

)2
(∫

∂Ω
ρ(s)g(s)T uj (s) dS

)2

<∞. (2.12)

Moreover, the solution is given by

u(x)=
∞∑

j=0

cju
j (x) with cj = (1+ δj )

∫

∂Ω
ρ(s)g(s)T uj (s) dS for j �0.

(2.13)

In addition, let um
def=

m∑
j=0

cju
j (x). Then

‖u−um‖L2(∂Ω),ρ � (1+ δm+1)
−1/2 ‖g‖H 1/2(∂Ω),ρ , (2.14)

where δm+1 is the m+1-st Steklov eigenvalue. Finally, we have

‖u−um‖H 1(Ω)→0+ (2.15)

as m→+∞.
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Proof. The representation formula (2.13) was developed in the above
outline of the theory. It is easy to show that ‖u‖2F =

∑∞
j=0 c

2
j using the

F-orthonormality of the eigenfunctions. Now, applying Parseval’s theorem
yields

‖u‖2F =
∞∑

j=0

(
1+ δj

)2 ∣∣∣〈g,T uj 〉ρ
∣∣∣
2
.

The solvability criterion (2.12) follows since the F-norm is equivalent to
the H 1-norm.

We note that (2.12) is a criterion that the boundary data g must sat-
isfy in order for the elliptic problem (1.1) to have a solution. Therefore
(2.12) provides a specific condition for a function g to be in the trace
space H 1/2(∂Ω), and we define the norm of H 1/2(∂Ω) by

‖g‖2
H 1/2(∂Ω),ρ

def=
∞∑

k=0

(1+ δk)2
(∫

∂Ω

ρ(s)g(s)T uk(s) dS

)2

. (2.16)

In addition, the L2(∂Ω) norm can be written as

‖g‖2
L2(∂Ω),ρ

=
∞∑

k=0

(1+ δk)
(∫

∂Ω

ρ(s)g(s)T uk(s) dS

)2

. (2.17)

The expression above is obtained directly by taking the L2-norm of the
spectral representation (2.9).

We now turn our attention to the truncation error estimate. We have

u(x)−um(x) =
∞∑

j=m+1

cju
j (x)

=
∞∑

j=m+1

(1+ δj )
∫

∂Ω

ρ(s)g(s)T uj (s) dS uj (x). (2.18)

In view of the orthogonality property (2.7), the expression (2.18), and
since the eigenvalues are increasing, we obtain
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‖u−um‖2L2(∂Ω),ρ

=
∫

∂Ω

ρ(s) (u−um)2 (s) dS

=
∞∑

k,j=m+1

(1+ δj )(1+ δk)
∫

∂Ω

ρ(s)uj (s)uk(s) dS

∫

∂Ω

ρ(s)g(s)T uj (s) dS

×
∫

∂Ω

ρ(s)g(s)T uk(s) dS

� 1
1+ δm+1

∞∑

k=m+1

(1+ δk)2
(∫

∂Ω

ρ(s)g(s)T uj (s) dS

)2

� 1
1+ δm+1

‖g‖2
H 1/2(∂Ω),ρ

.

The convergence result (2.15) follows from the expression for the H 1-norm
in terms of the Steklov spectra. Namely,

‖u−um‖2H1(Ω)
�C ‖u−um‖2F =

∞∑

j=m+1

c2
j

=
∞∑

j=m+1

(1+ δj )2
(∫

∂Ω
ρ(s)g(s)T uj (s) dS

)2

.

(2.19)

Since the last expression in (2.19) is the remainder of the H 1/2(∂Ω)-norm
of g which is finite, we have

∞∑

j=m+1

(1+ δj )2
(∫

∂Ω

ρ(s)g(s)T uj (s) dS

)2

→0+ as m→+∞.

The proof is completed. �

3. FINITE ELEMENT IMPLEMENTATION

In this section, we derive the discrete Steklov spectral method by
combining the Steklov spectral method of Sec. 2 with a finite element
approximation. First, we will define two different finite element spaces
that will be considered in this paper. Then in Sec. 3.1, we show that
the discrete Steklov eigenfunctions, which are written with respect to the
finite element basis, solve a discrete generalized eigenvalue problem, and
in Sec. 3.2, we develop a compact formula for the expansion coefficients.
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In Sec. 3.3, we prove that the eigenfunctions obtained from the gener-
alized eigenproblem satisfy a discrete version of the variational princi-
ple (2.3). Finally, in Sec. 3.4, we explain why the number of discrete
eigenpairs that can be obtained depends on the mesh size h of the
discretization.

For the purposes of this paper, we consider two different finite ele-
ment approximations for the elliptic problem (1.1): a conforming bilinear
approximation and a non-conforming harmonic approximation. First, we
prescribe a rectangular partition τh of the domain Ω, assumed to have a
polygonal boundary. Let the parent element be the rectangle R def= [a− r,
a+ r]× [b− s, b+ s] with center (a, b) and edge lengths 2r and 2s. Then
the finite element space for the bilinear approximation is given by

VQ1
def=
{
vh ∈H 1(Ω) : vh

R
∈ span {1, x, y, xy} ,

×∀R∈ τh; vh is continuous at mesh vertices
}
.

The finite element space for the non-conforming harmonic approximation
studied by Klouček et al. [11] is given by

VPh
def=
{
vh ∈L2(Ω) : vh

R
∈ span

{
1, x, y,

(x
r

)2−
(y
s

)2
}
, ∀R∈ τh;

∫

F

vh
R′
dS=

∫

F

vh
R′′
dS, ∀ faces F = ∂R′ ∩ ∂R′′ �=∅, R′,R′′ ∈ τh

}
.

For a definition of the usual norm and seminorm for the space VPh , see
Klouček et al. [11].

For simplicity of notation, we use Vh to denote either of the finite ele-
ment spaces VQ1 or VPh when a distinction between the two spaces is not
required. Then we will say Vh is an Nh-dimensional space with basis func-
tions

{
φj (x)

}Nh
j=1. In addition, we define the boundary layer of the partition

τh to be the index set of basis functions having non-trivial support on ∂Ω.
We denote this index set by Jb and define Mh

def= dim Jb. For the finite ele-
ment space VQ1 , we have

Jb={i : the vertex xi ∈ ∂Ω},

whereas for VPh ,

Jb={i : the face Fi ∈ ∂R for some element R∩ ∂Ω �=∅}.
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For convenience, we can renumber the basis functions so that Jb =
{1, . . . ,Mh}. The dimension of the boundary layer becomes relevant when
we consider the number of discrete eigenfunctions that can be obtained for
a particular mesh size h, a topic we discuss in depth in Sec. 3.4.

The objective of this paper is to find an approximate solution uh(x)

to the elliptic problem (1.1) using discrete Steklov eigenfunctions. First we
obtain the discrete Steklov eigenfunctions {ujh} by solving the discrete ver-
sion of the Steklov weak formulation (2.2). Then we represent the solution
uh of (1.1) as an expansion of discrete eigenfunctions in a manner similar
to that described in Theorem 2.2. We call this technique the discrete Stek-
lov spectral method, and we describe this method in detail throughout the
following sections.

3.1. The Generalized Eigenvalue Problem

Recall from Sec. 2 that the Steklov eigenpair {δj , uj } solved the
weak formulation (2.2) of the Steklov eigenproblem (2.1). Furthermore,
the eigenfunctions satisfied the orthogonality condition (2.7). Similarly, we
define the discrete Steklov eigenpair {δjh, ujh} to solve the discrete weak
formulation

∫

Ω

∇ujh(x) ·∇vh(x) dx− δjh
∫

∂Ω

ρ(s) u
j
h(s) vh(s) dS=0, ∀vh ∈Vh (3.1)

and satisfy the orthogonality condition

∫

∂Ω

ρ(s) T u
j
h(s) T u

k
h(s) dS=

δjk

1+ δjh
. (3.2)

We represent the discrete eigenfunction u
j
h ∈Vh with respect to the finite

element basis of Vh. That is,

u
j
h(x)=

Nh∑

i=1

q
j
i φi(x), (3.3)

where qj =
{
q
j
i

}Nh
i=1

is the coordinate vector of ujh. Now, substituting (3.3)
into the weak formulation (3.1) and testing by each basis function φi(x),
we obtain the following linear system of equations:

Aqj − δjhBqj =0, (3.4)
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where A and B are Nh×Nh matrices defined by

Aij =
∫

Ω

∇φi(x) ·∇φj (x) dx and Bij =
∫

∂Ω

ρ(s) T φi(s) T φj (s) dS.

We note that both A and B are sparse matrices. Moreover, rank(B)=Mh

since the ith row of B is non-zero only if i ∈Jb. Finally, Eq. (3.4) can be
written in the form of a generalized eigenproblem as follows:

AQ=BQD. (3.5)

Here, Q is an Nh×Mh matrix, where the j th column of Q is the coordi-
nate vector qj corresponding to the j th discrete eigenfunction ujh. In addi-
tion, D is a diagonal matrix such that Djj = δjh.

The advantage to the generalized eigenproblem formulation is that
we can compute the dominant portion of the spectrum and all the cor-
responding eigenvectors simultaneously by application of the Implicitly
Restarted Arnoldi Method [16]. In practice, we solve (3.5) using the AR-
PACK library1 written by Lehoucq et al. [13]. Specifically, given matrices
A and B as input, ARPACK outputs the eigenvalue matrix D, and an
eigenfunction matrix Q̃ that differs from Q in the scaling of the
eigenfunctions.

The difference in scaling between the Q- and Q̃-eigenfunctions is tied
directly to the orthogonality of eigenfunctions. A feature of ARPACK
is that the eigenfunctions it produces satisfy the orthogonality condition
Q̃T BQ̃= I . Therefore, if we define the discrete eigenfunction

v
j
h(x)

def=
Nh∑

i=1

q̃
j
i φi(x)

then v
j
h satisfies

(
q̃j
)T
Bq̃k=

∫

∂Ω

ρ(s) T v
j
h(s) T v

k
h(s) dS= δjk.

In order to obtain compatibility between vjh and the desired eigenfunction
u
j
h that satisfies (3.2), we apply the scaling

u
j
h(x)=

1√
1+ δjh

v
j
h(x).

1The software is available at www.caam.rice.edu/software/ARPACK/
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This distinction between the computed eigenfunction v
j
h and the discrete

counterpart ujh of the eigenfunctions described in Sec. 2 also affects the
way we compute the coefficients for the expansion of uh using Steklov
eigenfunctions, as we discuss now.

3.2. Calculation of the Expansion Coefficients

As stated, our overall goal in this paper is to approximate the solu-
tion uh(x) of the elliptic problem (1.1) using discrete Steklov eigenfunc-
tions. Namely, we write

uh(x)=
Mh∑

j=1

cju
j
h(x), (3.6)

where each eigenfunction u
j
h satisfies the orthogonality condition (3.2).

Just as in Sec. 2, the coefficients in Eq. (3.6) are given by the formula

cj = (1+ δjh)
∫

∂Ω

ρ(s) g(s) T u
j
h(s) dS.

Maintaining the convention that vjh is an approximate eigenfunction and

v
j
h(x)=

√
1+ δjh ujh(x), we may write

uh(x) =
Mh∑

j=1

cj√
1+ δjh

v
j
h(x)=

Mh∑

j=1

√
1+ δjh

∫

∂Ω

ρ(s) g(s) T u
j
h(s) dS

=
Mh∑

j=1

∫

∂Ω

ρ(s) g(s) T v
j
h(s) dS=

Mh∑

j=1

wjv
j
h(x).

Therefore, the expansion coefficients with respect to the calculated eigen-
functions are defined by

wj =
∫

∂Ω

ρ(s) g(s) T v
j
h(s) dS. (3.7)

We now develop a compact formula for the coefficient wj that does not
require any integration.

We see that the expansion coefficients depend on the Dirichlet bound-
ary data g of the elliptic problem. First, we compute the projection of g
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onto the finite element space Vh. That is, we write

gh(s)=
Mh∑

i=1

Giϕi(s), (3.8)

where G = {Gi}Mh

i=1 is the coordinate vector for gh(s). In other words,
the Dirichlet boundary datum for the finite element discretization is not
obtained by an interpolation of g but rather by the L2-projection of g
onto the trace space of the considered finite element space.

Without loss of generality, we have assumed that the Mh degrees of
freedom (vertices or faces) in the boundary layer are indexed 1, . . . ,Mh.
Based on this convention, we define B̃ to be the Mh×Mh submatrix of
B consisting of all non-zero rows and columns of B, i.e., B̃=B(1 :Mh,1 :
Mh). Now multiplying both sides of Eq. (3.8) by φj and integrating over
∂Ω, we obtain

Fj
def=
∫

∂Ω

ρ(s) g(s) T φj (s) dS=
Mh∑

i=1

Gi

∫

∂Ω

ρ(s) T φi(s) T φj (s) dS= B̃(j, :)G

for j =1, . . . ,Mh. We can now solve the system of equations F = B̃G for
the coordinate vector G. We note that the matrix B̃ is invertible since
xT B̃x is the discrete inner product corresponding to 〈·, ·〉ρ .

Referring back to formula (3.7), we can now write the vector of coef-
ficients W ={wj

}Mh

j=1 in the form

W =GT B̃Q̃T .

Here Q̃ is the eigenfunction matrix produced by ARPACK, and Q̃T is
defined to be the submatrix Q̃(1:Mh,1:Mh). Essentially, Q̃T represents the
trace of Q̃ on the boundary ∂Ω in the discrete sense. Finally, we arrive at
the discrete Steklov spectral expansion

uh(x)=
Mh∑

j=1

Nh∑

i=1

wj q̃
j
i φi(x) (3.9)

that solves the Laplace equation with Dirichlet boundary function g.

3.3. The Discrete Variational Principle

In this section, we make the connection between the discrete
Steklov eigenfunctions calculated in Sec. 3.1 and the variational principle
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(2.3) used to calculate the classical Steklov eigenfunctions in Sec. 2. We
define the discrete version of the space Bj by

Bjh
def=
{
u
j
h(x)=

Nh∑

i=1

q
j
i φi(x) :

(
qj
)T
Aqj +

(
qj
)T
Bqj �1 and

(
qj
)T

Bqk=0 for 0� j <k�dim Jb
}
.

Then we have the following result.

Lemma 3.1. Let the discrete Steklov eigenpair
{(
δj , q

j
)}

be given by
the solution of the generalized eigenproblem

AQ=BQD,

where the j th eigenvector qj is the j th column of Q. Then the eigenfunc-
tion u

j
h(x)=

∑Nh
i=1 q

j
i φi(x) maximizes the discrete variational principle

γj
def= max

uh∈Bjh

∫

∂Ω

ρ(s) uh(s)
2 dS (3.10)

and γj = 1
1+δj . Furthermore, if the eigenvectors are scaled so that

(
qj
)T
Bqj = 1

1+ δj

then the eigenpair
(
δj , u

j
h

)
satisfies the orthogonality condition (3.2) for

0� j <k�Mh.

In order to prove Lemma 3.1, we need two simple results.

Lemma 3.2. Let A, B ∈ IRn×n be symmetric, where B be positive
semi-definite, and assume that A+ σB is a regular pencil. Furthermore,
suppose that the pair (A,B) has k finite generalized eigenvalues collected
in the diagonal matrix � and that

AQ=BQ�, (3.11)

where the corresponding eigenvectors form the columns of the matrix Q.
Then the matrix QTBQ is diagonal and positive definite.
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Proof. Since B is a semi-definite matrix, there exists a factorization
B=LLT , where L∈ IRn×m is some rectangular matrix of rank m�n. We
assume that A+σB is a regular pencil. Therefore, there exists a scalar σ0
such that A+σ0B is non-singular. It follows from (3.11) that

(A+σ0B)Q=BQ(�+σ0I ) .

The matrix �+ σ0I must be non-singular since A+ σ0B is non-singular.
Thus, we may write

Q(�+σ0I )
−1= (A+σ0B)

−1LLTQ (3.12)

and then, multiplying both sides by LT , we obtain

(
LTQ

)
(�+σ0I )

−1= (LT (A+σ0B)
−1L

)
LTQ.

Equation (3.12) may be used to verify that none of the columns of
LTQ are zero, and therefore, the columns of the matrix LTQ are ei-
genvectors of the symmetric matrix

(
LT (A+σ0B)

−1L
)
. Consequently,(

LTQ
)T (

LTQ
)=QTLLTQ=QTBQ must be a diagonal matrix. More-

over, βj = eTj QT BQej =‖LTQej‖2>0. �

Lemma 3.3. Assume that the first hypothesis of Lemma 3.1 holds.
In addition, assume that the columns of Q have been normalized so that
QTBQ= I . Then, the eigenvectors qi =Q(:, i) obey

qi =argmin
{
qT Aq+qT Bq |qT Bq=1, qT Bqj =0, 1� j < i

}
. (3.13)

In particular (3.13) yields

γi = 1
1+δi =max

{
qT Bq |q ∈Bi} , where,

Bi def= {q ∈ IRn |qT Aq+qT Bq�1, qT Bqj =0, 1� j < i
}
.

(3.14)

Proof. Since A + B is a symmetric positive definite matrix, there
exists a non-singular matrix L such that A+B=LLT . Thus, AQ=BQD
can be written in the following form:

(A+B)Q = BQ(I +D),
LLTQ = BL−T (LTQ)(I +D),

(LTQ)(I +D)−1 = (L−1BL−T )(LTQ).
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Hence, the columns of LTQ are eigenvectors of the symmetric positive
semi-definite matrix L−1BL−T with corresponding eigenvalues γi = 1

1+δi .
We define � to be the diagonal matrix with �ii = γi and we define the
matrix Z as Z=LTQ. It is well known that

L−1BL−T =Z�ZT ,
where ZT Z= I . Moreover, using the Courant–Fischer minimax principle
we have

γ1=max
z �=0

zT L−1BL−T z
zT z

= max
q �=0

qT Bq

qT LLT q

and

γi = max
z �=0

zT zj=0, j<i

zT L−1BL−T z
zT z

= max
q �=0

qT LLT qj=0, j<i

qT Bq

qT LLT q
.

Since LLT =A+B, it follows that

γi = max
{
qT Bq |qT (A+B)q=1, qT Bqj =0, 1� j < i

}

= max
{
qT Bq |qT Aq+qT Bq�1, qT Bqj =0, 1� j < i

}
, (3.15)

which proves (3.14). The eigenvector corresponding to γi is obtained as
follows:

qi = argmax
q �=0

qT LLT qj=0, j<i

qT Bq

qT LLT q
= argmax

q �=0
qT (A+B)qj=0, j<i

qT Bq

qT (A+B)q

= argmin
q �=0

qT (A+B)qj=0, j<i

qT (A+B)q
qT Bq

. (3.16)

The result (3.13) follows directly from the last part of (3.16). �

Proof. (Of Lemma 3.1) First, we note that

max
uh∈Bjh

∫

∂Ω

ρ(s) uh(s)
2 dS

=max
q∈Bj

Nh∑

i,k=1

qiqk

∫

∂Ω

ρ(s)φi(s) φk(s) dS=max
q∈Bj

qT Bqj .
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It follows from Lemma 3.3 that the maximum value above is γj = 1
1+δj and

that the maximizer is the eigenfunction corresponding to the eigenvector
qj . That is,

u
j
h(x)=

Nh∑

i=1

q
j
i φi(x)

maximizes (3.10).
Referring to the orthogonality condition (3.2), we have

∫

∂Ω

ρ(s)T u
j
h(s)T u

k
h(s) dS=

Nh∑

l,m=1

q
j
l q

k
m

∫

∂Ω

ρ(s)φj (s)φk(s) dS=
(
qj
)T
Bqk.

It follows from Lemma 3.2 that QTBQ is a diagonal matrix. Therefore,
under the scaling assumption made

(
qj
)T
Bqk= δjk

1+ δj
yielding the desired orthogonality condition. �

3.4. Dimension of the Discrete Eigenspace

We conclude this section by explaining why there are only Mh =
dim Jb discrete Steklov eigenpairs for a given mesh size h. This assump-
tion has been implicit in the formulation described above.

Lemma 3.4. The generalized eigenvalue problem

AQ=BQD (3.17)

has at most Mh eigenvectors corresponding to finite eigenvalues. In other
words, there exist only Mh discrete Steklov eigenvectors.

Proof. The matrix B is symmetric and clearly has rank at most
Mh. �

The conclusion we draw from Lemma 3.4 is that since B is massively
rank deficient, the generalized variational principle in terms of the Ray-
leigh quotient must read

δj = max
qT Bqi=0

i=1,2,... ,j�Mh
q /∈N(B)

qT Aq

qT Bq
.
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Thus, once we obtain a basis of IRNh \N(B) in terms of generalized
eigenvectors, any additional eigenvalue will be unbounded. We note that
the implicitly restarted Arnoldi method used in ARPACK correctly builds
a basis for the complement of N(B). We provide a few algorithmic details
for this process here.

First we note that the implicitly restarted Arnoldi method will con-
verge more quickly to eigenvalues that are large and well separated. How-
ever, we are interested in computing the Steklov eigenvalues starting with
the smallest and working up. For this reason, we use the shift-invert
mode of ARPACK. For the choice of shift σ =−1, the shifted generalized
eigenvalue problem becomes (A+B)Q=BQ�. The relation between the
computed eigenvalue γi of the shifted problem and the desired Steklov
eigenvalue δi of the original problem is

γi = 1
1+ δi .

Therefore, when δi is small, γi is large. The consequence is that ARPACK
can compute the Steklov eigenvalues more quickly by operating on the
shifted problem.

Furthermore, since B is expected to have a very large null space, it is
important numerically to take care that the eigenvector basis is not cor-
rupted due to a round-off error excitation of this null space. ARPACK
operated in the shift-invert mode will automatically deal with this prob-
lem. First, the starting vector for the Arnoldi process is forced to lie in
the range of the operator (A+B)−1B through multiplication v1← (A+
B)−1Bv. This assures all components along null space directions of B have
been annihilated.

However, during the course of the implicitly restarted Arnoldi process,
round-off can still creep in and corrupt the basis vectors. On convergence,
this process will produce a k step Arnoldi factorization

(A+B)−1V =VH +f eTk ,

where H is k× k upper Hessenberg, V T BV = Ik and ek is the kth canon-
ical unit vector of length k. Forcing V T BV = Ik requires multiplication of
the basis vectors by B and hence serves to continually purge components
in the null space of B.

In order to compute k eigenvalues ARPACK typically requires space
for around 2k Arnolodi basis vectors. Thus storage is 2nk plus a few
workspace vectors of length n. If the number of basis vectors is exactly
2k then the following describes the computational complexity in terms of
floating point operations (flops) for one major iteration of ARPACK:
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(1) There are k linear solves (A+B)w=v costing roughly 4nz flops
where nz is the number of non-zeros in the sparse Cholesky
factor L where A+B=LLT .

(2) To expand the Arnoldi basis from k to 2k in the implicitly
restarted Arnoldi scheme requires 6nk2+O(n) flops.

(3) To contract the basis while keeping the best approximations to
desired eigenvalues requires 4nk2+O(k3) flops.

Thus, the total cost is on the order of 10nk flops plus k linear system
solves per major iteration. The Cholesky factorization (A+B)=LLT is
done only once during the entire computation. In these computations, n=
Nh and k =Mh, and convergence typically requires around 10–20 major
iterations.

As a final step, the approximate eigenvectors are “purified” using a
scheme suggested by Ericsson and Ruhe [8]. If Hy = yν is an eigenpair
for H , an initial approximate generalized eigenpair for (A,B) is given by

x=Vy and δ= 1
ν
−1 with approximation error Ax−Bxδ=−(A+B)f eTk y

ν
.

This can be improved as follows. Take x̂= x+ f eTk y
ν

’ to be the improved
eigenvector approximation. Then it is easily shown that

Ax̂−Bx̂δ=−Bf e
T
k y

ν2
.

Since ν is typically much larger than one, this gives a far more accurate
answer and has the numerical effect of purging components along the null
space of B from the eigenvector approximation.

We end this section with the observation that the number of available
discrete eigenpairs, which is determined by the dimension of the bound-
ary layer, is dependent on the finite element space used. We recall that for
the bilinear finite element space VQ1 , Mh is given by the number of verti-
ces on ∂Ω. In contrast, for the non-conforming finite element space VPh ,
Mh is given by the number of element faces in the boundary layer. There-
fore, we can obtain more discrete eigenfunctions with the non-conforming
finite element space VPh . Moreover, the boundary error estimate (2.14)
indicates that the more eigenpairs we can afford to construct the better
approximation results we can expect. Of course, this advantage is offset
by the O(h)-approximation capabilities of the non-conforming approxima-
tion. This interplay between the mesh size h of the discretization and the
number of eigenfunctions computed for the spectral representation plays
a key role in determining the approximation error for the elliptic problem.
We explore this idea more fully in the computational sections of the paper.
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4. STEKLOV EIGENPAIRS ON THE UNIT DISK

For a general domain Ω it is usually not possible to determine an
analytic representation of the Steklov eigenpairs satisfying (2.1). However,
in the case of the unit disk, such an analytic representation does exist,
as we describe in Sec. 4.1. Consequently, we have a unique opportunity
to compare our computations from the discrete Steklov spectral method
to the actual Steklov eigenpairs on the unit disk. In Sec. 4.2, we pres-
ent computations performed on the unit disk. We show that the discrete
eigenfunctions exhibit the same qualitative behavior as the analytic eigen-
functions, and we demonstrate the success of the discrete Steklov spectral
method in approximating the solution of the elliptic problem (1.1). Finally,
in Sec. 4.3, we develop an error estimate for the discrete eigenfunctions
computed on the unit disk. This in turn leads to an error estimate for
the discrete Steklov spectral method. This second estimate is fundamental
in that it incorporates both the spatial discretization error and the error
resulting from a truncation in the spectral representation.

4.1. Analytic Eigenpairs

In the case of the unit disk, the Steklov eigenfunctions and eigen-
values can be computed using spherical harmonics (see Groemer [9] for
details). For simplicity, we assume that ρ(s) is normalized to be constant.
The requirement that

∫
∂Ω
ρ(s) dS = 1 dictates that ρ(s)≡ 1

2π on the unit
circle. We will maintain this value of ρ for the remainder of Sec. 4. It fol-
lows that δ0 = 0 is a simple eigenvalue with corresponding eigenfunction
u0=1. For k�1, the Steklov eigenvalues occur in pairs, satisfying

δ2k−1= δ2k=2πk. (4.1)

The corresponding eigenfunctions, in polar coordinates, are

u2k−1(r, θ) =
√

2√
1+2πk

rk sin (kθ) and (4.2)

u2k(r, θ) =
√

2√
1+2πk

rk cos (kθ). (4.3)

It is a simple matter to check that the eigenfunctions defined in (4.2) and
(4.3) satisfy the theoretical properties outlined in Sec. 2.

First, we note that the Laplacian in polar coordinates is given by

�r,θu
k(r, θ)= 1

r

∂

∂r

(
r
∂uk

∂r
(r, θ)

)
+ 1
r2

∂2uk

∂θ2
(r, θ).
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The gradient operator in polar coordinates is defined to be

∇r,θuk(r, θ)=
(
∂uk

∂r
(r, θ),

1
r

∂uk

∂θ
(r, θ)

)T

and the unit normal vector for the unit circle is n(θ)= (1, θ)T . At this
point, it is easy to verify that the given eigenfunctions do indeed satisfy
the Steklov eigenproblem (2.1). Similarly, the weak form of the Steklov
eigenvalue problem on the unit disk reads

∫ 1

0

∫ 2π

0
r∇r,θuk(r, θ) ·∇r,θϕ(r, θ) dθ dr− δk

2π

∫ 2π

0
uk(1, θ) ϕ(1, θ) dθ =0,

for all ϕ ∈H 1(B(0,1)).

We point out that functions in H 1(B(0,1)) are defined to be periodic in
θ and have periodic first derivatives, a property which we used in deriving
the weak formulation.

Finally, one can show that the eigenfunctions on the unit disk satisfy
the orthogonality conditions stated in Lemma 2.1. It is worth noting that
the eigenfunctions defined by (4.2) and (4.3) are orthogonal on the bound-
ary ∂Ω and orthonormal on the interior of Ω. In contrast, if we scale the
kth eigenfunction by

√
1+ δk, then we obtain the eigenfunctions

v2k−1(r, θ)=
√

2 rk sin (kθ) and v2k(r, θ)=
√

2 rk cos (kθ).

As previously mentioned, these scaled eigenfunctions are orthonormal on
the boundary and orthogonal in the interior.

We make a final note that the analytic form of the Steklov eigen-
pairs presents a simple alternative to the use of Bessel functions. It is well
known that Bessel functions are eigenfunctions of the Laplacian on the
unit disk [14]. However, the Bessel functions are relatively difficult to enu-
merate compared to the Steklov eigenfunctions presented here.

4.2. Computations on the Unit Disk

In this section, we present computational results of the discrete Stek-
lov spectral method on the unit disk. To begin, we partition the domain
Ω=B(0,1) into quadrilaterals as shown in Fig. 1(a). The partition shown
contains 1280 quadrilaterals, 1313 vertices, and 64 boundary vertices.
Hence, there exist 64 discrete Steklov eigenfunctions based on the bilinear
approximation, and there exist 256 discrete eigenpairs using the noncon-
forming harmonic approximation.
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Fig. 1. (a) Partitioning of the unit disk. The partition contains 1280 quadrilaterals, 1313
vertices, and 64 boundary vertices. (b) The yellow curve represents the first 100 discrete
eigenvalues computed using the non-conforming harmonic approximation. The gray curve
corresponds to the first 20 eigenvalues computed on a coarser mesh.

We compute the discrete eigenvalues by using ARPACK to solve
the generalized eigenvalue problem described in Sec. 3. Fig. 1(b) shows
the discrete eigenvalues computed with respect to the non-conforming
harmonic approximation. The yellow curve corresponds to the first 100
eigenvalues computed on the mesh shown in Fig. 1(a). The gray curve
corresponds to the first 20 eigenvalues computed on a coarser mesh. We
observe that given a different mesh size, the computed eigenvalues differ
slightly. At the same time, the finite element calculations show that, within
some tolerance for numerical error, each discrete Steklov eigenvalue has
multiplicity two, except for the zero eigenvalue. This corresponds to the
analytic form (4.1).

Similarly, we compute the discrete Steklov eigenfunctions with respect
to the non-conforming harmonic finite element basis. Plots of the discrete
eigenfunctions are shown in Fig. 2 for k= 2, 4, 10, and 20. Recalling the
analytic formulas (4.2) and (4.3) for the Steklov eigenfunctions on the unit
disk, it is clear that, for k large enough, the region of non-trivial support
is small and is concentrated close to the boundary. On one hand, neither
sin(kθ) nor cos(kθ) converge strongly to any function as k→∞. On the
other hand, they both converge weakly-∗ to 0. Therefore, we expect an
increasing number of oscillations to be present in the restriction of the
eigenfunctions close to the boundary as k→+∞. Indeed, this is clearly
visible in the finite element-based calculations shown in Fig. 2. Moreover,
for k=10, Fig. 2(c) shows a function that corresponds to the discrete ver-
sion of sin(2×5θ) on the boundary.
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Fig. 2. The plots show the discrete eigenfunctions corresponding to k = 2, 4, 10, and 20.
The computations are performed using the non-conforming harmonic approximation. As k
increases, the region of non-trivial support moves closer to the boundary, and the number of
oscillations on the boundary increases.

At this point, we show that application of the discrete Steklov spec-
tral method yields a valid approximate solution to the elliptic problem
(1.1). For the computations shown, we impose the boundary data

g(x, y)=25x7 y3, x, y ∈ ∂B(0,1). (4.4)
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Fig. 3. On the left, the discrete Steklov approximation of the elliptic problem is shown for
the given boundary data g(x, y)= 25x7 y3. The approximation is computed with respect to
the non-conforming finite element basis. On the right, the computed and the exact traces of
the Dirichlet boundary condition are shown. Both the L∞(∂B(0,1))- and L2(∂B(0,1))-errors
are on the order of 10−2.

We test both the bilinear and the non-conforming approximation spaces
described in Sec. 3. However, the computations that we show here are with
respect to the non-conforming approximation. In Fig. 3, the approximate
solution uh(x, y) to the elliptic problem is plotted on the left. On the right,
the trace of uh on the boundary is plotted against the boundary data g

prescribed by (4.4). Both the L∞(∂B(0,1))- and L2(∂B(0,1))-errors are on
the order of 10−2.

4.3. An Error Estimate

In this section, we derive an error estimate for the approximation
of the elliptic problem (1.1) computed via the discrete Steklov spectral
method. This error estimate is a key improvement on the convergence
result in Theorem 2.2 in that we can now estimate the rate of conver-
gence. The approximation error depends on two factors. First, the discrete
Steklov eigenfunctions are computed with respect to a particular mesh.
Consequently, the resulting approximation error for the eigenfunctions
depends on the mesh size h. Second, the approximation to the elliptic
problem is written as a Steklov eigenfunction expansion. We know that for
a given mesh size, there are Mh available eigenfunctions, where Mh is the
dimension of the boundary layer. Typically, we use only m<Mh eigenfunc-
tions, resulting in the truncated expansion
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um,h(x)=
m∑

k=1

cku
k
h(x).

The second component of the approximation error comes from the
truncation error as described in Theorem 2.2. We derive estimates for both
the approximation error of the eigenfunctions and the truncation error of
the Steklov spectral expansion. Then at the end of this section, we high-
light the correlation between these two components of the approximation
error through a series of tables.

The error estimates presented in this section are based on the intro-
duction of a norm (4.7) pertaining to the trace spaces Hs(∂Ω) (see
Auchmuty [2], and Auchmuty and Klouček [3] for complete theory). The
novelty of the estimates is in providing the link between the smoothness
of the boundary datum in terms of its belonging to a trace space Hs(∂Ω)

and the truncation error contribution. These estimates show why, typically,
only a few, say 10–30, eigenpairs are needed to get a good approximation
of the solution to (1.1).

First, we consider the approximation error that occurs when the
discrete Steklov eigenfunctions are computed with respect to a partic-
ular mesh size h. Recall, the discrete Steklov eigenfunction ukh is an
approximate solution to the Steklov eigenproblem (2.1) which is a Robin
boundary value problem. The standard interpolation error estimate for the
conforming bilinear approximation of the Robin problem yields

‖uk−ukh‖H 1(Ω)�C h (4.5)

for some constant C>0.
Next, we consider the truncation error obtained when a finite number of

exact eigenfunctions is used to represent the solution of the elliptic problem.
Let u be the weak solution to the elliptic problem, satisfying Eq. (2), and let

um(x)=
m∑

k=1

cku
k(x).

Then, recalling formula (2.19) from the proof of Theorem 2.2 yields

‖u−um‖2H 1(Ω)
=

∞∑

k=m+1

(1+ δk)2
(∫

∂Ω

ρ(s)g(s)T uk(s) dS

)2

=
∞∑

k=m+1

(1+ δk)2+s0

×
∫

∂Ω

ρ(s)g(s)T uk(s) dS
1

(1+ δk)s0
∫

∂Ω

ρ(s)g(s)T uk(s) dS
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for some s0 ∈ IR. Upon application of the Hölder inequality, we have

‖u−um‖2H 1(Ω)
�

⎛

⎝
∞∑

k=m+1

(1+ δk)2(2+s0)
(∫

∂Ω

ρ(s)g(s)T uk(s) dS

)2
⎞

⎠
1/2

×
⎛

⎝
∞∑

k=m+1

1

(1+ δk)2s0
(∫

∂Ω

ρ(s)g(s)T uk(s) dS

)2
⎞

⎠
1/2

.

(4.6)

At this point, we want to relate the truncation error to a trace norm eval-
uated on the the boundary ∂Ω.

We introduce the trace norm

‖g‖2Hs(∂Ω)

def=
∞∑

k=0

(1+ δk)2s+1
(∫

∂Ω

ρ(s)g(s)T uk(s) dS

)2

(4.7)

for some s ∈ IR. For now, we observe that the first term on the right-
hand side of (4.6) reduces to ‖g‖

Hs0+3/2(∂Ω)
. The second term is bounded

above by

⎛

⎝ 1
(
1+ δm+1

)2s0+1

∞∑

k=m+1

(1+ δk)
(∫

∂Ω

ρ(s)g(s)T uk(s) dS

)2
⎞

⎠
1/2

= 1
(
1+ δm+1

)s0+1/2
‖g‖L2(∂Ω).

We obtain the definition for the L2(∂Ω)-norm either from (2.17) or by
taking s0=0 in the definition above.

Now, our knowledge of the analytic form of the Steklov eigenpairs
on the unit disk gives us an opportunity to further estimate the error with
respect to H 1(B(0,1)). Recall that, on the unit disk, if m+1 is even, then
δm+1=π(m+1), and if m+1 is odd, then δm+1=π(m+2). Either way, we
can bound the m+ 1-st eigenvalue below by m. Consequently, we obtain
the estimate

‖u−um‖2H 1(B(0,1)) �‖g‖
Hs0+3/2(∂B(0,1))× 1

(1+m)s0+1/2 ‖g‖L2(∂B(0,1)) . (4.8)

We are now ready to combine the approximation error (4.5) of the dis-
crete eigenfunctions with the truncation error (4.8) of the Steklov spectral
expansion.
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Consider the overall approximation error for the approximate solution
um,h(x). By combining (4.5) and (4.8), we can write

∥∥u−um,h
∥∥
H 1(B(0,1)) � ‖u−um‖H 1(B(0,1))+

∥∥um−um,h
∥∥
H 1(B(0,1))

�
(

1
(1+m)s0+1/2

‖g‖
Hs0+3/2(∂B(0,1))‖g‖L2(∂B(0,1))

)1/2

+C1h

�
(

1

(1+m)s0+1/2
2

+C2h

)
‖g‖1/2

Hs0+3/2(∂B(0,1))
‖g‖1/2

L2(∂B(0,1))
.

(4.9)

This error estimate is fundamental for two reasons. First, the estimate is
an improvement on the convergence result given in Theorem 2.2 because
it provides an estimate on the rate of convergence. Second, the error esti-
mate shows the trade-off between the approximation error that depends on
h and the truncation error that depends on m.

For simplicity, we make a particular choice of s0. Referring back
to the computational example presented in Sec. 4.2, the boundary data
defined by (4.4) is infinitely continuously differentiable. Therefore, we are
justified in taking s0 as large as we like. For s0=1, the overall approxima-
tion error reduces to

∥∥u−um,h
∥∥
H 1(B(0,1))�

(
1

(1+m)3/4 +C2h

)
‖g‖1/2

H 5/2(∂B(0,1))
‖g‖1/2

L2(∂B(0,1))
.

For the particular case of the unit disk, this inequality improves upon
the two results stated in Theorem 2.2. Namely, the L2(∂Ω) error estimate
(2.14) and the H 1(Ω) convergence result (2.15). First, by the continuous
imbedding of H 1(Ω) into L2(∂Ω) we have

∥∥u−um,h
∥∥
L2(∂B(0,1))�C

∥∥u−um,h
∥∥
H 1(B(0,1)) .

Second, the H 1(Ω) convergence result is augmented by a rate of con-
vergence that depends both on the magnitude of the largest participating
eigenvalue and the mesh resolution.

The interplay between the magnitude of the largest participating
eigenvalue and the mesh resolution merits some scrutiny. Clearly, as more
eigenfunctions are included in the Steklov expansion, i.e., as m increases,
the truncation error will decrease. However, improvement in the overall
approximation error as m increases is limited by the mesh size h. In par-
ticular, if (1+m)−3/4 �C2h, then the overall approximation error will be
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dominated by the approximation error of the discrete Steklov eigenfunc-
tions. Hence, we have

∥∥u−um,h
∥∥
H 1(B(0,1))�C h for (1+m)−3/4 �C2h. (4.10)

The consequence is that, for a fixed mesh size h, increasing m beyond
the point that (1+m)−3/4 �C2h yields no real improvement in the over-
all approximation error. Alternatively, if (1+m)−3/4 �C2h, then the over-
all approximation error will be dominated by the truncation error, and we
will have

∥∥u−um,h
∥∥
H 1(B(0,1))� (1+m)−3/4 ‖g‖1/2

H 5/2(∂B(0,1))
‖g‖1/2

L2(∂B(0,1))

for (1+m)−3/4 �C2h. (4.11)

The consequence here is that for a fixed number of eigenfunctions m, there
is a certain point beyond which refining the partition does no good to
improve the overall approximation error.

It turns out that the relationship (4.10) is clearly evident in the
computational results for the example presented in Sec. 4.2 as we illus-
trate through a series of tables. Tables I–III show the L2(∂Ω)-error and
L∞(∂Ω)-error for a fixed mesh size h and increasing values of m. The
mesh size for each table is h ≈ 0.2, h ≈ 0.1, and h ≈ 0.05, respectively.
Examining the tables, we see that the error stagnates for m between 25 and
30 in Table I, for m between 25 and 30 in Table II, and for m between
40 and 80 in Table III. Neglecting the constant C2 and solving h∼ (1+
m)−3/4, we would expect the error to stagnate around m= 7 for h= 0.2,
around m= 20 for h= 0.1, and around m= 50 for h= 0.05. While these
estimates do not predict the exact point of error stagnation, they do pro-
vide rough, “order of magnitude” estimates. In order to obtain a more
accurate estimate for m we would need more specific knowledge of the
constant C2. One final observation is that the tables show relatively good
consistency in the computed spectra between the bilinear and non-con-
forming harmonic approximation. However, at higher resolutions the bilin-
ear approximation is clearly preferable (cf. Table III).

5. PERFORATED DOMAINS

In this section, we solve the elliptic problem (1.1) on a highly perfo-
rated domain. There exists a vast literature dealing with the solution of
elliptic equations on perforated domains. Particular topics include homog-
enization (see Buttazzo [4], Cioranescu and Murat [7], Jikov et al. [10],
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Table I. Computational results corresponding to the mesh size h≈0.2. There are 32 bound-
ary DOFs for the bilinear approximation, and there are 65 boundary DOFs for the non-con-
forming harmonic approximation

Eigenpairs Predicted L2(∂Ω) Computed L2(∂Ω) Computed L∞(∂Ω)

5 0.27/0.27 0.82/0.82 0.56/0.60
10 0.17/0.17 0.44/0.46 0.37/0.37
15 0.144/0.148 0.36/0.39 0.23/0.33
20 0.113/0.123 0.115/0.237 0.066/0.214
25 0.099/0.10 0.0755/0.221 0.0601/0.201
30 0.094/0.099 0.0754/0.22 0.0593/0.20
60 NA/0.017 NA/0.154 NA/0.140

The error appears to stagnate for m between 25 and 30

Table II. Computational results corresponding to the mesh size h ≈ 0.1. There are 65
boundary DOFs for the bilinear approximation, and there are 192 boundary DOFs for the
nonconforming approximation

Eigenpairs Predicted L2(∂Ω) Computed L2(∂Ω) Computed L∞(∂Ω)

5 0.27/0.27 0.82/0.82 0.55/0.57
10 0.17/0.17 0.44/0.44 0.37/0.34
15 0.144/0.149 0.357/0.363 0.237/0.262
20 0.122/0.125 0.189/0.125 0.168/0.114
25 0.110/0.11 0.0187/0.0891 0.0158/0.0800
30 0.0963/0.102 0.0187/0.0891 0.0155/0.0806
40 0.0794/0.0884 0.0187/0.0891 0.0155/0.0804
60 0.0624/0.0741 0.0186/0.089 0.0146/0.0812
120 NA/0.0125 NA/0.0721 NA/0.0649

The error appears to stagnate for m between 25 and 30

Table III. Computational results corresponding to the mesh size h ≈ 0.05. There are 337
boundary DOFs for the conforming approximation, and there are 656 boundary DOFs for
the non-conforming approximation

Eigenpairs Predicted L2(∂Ω) Computed L2(∂Ω) Computed L∞(∂Ω)

5 0.27/0.27 0.82/0.822 0.558/0.567
10 0.113/0.175 0.442/0.442 0.375/0.363
20 0.124/0.125 0.0869/0.0954 0.0507/0.0765
40 0.0863/0.089 0.0046/0.0388 0.00395/0.0359
80 0.0560/0.064 0.00463/0.0388 0.00380/0.0359
120 0.0477 /0.052 0.00463 /0.0353 0.00378/0.0321

The error appears to stagnate for m between 40 and 80
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Knyazev and Windlund [12]; scattering, see Piat and Codegone [15]; spec-
tral methods, see Cao and Cui [5]; and the finite element method, see Car-
stensen and Sauter [6], Strouboulis et al. [17]).

The theory of the Steklov eigenpairs developed by Auchmuty and
outlined in Sec. 2 requires a simply connected domain. The perfo-
rated domain calculations are thus not covered by the presented the-
ory. We found that the Steklov spectral approximation can be applied to
non-simply connected domains in the finite dimensional setting.

The finite element approximation of elliptic problems posed on such
domains is complicated due primarily to two reasons. First, any refinement
of the mesh must take into account the curvature of the voids. Otherwise
intersections of mesh elements may occur. Second, the relative distance of
the voids is inversely proportional to the smallest eigenvalue of the elliptic
operator which in turn is the constant of ellipticity [10]. In other words,
the elliptic problem becomes closer to being ill-posed the more closely
the voids are spaced. In this section, we show that the discrete Steklov
spectral method, with even a moderate discretization, yields results supe-
rior to overkill computations in which the finite element approximation is
obtained directly with an extremely fine mesh size.

For the calculations we present in this section, we use the Dirichlet
boundary data

g(x, y)=2x7 y3 (x, y)∈ ∂Ωp, (5.1)

where Ωp consists of the unit square with 400 evenly spaced circular
voids as depicted in Fig. 4. We compute the solution of the elliptic prob-
lem using the discrete Steklov spectral method paired with the Q1 bilin-
ear finite element space. The spatial resolution for this calculation is h≈
0.01, and we use 30 out of an available 7040 Steklov eigenfunctions. The
results for this calculation are plotted in Fig. 5. The trace of the computed
solution is plotted in blue in comparison with the actual boundary data
(5.1) plotted in red. The trace is parametrized by traversing the bound-
ary of the unit square and then traversing the boundary of each perfora-
tion in sequence. The computed approximation yields an H 1(Ωp)-aposte-
riori error on the order of 0.2.

In Fig. 6, we have plotted the discrete Steklov spectrum on the left
and the eigenfunction corresponding to k = 30 on the right. As can be
seen in Fig. 6(a), the Steklov eigenvalues grow roughly as 13k. In this case,
(1+ δ30)

−3/4 ≈ 0.01, and therefore we expect that the overall approxima-
tion error is driven by the mesh size, not the number of eigenfunctions
used. The eigenfunction in Fig. 6(b) clearly exhibits large oscillations on
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Fig. 4. (a) The unit square containing 400 voids. The computational domain contains
22,321 nodes, 19,200 quadrilaterals, and 7040 boundary nodes. (b) A detail of the partition-
ing of the computational domain into quadrilaterals.

Fig. 5. (a) The bilinear finite element approximation of the solution with the boundary
condition g=2x7y3. There were 30 out of a possible 7040 Steklov eigenfunctions used in the
approximation. (b) The computed trace compared with the trace of the Dirichlet boundary
data g. The traces are plotted with respect to a parameterization of the boundary ∂Ωp . The
blue, darker, curve represents the trace of the Steklov solution. The red, lighter, curve is the
trace of the boundary data g.

the outer boundary of the perforated domain. However, we were not able
to detect any significant oscillations on the boundary of the perforations.

Finally, we compare the approximation from the discrete Steklov
spectral method to results that would be expected from an overkill finite
element method. Let γ be the smallest distance between two voids in the
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Fig. 6. (a) The yellow curve indicates the Steklov spectrum. The eigenvalues grow roughly
as 13k. The rate of increase becomes higher as the voids are moved closer together. (b) The
picture shows the Steklov eigenfunction approximated by the bilinear finite element corre-
sponding to the eigenvalue k=30. The range of the eigenfunction is scaled by 1/5 to enhance
visualization.

perforated domain. Then Jikov et al. prove that the eigenvalues of the
elliptic operator on the perforated domain Ωp are given by γ−2λ0 + λγk
for k� 1 [10]. Here λ0 is the first eigenvalue of the elliptic problem con-
sidered on the corresponding domain without perforation, and the λks are
the remaining eigenvalues on the unperforated domain. Furthermore, Cao
and Cui prove that, for a direct finite element application, the H 2(Ωp)-
error is on the order of γ−2, [Theorem 3.3, [5]]. By application of Cea’s
Lemma, we have the finite element error estimate

‖u−uh‖H 1(Ωp)
�Ch‖u‖H 2(Ωp)

≈C h

γ 2
.

Therefore, the approximation properties of the finite element solution dete-
riorate as γ→0+.

In order to make a more direct comparison between the Steklov solu-
tion and the finite element solution on perforated domains, we consider a
less complex problem. Let Ωp4 be the unit square with 4× 4 evenly dis-
tributed circular voids, and let

g4(x, y)
def= sin2(5xy), (x, y)∈ ∂Ωp4. (5.2)

The corresponding γ for the domain Ωp4 is equal to 0.1. We perform cal-
culations on five staggered grids obtained by uniformly subdividing the
coarse grid similar to the one shown in Fig. 4(b). We denote by i the
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Table IV. The table indicates that, based on a rough estimate of the approximation error
given by h/γ 2 the finite element solution can have at most one decimal place of accuracy

i hi (approx.) # DOFs Eigenpairs hi/γ
2

0 0.08 273 192 8
1 0.04 945 384 4
2 0.02 3441 768 2
3 0.01 13041 1536 1
4 0.005 50673 3072 0.5
5 0.0025 199665 6144 0.25

number of refinements to the coarse mesh. Then Table IV summarizes
the various spatial resolutions hi along with the corresponding number
of equations, number of available eigenpairs, and a rough estimate of the
expected error for standard finite element calculations. We were unable to
generate more than five mesh refinements without having overlapping ele-
ments due to the curvature of the voids.

For a given mesh size, we would like to compare the accuracy of
the finite element solution to the accuracy of the Steklov approximation.
However, on the perforated domain, we do not know the true solution to
the elliptic problem. Therefore, we treat the finite element solution uh5 cor-
responding to the mesh size h5 as the “exact” solution. Then our measure
of accuracy is provided by

∥∥uhi −�hiuh5

∥∥
H 1

0 (Ωp4)
. Here �hi is the projec-

tion of the fine grid solution onto a coarser grid.
All of the calculations that we made were based on the bilinear finite

element space VQ1 . For the Steklov spectral approximations, we used a
fixed number of 50 eigenpairs. Fig. 7 shows the performance of the Stek-
lov approximation compared to the finite element solution. This figure
indicates that even a moderate discretization of the perforated domain,
in combination with the Steklov approximation, yields results that can
be viewed as qualitatively more accurate than the standard finite element
approximation. Finally, we note that

∥∥uh4 −�h4uh5

∥∥
H 1

0 (Ωp4)
≈6.6×10−4.

Comparing the above difference in the H 1
0 -norm with the expected approx-

imation error, we conclude that obtaining a highly accurate solution would
require even more then five refinements of the original grid.

In the presented implementation, the computation of the Steklov
eigenpairs is based on a finite element discretization. The direct finite
element based calculation of the solution to (1.1) provides the best
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Fig. 7. (a) Plot of the discrete solution for the boundary condition (5.2). (b) The curves
show convergence rates to the “exact” solution uh5 . The solid curve indicates the approxima-
tion error for the finite element approximation while the dashed curve indicates the approx-
imation error for the discrete Steklov spectral approximation. The x-axis shows the number
of uniform mesh refinements.

approximation to the true solution in the energy norm, i.e., in the H 1−
seminorm in our case of the Laplacian. Hence, we should conclude that
the approximation obtained by the Steklov spectral approximation can-
not be more accurate when the performance is measured in the energy
norm. However, this contradicts the result shown at the right plot in Fig.
7, which indicates much better performance especially at low resolution.

In order to reconcile this discrepancy, we offer the following argument.
The error in the energy norm for the direct finite element computa-
tions behaves, roughly, as h/γ 2. On the other hand, the numerical com-
putations suggest that

∥∥um−um,h
∥∥
H 1(B(0,1))∼ h/(δ2

1δm). Recall that δ0= 0,
δ1 ∼ γ . This may be a consequence of the fact that the Steklov eigen-
functions are nearly trivial inside the computational domain but oscil-
late rapidly on (and close to) the boundary. Thus one would conjecture
that

∥∥um−um,h
∥∥
H 1(B(0,1))∼h/γ for large frequences, which correlates with

Fig. 7.

6. CONCLUSION

In this paper, we have shown that the discrete Steklov spectral method
is effective for approximating solutions to certain elliptic boundary value
problems. We conclude by discussing three areas in which this method
could prove useful. First, it is our experience that only a few Steklov
eigenpairs are needed to get a sufficiently accurate solution to prob-
lem (1.1). In addition, the computational work required to obtain these
eigenpairs is comparable to the work of implementing the finite element
method. However, for the discrete Steklov spectral method, the solution
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u(x) depends on the boundary data g only through the coefficients cj .
Since the coefficients are cheap to compute, this method should be suitable
for repeatedly solving problem (1.1) with a number of different bound-
ary data g. Second, solutions to elliptic problems can be represented sim-
ply by the coefficients of the Steklov spectral expansion. This data-sparse
representation can potentially be used for model reduction problems or
as part of optimization or control problems. Finally, the Steklov spectral
method provides a solvability criterion for (1.1) in terms of the summa-
bility of the coefficients cj . In fact, we use this summability condition to
define the trace space H 1/2(∂Ω), and this definition yields a natural gen-
eralization to trace spaces in different topologies [2]. The discrete Stek-
lov spectral method can be used to generate generalized harmonic functions
which “solve” the Laplace equation when the boundary data g is not in
H 1/2(∂Ω). This concept is explored in detail by Auchmuty and Klouček
[3].

Several workers, including also one of the referees of our manuscript,
mentioned a possible connection between the presented Steklov spectral
approach and the boundary element method (see e.g., Wendland [18]).
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