Sequence analysis of a DNA fragment from *Sinorhizobium fredii* USDA257 which extends the nitrogen fixation host range of *Rhizobium* species NGR234 to soybean, *Glycine max* (L.) Merr cultivar Peking

B. Boboye^{1,2*}, G. Nyakatura⁴, A. Rosenthal⁴, X. Perret³, W.J. Broughton³, and Th. Boller¹

¹Botanisches Institut der Universität Basel, Hebelstrasse 1, 4056 Basel, Switzerland;

²Current Address: Department of Microbiology, The Federal University of Technology, P.M.B. 704, Akure, Ondo State, Nigeria, West Africa, Email. boboye b@yahoo.com;

³Laboratoire de Biologie Moléculaire des Plantes Supérieures, Université de Genève, 1 Ch. de l'Impératrice,

1292 Chambésy/Genève, Switzerland;

⁴Institut für Molekulare Biotechnologie, Abteilung Genomanalyse, 07745 Jena, Germany

(Received June 1, 2008; Accepted August 19, 2008)

Abstract

A fragment of DNA (pBTBX) from the genome of *Sinorhizobium fredii* USDA257 was sequenced by shotgun strategy to identify the potential genes which enabled the *Rhizobium* species NGR234 to fix nitrogen on soybean, *Glycine max* (L.) Merr cv. Peking. The total length of the cosmid is 32,824 base pairs with a GC content of 61%. A 29 open reading frames (ORF) were identified representing 71.8% (23,574 bp) of the cosmid. Out of these ORF, 96.5% (22,749 bp) were identical and similar to reported and hypothetical genes and proteins. The remaining 3.5% (825 bp) had no apparent similarity to any genes in the data base. Gene and gene products found on the DNA fragment include those involved in the synthesis of Fe-Mo component of nitrogenase, regulation of nitrogen fixation, transport of amino acids and sugars, chemotaxis and transcriptional regulation.

Keywords: Sequence analysis, DNA fragment, Sinorhizobium fredii, Rhizobium species NGR234, soybean Peking

1. Introduction

Generally, legumes fix nitrogen in symbiotic association with compatible bacteria collectively known as rhizobia. Rhizobia are grouped majorly into Rhizobium. Bradyrhizobium, Azorhizobium, Mesorhizobium and Sinorhizobium. During the symbiosis, signals to and from both the macro- and micro-symbionts are released (Fischer, 1994). This exchange of chemical signals between soil bacteria (rhizobia) and legumes termed a molecular dialogue involves two main groups of molecules: nod geneinducing flavonoids from plants and the mitogenic lipochito-oligosaccharide Nod factors (NFs) of rhizobia. The NFs synthesized by rhizobia elicit, at very low concentrations and in a specific manner, various symbiotic

responses on the roots of the legume hosts (Debellé et al., 2001; Shaw et al., 2006; Steinkellner et al., 2007). This is because rhizobia respond to chemoattractants and growthenhancing compounds in root exudates, and several plant non-flavonoids possess nod gene-inducing properties (Cooper, 2007). A number of nodulation genes which specify the synthesis of NFs have been identified. All rhizobia, in spite of their diversity, possess conserved nodABC genes responsible for the synthesis of the Nacylated oligosaccharide core of NFs, which suggests that these genes are of a monophyletic origin. Other genes, the host specific nod genes, specify the substitutions of NFs (Debellé et al., 2001). Entry into the plant is restricted to bacteria that have the "keys" to a succession of legume "doors". Some symbionts intimately associate with many different partners (and are thus promiscuous), while others are more selective and have a narrow host range. This is related to difference in type of NF produced by rhizobia

^{*}The author to whom correspondence should be sent.

Presented at the 15th International Congress on Nitrogen Fixation, January 21-26, 2007, Cape Town, South Africa

Orf	Base posit. in plasmid	Funct. name	Frame	RBS' and start codon	Homolog gene or amino acid position in plasmid	Homolog name	Gene base/ amino aci length	Organism id	Protein access no.	Identity (%)	Similarit (%)	y Description
btl	1-213		-3	gGGAGc-T-4ATG	34-186	BJORF	1447	BJ	M17635	67	67	DNA region with 3
					72-165	YBIO	786	E. coli	P75783	37	59	ORF complete cds Hypothetical 86.8 kD protein in Ding-GLNQ inter- genic region
bt2	294-539	cat	-2	cGGcGGc-9-ATG	330-509	SCRSCAT	C 212	S. cerevisiae	M12865	64	64	CAT repetitive element, clone pYCAT8
					369-522	NPT2	68	Mus musculus	Q62111	34	59	Na+.PO4 cotrans- porter type III fragment
bt3	1296-1691	gpmB	-3	cGccGGc-5-GTG	1357-1614	GPMB	349	Syn. sp.	P72649	35	54	Phosphoglycerate
bt4	1631-4093		-1	cGGAGGT-4-ATC	i 1691-4079	?	821	Syn. sp	P74690	61	74	Hypothetical 92.4 kD protein
bt5	4491-4615		1	gcGAGaa-5-TTG	4495-4614	U650AH	55	Myc. leprae	Q50135	35	47	Hypothetical 5.8
bt6	4672-5394		-3	AGGAccT-4-ATG	4708-5368	?	248	Sal. typhi	P74886	24	44	High affinity peri- plasmic glutamine
bt7	5397-7775	nifL	-2	gtGtGGT-10-ATG	6393-7689	NifL	840	Syn. sp.	P72843	36	55	Nitrogen fixation positive activator protein. NifL
bt8	8046-8954	gcvA	-2	AGGaaa-7-ATG	8076-8946	GCVA	305	E. coli	P32064	37	60	Glycine cleavage system trans- criptional activator
bt9	9108-9767		3	AGGcGGc-6-ATG	9164-9671	SGKSACP	G 5364	Str. griseus	X77865	62	62	Ketosynthase, Acyl carrier protein, ketoreductase, cyclase and dehydrase
bt10	10162 -10896	nodG lar	1	gtGAGGT-13-ATC	9108-9753 5 10219 -10696	NODG RNU87960	245 2479	R. meliloti Ratus norvegicus	P06234 U87960	33 62	52 62	NODG Leukcoyte common antigen receptor (LAR) gene trans- spliced alternative untranslated evon
btl l	10969 -11562		1	AGGAGGg-3-ATC	G 11006 -11445	MCU60315	5 190,289	Virus	U60315	61	61	Mollusum con- tagiosum virus sub- type, complete
bt12	11660		2	gGGAGGa-4-ATG	11672	RBSA	493	H.	P44735	37	59	Ribose transport
bt13	-13130 13173 -14237	mxa	3	gGGAGaa-4-ATG	-13130 13218 -14216	AF017434	4815	Mt. extorquens	AF01743	4 58	58	Methanol oxidation genes mxaE, mxaH, mxaB and pmi-like genes, complete genes cds
					13290 -14187	Y4mJ	333	NGR234	P55569	30	54	Predicted ABC trans- porter ATP-binding
bt14	14285 -15385	тср	2	gGGAGGa-7-ATG	14285 -15197	RCMCPAE	3 5186	Rh. capsulatus	L48927	59	59	Methyl-accepting chemoreceptors (<i>mcpA</i> and <i>mcpB</i>) genes complete genome cds
					14444 -15305	Y4mL	324	NGR234	P55568	24	38	Predicted ABC trans- porter periplasmic binding protein Y4mL
bt15	15431 -16450	<i>gnt</i> R	-1	AGGAGGa-4-GTC	6 15489 -16445	GNTR	331	E. coli	P46860	31	52	GNTR utilization system GNT-1 trans- criptional repressor

Table 1. Predicted genes and proteins encoded by pBTBX of S. fredii USDA257 which confers on NGR234 the ability to fix nitrogen on G. max cv. Peking.

Table 1. Continued.

Orf	Base posit. in plasmid	Funct. name	Frame	RBS' and start codon	Homolog gene or amino acid position in plasmid	Homolog name	Gene base/ amino ac length	Organism .id	Protein access no.	Identity (%)	Similarit (%)	y Description
bt16	16741 -17544	nifE	1	AGGAGaa-3-ATG	i 16754 -17545	AVINIFE	1509	Az. vinelandii	X07293	56	56	nifE gene
					16774 -17383	Y4tE	300	NGR234	P55659	25	47	Predicted ABC trans- porter periplasmic binding protein Y4tE precursor
bt17	17612-1831	6	2	cGGAGtc-3-ATG	17672 -18284	Y4tF	238	NGR234	P55660	30	49	Predicted ABC trans- porter periplasmic binding permease Y4tF
					17663 -18284	Y4tG	231	NGR234	P55661	28	50	Predicted ABC trans- porter periplasmic binding permease Y4tG
bt18	18313-1897	2	1	cGGAGGT-6-ATC	6 18373 -18943	Y4tF	238	NGR234	P55660	30	51	Predicted ABC trans- porter permease protein Y4tF
					18331 -18952	Y4tG	231	NGR234	P55661	28	49	Predicted ABC trans- porter permease protein Y4tG
btl9	18953-1968	4	2	AGGAGGc-3-ATC	G 18965 -19673	Y4tH	257	NGR234	P55662	48	65	Predicted ABC trans- porter ATP-binding protein Y4tH
bt20	20003-2091	4	2	tatcGGT-5-ATG	20078 -20417	MJ0604	100	M. jannaschi	Q58021	34	50	Hypothetical protein MJ0604
bt21 bt22	21487-2191 22162-2234	8 1	1 -3	cGGAGat-5-ATG AGGctGa-6-TTG	N.o. 22186 -22338	N.o. YDJA	N.o. 183	N.o. <i>E. coli</i>	N.o. P24250	N.o. 40	N.o. 53	Hypothetical 16.2 kD Hypothetical 20.1 kD protein in SELD- SPPA intergenic region (ORF 183)
bt23	22424 -23599	snaC	-1	cGGAGac-7-ATG	22746 -23509	SP21216	770	SPS	U21216	60	60	NADH-FMN oxido- reductase (snaC) gene. complete cds
					22835 -23597	?	351	Ps KHP41	005599	34	45	Integrase-like protein
					22772 -23594	RECR	343	BPP1	P06956	26	46	Recombinase CRE
bt24	23670-2394	8	3	AGGgGGa-8-ATG	23709 -23937	REPC	314	Staph. aureus	P03064	24	49	Replication initiation protein (protein A)
bt25	23991-2437	7	-2	AcGgGcT-9-ATG	23991 -24369	MTCY20 H10.05	131	Myc. tuber	P96914	61	75	Hypothetical 14.4 kD protein
bt26	24925-2531	7	-3	tGGcGGg-10-GTG	N.o.	N.o.	N.o.	N.o.	N.o.	N.o.	N.o.	Hypothetical 14.7 kD protein
bt27	25428-2599	1	-2	tGGActg-8-GTG	25428 -25977	Y4jO	321	NGR234	P55515	71	82	Hypothetical 36.1 kD protein Y4jO
bt28	25988-2709	1	-1	AtGAttc-9-ATG	26687 -27086	Y4jP	321	NGR234	P55515	61	75	Hypothetical 36.1 kD protein Y4jP
					25994 -26588	Y4jP	262	NGR234	P55516	63	73	Hypothetical 29.5 kD protein Y4jP
bt29	31132 -32253	тср	3	AGccGGT-7-TTG	31465 -31699	МСР	99	Myc. tuber	E119143	0 32	42	MCP protein

Posit., position; funct., functional; RBS, ribosome binding site; the number between RBS and start codon (for example 4 in gGGAGCT-4-ATG) indicates the position of RBS relative to the translation initiation start site. Az, Azotobacter; Bj, Bradyrhizobium japonicum; BPPI, Bacteriophage P1; E, Escherichia; H, Haemophilus; M, Methanococcus; Mt, Methylobacterium; Myc. tuber, Mycobacterium tuberculosis; NGR234, Rhizobium species NGR234; Ps, Pseudomonas; R, Rhizobium; Rh, Rhodobacter; S, Saccharomyces; Sal typhi, Salmonella typhimurium; SPS, Streptomyces pristinaespiralis; Staph, Staphylococcus; Str, Streptomyces; Syn, Synechocystis; N.o., None obvious.

(Perret et al., 2000; Debellé et al., 2001; Shaw et al., 2006; Steinkellner et al., 2007). At the onset of the association, exudates such as flavonoids (the strongest *nod* genes inducers) are secreted by plant roots into the rhizosphere.

Following root hairs colonization by the bacteria,

common *nod* genes (*nod*ABC) are expressed in the microbial cells under the control of the regulatory *nod* genes (*nod*D, *syr*M or *nod*UVM) (Fellay et al., 1995; Hanin et al., 1998). This results in the biosynthesis of the lipooligosaccharide backbone of Nod factors which are decorated by the products of host-specific *nod* genes; the action of which causes root hairs to deform, branch, curl, form infection threads.

Rhizobium species NGR234 and *Sinorhizobium fredii* USDA257 are both closely allied broad-host-range rhizobial strains. The former bacterium distinctly nodulates more than 110 genera of legumes as well as the non-legume *Parasponia andersonii* but induces non-nitrogen-fixing nodules on soybeans (Trinick, 1980; Lewin et al., 1987; Relic et al., 1994; Pueppke and Broughton, 1999). In contrast, USDA257 forms effective nodules on many cultivars of soybeans including cv. Peking (Keyser et al., 1982; Balatti and Pueppke, 1992).

Recently, we screened a genomic DNA library of USDA257 and identified a clone containing a DNA fragment, pBTBX which endows NGR234 with the ability to fix nitrogen on *Glycine max* (L.) Merr cv. Peking. Nodule-like structures formed by the wild-type NGR234 lack rhizobial cells in comparison with bacteroids-containing nodules produced by the transconjugant, NGR234(pBTBX) on the soybean. In order to identify and study the molecular basis of the genetic locus/loci on the pBTBX which confers this capability on NGR234, we have shotgun-sequenced the DNA fragment and complemented NGR234 with a gene segment from the pBTBX. Here, sequence analysis of the DNA fragment is presented.

2. Materials and Methods

Construction of shotgun library

Procedures employed in this work were according to Hanahan (1983) and Sambrook et al. (1989). Cosmid DNA (pBTBX) was prepared from a late log-phase grown cells of the clone containing the DNA fragment (obtained from *Sinorhizobium fredii* USDA257 which enabled NGR234 to fix Nitrogen). The DNA (pBTBX) was sonicated and ends of fragments were filled-in with nucleotides in the presence of T4 DNA polymerase. DNA fragments ranging in size from 1.6 to 3.0 kb were ligated to *Sma*1-cleaved M13mp18 at 16°C. Aliquots of ligated DNA were used to transform competent cells of DH5 α . Recombinant phages were prepared from the transformed DH5 α and used for sequencing.

Sequencing and nucleotides assembly

This sequence analysis was carried out at the Institut für Molekulare Biotechnologie, Abteilung Genomanalyse, Jena in Germany. Sequencing was carried out using Dye Terminator/Thermo Sequenase sequencing methods essentially as reported by Freiberg et al. (1996).

Figure 1. Genetic map of pBTBX. Open and shaded rectangles denote genes. ORF names or names of genes (for example bt1 or *cat*) correspond to those in Table 1. Genes positioned on top and below each line are transcribed from the forward and complementary DNA strands, respectively.

ORF bt27	7	* *	*	**	**	* ** *		*	**		
bt27: y4jO:	(1) (137)	VIVSDDA VIVSDDA	GQFRVAN GQFRVGN	HALCWVH HALCWVY	TERLLQK	LMPATPKE LMPATPRQ	QRLVTT T	RDLVWRF	YKALKVY YRALKS	WKQQ / KRK	
Identity:		VIVSDDA	GQFKV N	HALCWV	EKLLQI	KLMPATP	ĸv	KDLVWKF	Y ALK	K	
		* * *		* *	* *	** *	** *	* ***	*		
bt27:		PSPQL I N	GFRRRFEC	QIFARRTGY	AA LDKI	LLLRLHRRK	AELLKVLE	HPYIPLHT	NASEND	IRS	
y4jO:		PPPGLAA	AFRKRFAF	VIFS LRTGY	E DLDKI		DELLKVLE		NASEND		
identity:		rr L	ГК КГ		LDKI	L KL KKK	ELLKVLE		NASEND	K5	
		*	**	* *	* * *	**	**	* * *	* **	*	
bt27:		FVTRRKIS	SGGT I SLN	IGR I ARNV	MLGLM	KTCQKLGI S	FY H FLGD	RLGLGSSR	RPI PPL	SQLV (183)	
y4jO:		FVTKRKIS	SGGTMSRI	OGRVARDT	MLGLM	KTCKKLGLS	FWHYLGD	RLGLDG—	QAIAPLA	ALV(321)	
Identity:		FVT RKIS	SGGT S	GR AR	MLGLM	KIC KLG S	F H LGD	RLGL	I PL	LV	
ORF bt28 ht27h	3										
		* ***	** *	**		**		* *		*	
bt27h:	(233)	VLHAGLV	⁷ SAPFITVI	DDTGARHN	RRNAFT	TQIGGERF S	TFRTSLSKS	SRLNFLSVI	LRAGHQ	GYVLNDE	
y4jO: Identity:	(1)	MLHAGLV LHAGLV	/SAPYITVI / SAP ITVI	DDTGARHA DDTGARH	RDSFHT R T	TQIGAEHFT. TQIG E F	AFRTTASK FRT SK	SRLNFLS+I SRLNFLS	LRG SYQI LR Q	OYVLNDA YVLND	
		* *	*	k	*	*	* ** *		* * *	* * ***	*
bt27h:		AMNWLK	AQGVEH A	A IT TKLQIN	NRPA IFA	D QAAFLEH	LV S KGIDI	LDRQLLRI	VAEAAI	WGAIRHHGL	LG (366)
y4jO:		AF DY LD	GRRAD P A	ALVAK IRSI	HEPRRFC	D QVPF LEY	LAGKGIDI	FDRQAVR	/LAEAGI	WG SIRHHGL	LG(321)
Identity:		A L	A	A K	Р	DQ FLE	L KGIDI	DRQ R	AEA I	WG IRHHGL	LG
ht28											
0120		*	* *	* *	**	* *	*	**	* *	* *	
bt28:	(2)	KKRLPSV	EH I ETLSI	LAMRRLV	GGLVEE	LQALKAEVA	TLR S ENE	ALREDNA	QLRLDN/	RLKAENQQI	Ĺ
y4jP:	(17)	KKRLASP	EHADTLSI	KAL RVLV	TGLVDE	VKELSAEVT	TLHAENA	ALREDNE	AL RLENT	RLKVENQL	L
Identity:		KKRL S	EH TLSI	. A R LV	GLV E	L AEV	TL EN	ALREDN	LRL N	RLK ENQ	L
		** *	** * **	* *	*	*	*		* *	*	
bt28:		RDEIARL	(NLPPRPP)	FRPSGMEK	ATE P G-I	NGDRAAGK	SPRGPKRD	TNRIT RTV	/TLRADA	PEG SRFKGY	•
y4jP:		RDEIARL	CNLPPRPP	FRPSGMDK	ATDDKR	DAPRAT RK	KPRGPKLD	LKRVSRQ	E ILHARV	РР	
Identity:		RDEIARL	KNLPPRPPI	FRPSGM K	AT	RA K	PRGPK D	RR	LΑ	Р	
			* **		*	* * ** *	* * *	* *	* * *	*	
bt28:		KS FFVRD	LVLAAEL	VNYRRERV	VLTPEGK	VIIAPLPEC	W S SGFGR	NLRRACI	ALHAOG	OVIT PRLT	(200)
y4jP:		KSCHVRD	LIV TAEL	VHYRREYN	VI TPDGK	TVLAPLPQC	GVVGGYGP	NLRRL CLI	MLHAQG	QVTMARLT.	.(262)
Identity:		KS VRD	DL AELV	V YREE W	/ TP GK	APLP O	SV G G	NLRR CL	LHAQG	OVT RLT	. ,

Figure 2. Alignments of protein sequences encoded by open reading frames bt27 and bt28 with y4j0 and y4jP of *R*. species NGR234. bt27h is bt27 homolog which exist in the same ORF with ORF bt28. Amino acid numbers in the protein corresponding to the first and last residues in the alignments shown are presented in parentheses. Amino acids identical in both proteins are shown below the alignments. Conserved leucine, alanine, glycine, proline and isoleucine are indicated with asterisks.

Nucleotides were compiled and edited after those for M13mp18 were removed. Gaps between contigs were closed with additional sequences obtained from dye primer and big-dye terminator sequencing methods.

Analysis of nucleotides

Open reading frames and intergenic regions were looked for in the nucleotides by using *Rhizobium meliloti* matrix of GeneMark prediction program version 2.3 (Borofsky, 1995). Search for similar and identical protein and gene sequences was conducted with the GCS computation program using the BLAST Network Service.

3. Results and Discussion

The DNA fragment (pBTBX) is 32,824 base pairs long with a GC content of 61%. Twenty nine Open Reading Frames were detected in the pBTBX (Table 1, Fig. 1). The initiation codon is ATG for most of the genes except for seven cases where GTG and TTG are used. The putative ribosome binding sites are generally rich in purines and showed variable locations in the sequence. Collectively, 72% (23,574 bp) of the pBTBX are potentially coding (Fig. 1). Two and half percent (825 bp) of the sequence show no significant similarity to any known genes or gene products in the database bank. Nucleotide content of the non-coding regions is essentially the same as that of the coding parts.

B. BOBOYE ET AL.

bt <i>nif</i> E:	ATGACGATCTACCAAGTGGaggagaaACCATGACGATTTCG -10
bt <i>nif</i> E: (13)	AACTTTGTGCGGACAATGGT-GGC-A-GCCATCGGAATAGCG-GCGGCCGGCCTCGTT
Azv <i>nif</i> E:(451)	<u>ACCT</u> GC <u>GTGCCGGCGCGTGATCGGCGACGACGTCG</u> ACGC <u>AG</u> TG <u>TGC</u> AAA <u>GCCG</u> C <u>C</u> GC <u>CG</u> A-
bt <i>nif</i> E:	GCGGCTGCGGAGGCGCAGGCCGCCACGCTGAACGACATCATCTCGCGCGGTACCGTGCGC
Azv <i>nif</i> E:	<u>GCG-CTTCGG</u> CAC <u>CCGGTCATCC-CGGT</u> CG <u>AC</u> TCGGC <u>CGGCT</u> TCTA <u>CGG</u> C <u>ACC</u> AA <u>G</u> AA <u>C</u>
bt <i>nif</i> E:	ATCGGAGTCCTGACCGGCGCGCCGCCCCATGGGAATGGTCGACGAACAGGGCAACC-CAA-
Azv <i>nif</i> E:	C <u>TCGG</u> CAA <u>CC</u> GC <u>A</u> T <u>CGCCG</u> GTGA <u>G</u> G <u>CCATG</u> CTC <u>A</u> A <u>G</u> TA <u>CG</u> T- <u>GA</u> T <u>C</u> <u>GGCA</u> C <u>CCGCGA</u> G
bt <i>nif</i> E:	CCGGCTACGACGTCGACGTGGCCAATCTGATTG-CCGGCTATCTGTC-GCT-GCCGGTCG
Azv <i>nif</i> E:	CCCGATCCGCTGCCCGTCGGCAG-C-GAGCGTCCGGGCATCCGCGTGCACGACG-TCA
bt <i>nif</i> E:	AGCTCGT-GCCGCTGACGCCGCCGCCGCCT-CGCATTCCCGCTT-TGCAGAC-CGGCAAGGTC
Azv <i>nif</i> E:	<u>ACCTGATCGGCGAGTACAACATCGCCGGCGAGTTCTGGCATGTCCTGCCGCTGC</u> TC <u>G</u> A- <u>C</u>
bt <i>nif</i> E:	GATTTCCTCGT-CGCCACC-CTGGCGCC-GACCGGGGA-GCGCGCCAAGACGGTGATGTT
Azv <i>nif</i> E:	<u>GA</u> AC <u>T</u> GGG <u>CCTGCG</u> GGTG <u>CTCTG</u> CAC <u>CCTGGCCGG</u> C <u>GA</u> T <u>GCGCGCCTA</u> CCG <u>CG</u> AG <u>G-TG</u> CA
bt <i>nif</i> E:	CACCCAGCCCTACAGCGCCTTCAACATGGACATCATCTCCG-GTCCCGAC-CAGAAAT
Azv <i>nif</i> E:	G <u>ACC</u> AT <u>GC</u> ACCG <u>C</u> GC <u>CG</u> AAG <u>TGAACATG</u> ATGG <u>TC</u> TG <u>CTCCAAG</u> G <u>CC</u> ATG <u>C</u> T <u>CA</u> AT <u>G</u> TCGC
bt <i>nif</i> E:	TTGCAAAGCTTGCCG-ATCTCGAAGGCAAGCGCGTCGC-CGTCAACCGTGGCT-CGTCG-
Azv <i>nif</i> E:	<u>TCGCAA-GC</u> T- <u>GCAGGA</u> AAC <u>CTACGGCACGCCC-TGG</u> TT <u>CG</u> AGGG <u>CAG</u> CTT <u>CTACG</u> G <u>C</u> AT
bt <i>nif</i> E:	CAG-GAGACGGCGCTGCGCAAGGCGGCAGTTC-CCGGCCTGGAAATCGTCG-TCTACGAG
Azv <i>nif</i> E:	<u>CA</u> CC <u>GA</u> C <u>AC</u> CT <u>C</u> CC <u>C</u> GGCTGCGCGCGCCCGGCTGC <u>TCG</u> AT <u>GATC</u> C- <u>CGA</u> C
bt <i>nif</i> E:	GATGATTCCACCAGCGCACAGGCGCTGATCGCCGGCCAGGTCGATGCGGTC-GCGCTGCC
Azv <i>nif</i> E:	C- <u>TGA</u> <u>CCGCCCGCAC</u> CG <u>AGGCGCTGATCGC</u> GC <u>GCGAGG</u> AG <u>G</u> CCAA <u>GGTC</u> C <u>GCGC</u> C <u>GCC</u>
bt <i>nif</i> E:	CTCGA-CGGTCG-GTGAGGCGATCATCAAG-CAGCGCCCAGATGCCGGTCTGCAG-GTTG
Azv <i>nif</i> E:	<u>CTCGA</u> ACCC <u>TGGCGTGCG-CG-TC</u> TGG <u>AGGGCA</u> A- <u>GCGC-G-TGC</u> T <u>GCTTGCACA</u> CC <u>G</u> GC <u>G</u>
bt <i>nif</i> E:	GCTTCACCTTCTTCCAGCAGGGCAATTCGATGGCG-ACCCGGATGGAGGACTTTGAGATC
Azv <i>nif</i> E:	<u>GCGTGA</u> AG <u>TCCT</u> GGTC <u>G</u> GT <u>GG</u> TTTCCCCCC <u>TG</u> CA <u>GGACC</u> T <u>GG</u> <u>GCA</u> T <u>GA</u> AGG <u>TG-G-TC</u>
bt <i>nif</i> E:	CGCCAGTGGCTCAACACCGCCATCTACCTGATGAAGATCTCCGGCG-ATCT-CGACAAGA
Azv <i>nif</i> E:	- <u>GCCA</u> CC <u>GGCACCA-A</u> <u>G</u> AAG <u>TCCACC</u> - <u>GA</u> G <u>GAAGA</u> CAAGGCA <u>CG</u> C <u>ATC</u> CG <u>CGA</u> ACT <u>GA</u>
bt <i>nif</i> E:	TCG-CGACGAAGTGGACCGGC-CGCCCGATGCCGACGCTTCCGTCCTTCTGA (804)
Azv <i>nif</i> E:	TG <u>GGCGACGACGT</u> CAAGAT <u>GC</u> TCGAC-GAGGGCAATGCGCGGGTGCTGCTGA (1243)

-35

Figure 3. Nucleotide sequence of the *nifE* homologue (btl6*nifE*) and the homologous gene from *Azotobacter vinelandii* (Azv*nifE*). First and last nucleotides in the alignments shown are indicated in parenthesis. Positions of identical nucleotides are underlined. Putative ribosome binding site is shown in bold lower-case letters; hypothetical translation initiation codon is asterisked. Introduced gaps to give the best alignments are indicated with hyphens. Presumed Pribnow boxes are overlined.

The highest similarities found were with proteins of the closely related NGR234 (Table 1). The hypothetical proteins of ORFs bt27 and bt28 show strong identities of 71% and 63% and, similarities of 82% and 73%, respectively to the hypothetical y4jO and y4jP proteins of NGR234. Generally, the proteins are hydrophobic (Fig. 2). Thus, they may be important in the formation of cell structural components involve in transport systems. Other ORFs that have homology to transporting genes lie at 294 to 539bp (ORF bt2), 4672 to 5394bp (ORF bt6) and between bases 11660 and 19684bp (ORFs bt12, bt13, bt14, bt16, bt17, bt18 and bt19; Table 1). These are probably ATP binding cassette (ABC) type transporters except for bt2. The bt6, bt16, bt17, bt18 and bt19 show

similarities ranging from 44 to 65% to the periplasmic glutamine binding protein of Salmonella typhimurium, v4tE, v4tF and v4tG, the ABC transporter binding protein and permeases of NGR234. The bt12, bt13 and bt14 show similarity matches to the ribose transport ATP-binding and ABC periplasmic binding proteins. The ABC superfamily is generally made up of multicomponent primary active transtransporting both small porters, capable of and macromolecules response to ATP hydrolysis in (Paulsen et al., 1997). These transporters may influence nitrogen fixation considerably. Two genes (prsDE) coding for protein secretion which showed Fix⁻ defects in nodule bacteroids formed by R. leguminosarum by. viciae and R. leguminosarum by. trifolii in pea and vetch appeared to

116		B. BOBOYE ET AL.
bt7NIFL: SynNIFL:	(332): (390):	L AVMTDVT-E LKT AE QRNHV QA IT DHLTGL LNRPGFEMALDAAIRQTAEDGGELACLLID VAVKEDITKEKQQAEALFH-QAHYDHLTGLPNRILAKDRLQQAIESALRQKHIFGLMFLD
bt7NIFL: SynNIFL:		LDRFKQINDNLGHAAGDEVLRQIAGRIRAQVRGEDKVGRLGGDEFVVLIPASKAQNAALQ LDNFKKVNDTLGHDAGDQLLVEVSERLQRALRQTDTVARLGGDEFLIILDQVSHSRKLMA
bt7NIFL: SynNIFL:		ISERIAAACAEPVIVDGNTLSLSASIGIALYPIQAITAAELLQKSDMAMYARKHNGKNGA IAQRLLRVMRQPVNLQGLEFFVHGSIGITVFPDDGFHADVLLRNADTAMYAAKLAGRNMF
bt7NIFL: SynNIFL:		KLFDPRMASLAQERLKIDTYIEEGLRQDWFDVHLQPIVDLKVGRIAGFEALMRLNHPEHG RFFTPHMNQAAQQRMAIESELRQGLSRQEFQILYQPIVSLESGQIVGAEALMRWHNRLLG
bt7NIFL: SynNIFL:		VL PP ADI IRVAEETGAI LRI GE RIFEKAVAHL A RLT S VP G LENAYLA VNFSPLQ FCPK-L TV PP DQF I PI AEEVG LIVEL GE WLLDNVCCQA A HWH S AL G EQTFWVS VN V SPRQ LKDSYF
bt7NIFL: SynNIFL:		PASTVSTLMKWGITPSRIVIEITEAVLMHHSPDIRDVLGALSSAGMKIALDDFGTGYSSL VAILQGFLQRYQVRPEWLELEITENLILEENGDLLKNLSDLEEENIALSLDDFGTGYSSL
bt7NIFL: SynNIFL:		SYLVHFPVNIIKIDQAFTRSLTDESEMVRRRVRKLVAGIHTVAKELNCQVVAEGIETEEQ NYLRKFNFNSLKIDRSFVELLPHDNNTVGL-VRAIIAMAHHLELKVIAEGIETPEQ
bt7NIFL: SynNIFL:		LNALLSLDVNSGQGY (764) WNFLRLQGCDYGQGY (818)

Figure 4. Comparison of amino acid sequence of protein bt7NIFL with the homologous protein (SynNIFL) from the nitrogen-fixing cyanobacterium, *Synechocystis* species. Amino acid numbers in the protein corresponding to the first and the last residues in the alignments shown are presented in parentheses. Identical residues are in upper-case letters.

be involved in the formation of an ABC-type transporter (Finnie et al., 1997; Kröl and Skorupska, 1997).

The bt2 is another type of transporter having 59% homology with *Saccharomyces cerevisiae* Na⁺-PO₄ cotransporter type III fragment (NPT2) of sodium-dependent phosphate transport integral membrane protein. The Na⁺-PO₄ cotransporter (NPT2) play a role in active transport of phosphate into cells via sodium cotransport which belongs to the anion-cation symporters (ACS) family. These ACS are widely distributed in nature occurring in gram-negative and gram-positive bacteria, and in both animal and fungal eukaryotic kingdoms (Stephanie et al., 1998). From the sequence data obtained in this study, it is suspected that this cotransporter may be involved in the exchange of sodium and/or phosphate between the bacteroids and the cells of cv. Peking.

The ORF bt16 possesses 56% similarity to the *nif*E gene of *Azotobacter vinelandii* as against 47% similarity it shows to ABC transporter, Y4tE. This ORF bt16 and ORF bt7 may be directly involved in nitrogen fixation. The *nif*E gene (ORF bt16) lies within the Fix⁺ segment (Fig. 3). The *nif*E is involved in the synthesis of nitrogenase molybdenumiron (MoFe) cofactor. The MoFe component of nitrogenase (dinitrogenase) is directly involved in the final step of dinitrogen reduction to ammonia. Since NGR234 possesses a copy of this gene on its symbiotic plasmid (Freiberg et al., 1997), the dinitrogenase on the pBTBX may com-

plements that of the wild-type NGR234 to establish an effective symbiosis with *G. max* cv. Peking.

The ORF bt7 encodes nitrogen fixation positive activator protein. This protein exhibits a similarity to the nifL of Synechocystis species, a nitrogen fixing cyanobacterium (Fig. 4). The nifL is a nif-specific regulatory gene which with nifA is involved in the global nitrogen regulatory (Ntr) system which controls nif genes expression in Klebsiella pneumoniae in response to environmental oxygen (Roelvinic and van den Bos, 1989; Fischer, 1994). Generally in rhizobial species aerobiosis directly interferes with NifA activity, the nifA is sensitive to oxygen in vivo. In K. pneumoniae, NifL is required for this control. The nifL also regulates the activity of NifA in response to nitrogen conditions in K. pneumoniae, a control mechanism that is not found in rhizobia (Fischer, 1994). It is assumed that, in addition to the activity of nifA in NGR234, the regulation of nitrogen fixation in the transconjugant, NGR234(pBTBX) is at least partially under the control of NifL. It is also suspected that the nifL homologue on the pBTBX renders the transconjugant NGR234(pBTBX) insensitive to nitrogen nutrient supply to the bacteroids by the cv. Peking cells, thereby enabling the bacterium to fix nitrogen effectively.

A gcvA (ORF bt8) homologue is located on the DNA. A comparison of the deduced amino acid sequence of ORF bt8 revealed homology to GCVA, a transcriptional

					****	***	****	*****	**									
bt8:	LPPLNA	LRMF	ESS	ARHLN	FRVAS	EELC	SVTQG	AVAQQV	RALEOH	LNTR	LFC	RRA	RG	LE:	LTE	AGRR	(MK F	LQRA
GevA:	LPPLNA	LRVF	DAA	ARHLS	FTRA	EELI	TVTOA	AVSHQI	KSLEDF	LGLK	LFF	RRN	IRS	LL	LTE	EGQS	(ELC	IKEI
LysR :	MAAVNLRH	EIF	HAV	MTAGS	LTEA	HLL	ITSQP	TVSREL	ARFEKV	IGLK	LFE	RVF	RGR	LH	-PT	VQGLI	RLFE	EVQR
NodD :	MRFKGLDLNL	LVAL	DAL	MTERK	LTAA	RSI	NLSQE	AMSAAI	GRLRAY	FNDE	LFI	MQQ)RR	L-	VPT	PRAE	ALAF	AVRE
AmpR :	MTRSYLPLNS	LRAF	EAA	ARHLS	FTHA	IEL	IVTHS	AISQHV	KTLEQH	LNCO	LFV	RVS	GRG	LM	-LT	TEGEI	NLLE	VLND
	354	434	4	3 333 3	34 5	4 34	33 4	4 34	44	3	55	4	4 :	5	43		3 3	
Consensus :	PLN	LR F	Α.	ARHLS	FT A	a el	VTQ	AVS	LE	N	LF	R	R	L	LI	•	LP	
bt8 :	LSLISDATOE	LK	PAT	TVVTI	SVTP	FAAI	KWLIE	RLGKFS	DSNADT	QVQV	LAC	NGI	LAN	FQ	SDG	VDLA	VRQI	KPPF
GcvA :	FSQLTEATRK.	LQAR	SAK	GALTV	SLLP	SFAI	HWLVE	RLSSFN	SAYPGI	DVRI	QAV	DR	<u>)</u> ED	KL	ADD	VDVA	IFYG	RGNW
LysR :	SWYGLDRIVS	AAES	LRE	FROGE	LSIA	CLPV	FŞQSI	TLPQLLC	PFLAR-	YPDV	SL	VIV	PQE	SP	LLE	EWLS	AQRI	IDLGL
NodD :	ALHIQLSVIA	WDPL	VPA	ESDRE	FRIV	LSDF	MTLVI	FFERVIR	RVAREA	PGVS	FEI	1-11	HVN	IDD	PDE	RLRS	GDLI	FLIL
AmpR :	SFDRIAGMLD	RFAN	H	RAQEK	TKIC	VGT	FATG	/LFSQLE	DFRRG-	YPHI	DL)LS:	THN	INR	VDE	AAEG]	DYTI
		3	3		3		3		3				3	3	4			
Consensus :		A	Α		I		L		A				1	N	D			
bt8:	GPGLTGELLF	PMRF	TAV	CSPTI	VA-E	QIR	rvedi	TRHVLL	HDAHGM	-WPV	FLE	ERAG	GVA	AD	VRT	LKSL	RFSI	ISSLA
GcvA :	-PGLRVEKLY	AEYI	LPV	CSPLI	LTGE	KPLK	TPEDI	LAKHTLI	HDASRR	DWQ1	YT	RQL	GLN	I-H	IINV	QQGP	IFSI	ISAMV
LysR:	TETLHTPAGT	ERTE	LLS	LDEVC	V-LP	PGHP	LAVKI	KVLTPDD	FOGENY	ISLS	BRTI	DSY	RQL	LD	QLE	TEHO	VKRI	MIVE
NodD :	PDOFMSATHP	SAKL	FEL	KLVCV	GCPS	QQL	RGKLS	SLKRFMS	MGHVAA	MFGF	TL	(PS)	IEQ)W	I	LLEH	GFKI	RVEI
AmpR :	RYGGGAWHGT	EAEF	LCH	IAPLAP	LCTP	DIA	ASLHS	SPADILR	FTLLRS	YRRD)EW1	raw.	MQA	AG	;	E	HPPS	PTHR
-	22		2												2.2	2	1	
	22		2											55	55	2	J	
Consensus :	GL		L											AE)VL	L	F	
Consensus : Bt8 :	GL IDAAVSGQGI	ALA	L	LVEDDI	LAAGF	LCRP	LDFA	VTDELGI	FYIVHPF	RSPH	KAG	HVR	SMI	AD	NLLI	L	F	(291)
Consensus : Bt8 : GcvA :	GL IDAAVSGQGI LQAAIHGQGV	ALA'	L CEA:	LVEDDI MAQSE	LAAGF I EAGF	LCRP LVCP	LDFA	VTDELGI LVSKNAI	FYIVHPF FYLVCHI	RSPHI DSQAI	KAG ELG	HVR KIA	SMI AFI	AD RD RQ	NILI	L AQSHG AKAAA	F	(291) (305)
Consensus : Bt8 : GcvA : LysR :	GL IDAAVSGQGI LQAAIHGQG\ THSAASVCAN	ALA ALA IVRA	L TEA: NNVI GVG	LVEDDI MAQSE ISVVN	laagf I Eagf Pltai	LCRP LVCP DYAP	LDFA FNDV SGLV	VTDELGI LVSKNAJ VRRFSIJ	FYIVHPF FYLVCHI AVPFTVS	SPH DSQA SLIR	kag Elg Phr	HVR KIA PSS	smi Afi Alv	AD RD RQ VQ	NLLI NLLI NILI A	L AQSHG AKAAA	F	(291) (305) . (300)
Consensus : Bt8 : GcvA : LysR : NodD :	GL IDAAVSGQGI LQAAIHGQGV THSAASVCAN VVPGFNSIPI	ala Alai Vrai Glig	L TEA: NNVI GVG GTN	LVEDDI MAQSE ISVVN RIATL	laagf I Eagf Pltai Plllv	LCRF LVCF DYAF RHFF	LDFA FNDV SGLV	VTDELGI LVSKNAJ VRRFSIJ LQIVDH	FYIVHPF FYLVCHI AVPFTVS PLPPLSI	SPH SQA SLIR FTEA	kag Elg Phr Lqw	HVR KIA PSS PLL	SMI AFI ALV	AE RDV RQV VQJ SDI	NLLI NLLI NILI A P	L AQSHG AKAAA	F	(291) (305) . (300) (300)
Consensus : Bt8 : GcvA : LysR : NodD : AmpR ;	GL IDAAVSGQGI LQAAIHGQGV THSAASVCAN VVPGFNSIPN VMVFDSSVTN	ala Valai Vra GLQ ILEAI	L IEA: NNVI GVG GTN AQA	LVEDDI MAQSE ISVVN RIATL GVGIA	LAAGF I EAGF PLTAI PLLLV I APVI	LCRP LVCP DYAA RHFI MFTH	LDFA FNDV SGLV PTIP	VTDELGI LVSKNAJ VRRFSIJ LQIVDH ERIVQP	Fyivhpf Fylvchi Avpftys Plpplsi Fatqiei	SPH SQA SLIR FTEA	kag Elg Phr Low Wlt	HVR KIA PSS PLL RLQ	SMI AFI ALV HN:	AD RD RD RQ RQ RQ RQ RQ RQ RQ RQ RQ RQ RQ RQ RQ	VLL VLL WILL A P TPA.	L AQSHG AKAAA	F	(291) (305) . (300) (300) (291)
Consensus : Bt8 : GcvA : LysR : NodD : AmpR :	GL IDAAVSGQGI LQAAIHGQGV THSAASVCAN VVPGFNSIP VMVFDSSVTN 3 3	ALA ALA IVRA ILLQ ILEA 3 33	L IEA: NVI GVG GTN AQA	LVEDDI MAQSE: ISVVN RIATL GVGIA:	LAAGF I EAGF PLTAI PLLLV I APVI	LCRP LVCP DYAA RHFI MFTH	PLDFA PFNDV ASGLV	VTDELGI LVSKNAJ VRRFSIJ LQIVDH ERIVQPI	FYIVHPF FYLVCHI AVPFTVS PLPPLSI FATQIEI	SPHI SQA SLIR FTEA LGSY	kag Elg Phr LQW Wlt	HVR KIA PSS PLL RLQ	SMI AFI ALV HNI	AD RDV RQV SDI AE	VL VLL VILL VILL A P P	L AQSHG AKAAA	F	(291) (305) . (300) (300) (291)

Figure 5. Multiple alignments of the amino acid sequence encoded by ORF bt8 with some LysR family proteins. GcvA, LysR, NodD and AmpR sequences are from *E. coli*, *E. coli*, Bradyrhizobia, *Enterobacter cloacae* respectively. Residue number corresponding to the last residue in the protein shown is presented in parenthesis. Numbers below the alignments represent the number of identical residues at a position where three or more matches are found. Helix-turn-helix residue position (asterisked) was identified based on the consensus motif (LTAAARALHLSQPAISRAIA; Henikoff et al., 1988) for LysR family proteins. Gaps introduced to make the best alignments are indicated with hyphens.

regulator. The GCVA functions as both a positive (by glycine) and negative (by purine, inosine) regulator of the glycine cleavage operon in *E. coli* (Wilson and Stauffer, 1994). It belongs to the LysR family. Transcriptional regulators, NodD and SyrM commonly found in rhizobia belong to the LysR family protein. This protein encoded by ORF bt8 has 291 amino acid residues containing a putative HTH DNA binding motif (Fig. 5). The hypothetical protein encoded by the ORF may therefore be involved in the transcriptional regulation of the genes upstream and/or downstream. Transcriptional regulators are host-range determinants in rhizobia-legume interaction.

The role played by the gcvA homologue located on the pBTBX in the interaction of NGR234(pBTBX) with cv. Peking is possibly similar to that of NodD and SyrM in regulating the biosynthesis of specific Nod factor required for host recognition and efficient nodulation of the soybean. This is substantiated by the fact that *nod*G (ORF bt9) homologue lies adjacent to the gcvA homologue (ORF bt8)

on the pBTBX. The nodD genes control the first level of host specificity. The role played by nodG has been shown in certain rhizobial strains. Tn5 insertion mutation in nodG gene of R. meliloti resulted to a reduction in the number of nodules and a delay in nodule appearance (Horvath et al., 1986). Cloutier et al. (1997) reported reduced number and size of nodules on Astragalus cicer and Onobrychis vicifolia when inoculated with Tn5 nodG mutants of R. spp. strain N33, a Canadian high arctic rhizobial species. Therefore, ORF bt9, a nodG homologue is proposed to be involved in the synthesis of Nod factor in NGR234(pBTBX); possibly specifically in reduction reaction involved in the metabolism of fatty acids. The bt9 encoded a protein which might endowed the NGR234(pBTBX) with the ability to efficiently nodulate cv. Peking relative to the wild-type NGR234 which formed root-like structures. Another transcriptional regulator found on this DNA fragment has homology to GNTR transcriptional repressor of Escherichia coli. This protein

belongs to Lac1 family of transcriptional regulators. It negatively controls the induction of gluconate genes (*gnt*RKU) of the Gnt1 system (Tong et al., 1996).

Methyl-accepting chemotaxis proteins (MCP) similar to the MCPs of *Rhodobacter capsulatus* and *Mycobacterium tuberculosis* are potentially encoded by ORFs bt14 and bt29. The MCPs are involved in motility. Motility confers a selective advantage on rhizobia in competition against nonmotile strains (Ames and Bergman, 1981; Caetano-Anollès et al., 1988). The presence of *mcp* homologues on DNA in addition to the chemoreceptor genes in NGR234 may confer a selective advantage on the NGR234(pBTBX) transconjugant over other strains during its symbiotic interaction with soybean cv. Peking.

Recombinase, replication initiation protein, NADH-FMN oxidoreductase (encoded by snaC) and phosphoglycerate mutase are encoded by the DNA fragment. Recombinase (Cre) is part of a two components (Lox-Cre) of the bacteriophage P1 site-specific recombination system. It is essential for establishment of prophage and viral vegetative growth in a recA host (Sternberg et al., 1986). Phosphoglycerate mutase reversibly catalyzes the migration of phosphate ester from C3 to C2 in the conversion of 3-phosphoglycerate to 2phosphoglycerate in glycolysis (Brock et al., 1984), a reaction which may contribute to the building up of sugar subunits during Nod factor synthesis important in the early stage of the symbiosis or in ATP generation coupled to the reduction of nitrogen.

This DNA sequence has shown that R. fredii USDA257 contains many genes encoding a large amount of theoretical proteins with potential roles assigned to them. This can be used to tackle problems of great importance in biotechnology, particularly where the manipulation of certain proteins may be of specific interest to legume yields. This is of special relevance in the case of R. species NGR234 that is promiscus, nodulating and/or fixing nitrogen on many legumes across the world. The use of this rhizobium in the development of inoculant will require the increase in its ability to nodulate and fix nitrogen on many more legumes; hence the significance of this sequencing to harness necessary genes.

Acknowledgement

We are grateful to the Nigeria and Switzerland Governments for funding this work.

REFERENCES

- Ames, P. and Bergman, K. 1981. Competitive advantage provided by bacterial motility in the formation of nodules by *Rhizobium meliloti. Journal of Bacteriology* 148: 728–729.
- Balatti, P.A. and Pueppke, S.G. 1992. Identification of North American soybean lines that form nitrogen-fixing nodules with

Rhizobium fredii USDA257. Canadian Journal of Plant Science 72: 49–55.

- Borofsky, M. 1995. GeneMark, version 2.3. Georgia Institute of Technology, School of Biology, Atlanta, GA, USA.
- Brock, T.D., Smith, D.W., and Madigan, M.T. 1984. Biology of Microorganisms. Fourth edition. Prentice-Hall Int., Inc. pp. 108-113.
- Caetano-Anollés, G., Wall, L.G., Micheli, A.T.D., Macchi, E.M., Bauer, W.D., and Favelukes, G. 1988. Role of motility and chemotaxis in efficiency of nodulation by *Rhizobium meliloti*. *Plant Physiology* 86: 1228–1235.
- Cloutier, J., Laberge, S., and Antoun, H. 1997. Sequence and mutational analysis of the 6.7-kb region containing nodAFEG genes of *Rhizobium* species strain N33: Evidence of DNA rearrangements. *Molecular Plant Microbe Interaction* 10: 401– 406.
- Cooper, J.E. 2007. Early interactions between legumes and rhizobia: disclosing complexity in a molecular dialogue. *Journal of Applied Microbiology* **103**: 1355–1365.
- Debellé, F., Moulin, L., Mangin, B., Dénarié, J., and Boivin, C. 2001. Nod genes and Nod signals and the evolution of the *Rhizobium*-legume symbiosis. *Acta Biochimica Polonica* 48: 359–365.
- Fellay, R., Rochepeau, P., Rélic, B., and Broughton, W.J. 1995b. Signals to and emanating from *Rhizobium* largely control symbiotic specificity. Histopathological, Biochemical, Genetic and Molecular Bases. Vol. 1: *Prokaryotes*. Singh, U.S. Singh, R.P., and Khomoto, K., eds. Pergamon Elsevier Science Ltd., Oxford. pp. 199–220.
- Finnie, C., Hartley, N.M., Findlay, K.C., and Downie, J.A. 1997. The *Rhizobium leguminosarum prsDE* genes are required for secretion of several proteins, some of which influence nodulation, symbiotic nitrogen fixation and exopolysaccharide modification. *Molecular Microbiology* 25: 135–146.
- Fischer, H.M. 1994. Genetic regulation of nitrogen fixation in rhizobia. *Microbiology Review* 58: 352-386.
- Freiberg, C., Fellay, R., Bairoch, A., Broughton, W.J., Rosenthal, A., and Perret, X. 1997. Molecular basis of symbiosis between *Rhizobium* and legumes. *Nature* 387: 394–401.
- Freiberg, C., Perret, X., Broughton, W.J., and Rosenthal, A. 1996. Sequencing the 500kb GC-rich symbiotic replicon of *Rhizobium* species NGR234 using dye terminators and thermostable "Sequenase": a beginning. *Genome Research* 6: 590-600.
- Hanahan, D. 1983. Studies on transformation of Escherichia coli with plasmids. Journal of Molecular Biology 166: 557-580.
- Hanin, M., Jabbouri, S., Broughton, W.J., Fellay, R., and Quesada-Vincens, D. 1998. Molecular aspects of host-specific nodulation. In: *Plant-Microbe Interactions*. G.X. and Keen, N.T., eds. American Phytopathology Society, St. Paul, MN, USA. pp. 1–29.
- Henikoff, S., Haughn, G.W., Calvo, J.M., and Wallace, J.C. 1988. A large family of bacterial activator proteins. *Proceedings of* the National Academy of Science, USA 85: 6602-6606.
- Horvath, B., Kondorosi, E., John, M., Schmidt, J., Torok, I., Gyorgypal, Z., Barabas, I., Wieneke, U., Schell, J., and Kondorosi, A. 1986. Organization, structure and symbiotic function of *Rhizobium meliloti* nodulation genes determining host specificity for alfalfa. *Cell* 46: 335–343.
- Keyser, H.H., Bohlool, B.B., Hu, T.S., and Weber, D.F. 1982. Fast-growing rhizobia isolated from root nodules of soybean. *Science* **215**: 1631–1632.
- Kröl, J. and Skorupska, A. 1997. Identification of genes in Rhizobium leguminosarum bv. trifolii whose products are

homologous to a family of ATP-binding proteins. *Microbiology* UK 143: 1389–1394.

- Lewin, A., Rosenberg, C., Meyer, Z.A.H., Wong, C.H., Nelson, L., Manen, J-F., Stanley, J., Dowling, D.N., Dénaire, J., and Broughton, W.J. 1987. Multiple host-specificity loci of the broad host-range *Rhizobium* species NGR234 selected using the widely compatible legume *Vigna unguiculata*. *Plant Molecular Biology* 8: 447–459.
- Paulsen, I.T., Beness, A.M., and Saier, M.H. Jr. 1997. Computerbased analyses of the protein constituents of transport systems catalyzing export of complex carbohydrates in bacteria. *Microbiology* 143: 2685–2699.
- Perret, X., Staehelin, C., and Broughton, W.J. 2000. Molecular basis of symbiotic promiscuity. *Molecular Biology Review* 64: 180-201.
- Pueppke, S.G. and Broughton, W.J. 1999. Rhizobium sp. strain NGR234 and R. fredii USDA257 share exceptionally broad, nested host ranges. Molecular Plant Microbe Interaction 12: 293-318.
- Rélic, B., Perret, X., Estrada-Garcia, M.T., Kopcinska, J., Golinowski, W., Krishnan, H.B., Pueppke, S.G., and Broughton, W.J. 1994. Nod factors of *Rhizobium* are a key to the legume door. *Molecular Microbiology* 13: 171–178.
- Roelvinic, P. and van den Bos, R.C. 1989. Regulation of nitrogen fixation in diazotrophs: the regulatory *nifA* gene and its characteristics. *Acta Botanica Neerlandica* **38**: 233–252.
- Sambrook, J., Fritsch, E.F., and Maniatis, T.A. 1989. Molecular Cloning: A Laboratory Manual. 2nd ed. Cold Spring Harbor Laboratory, Cold Spring Harbor, New York. pp. 136–147.

- Shaw, L.J., Morris, P., and Hooker, J.E. 2006. Perception and modification of plant flavonoid signals by rhizosphere. microorganisms. *Environmental Microbiology* 8: 1867-1880.
- Steinkellner, S., Lendzemo, V., Langer, I., Schweiger, P., Khaosaad, T., Toussaint, J.P., and Vierheilig, H. 2007. Flavonoids and strigolactones in root exudates as signals in symbiotic and pathogenic plant-fungus interactions. *Molecules* 12: 1290–1306.
- Stephanie, S., Pao, I., Paulsen, T., and Saier, M.H.Jr. 1998. Major facilitator superfamily. *Molecular Biological Review* 62: 1–34.
- Sternberg, N., Sauer, B., Hoess, R., and Abremski, K. 1986. Bacteriophage P1 cre gene and its regulatory region evidence for multiple promoters and for regulation by DNA methylation. Journal of Molecular Biology 187: 197-212.
- Tong, S., Porco, A., Isturiz, T., and Conway, T. 1996. Cloning and molecular genetic characterization of the *Escherichia coli* gntR, gntK and gntU genes of Gnt1, the main system for gluconate metabolism. Journal of Bacteriology **178**: 3260– 3269.
- Trinick, M.J. 1980. Relationships amongst the fast-growing Rhizobium of Lablab purpureus, Leucaena leucocephala, Mimosa species, Acacia farnesiana and Sesbaenia grandiflora and their affinities with other Rhizobium groups. Journal of Applied Bacteriology 49: 39-53.
- Wilson, R.L. and Stauffer, G.V. 1994. DNA sequence and characterization of GcvA, a LysR family regulatory protein for the *Escherichia coli* glycine cleavage enzyme system. *Journal* of *Bacteriology* 176: 2862–2868.