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Abstract We consider sample covariance matrices SN = 1
p�

1/2
N X N X∗

N�
1/2
N where

X N is a N × p real or complex matrix with i.i.d. entries with finite 12th moment
and �N is a N × N positive definite matrix. In addition we assume that the spec-
tral measure of �N almost surely converges to some limiting probability distribution
as N → ∞ and p/N → γ > 0. We quantify the relationship between sample
and population eigenvectors by studying the asymptotics of functionals of the type
1
N Tr(g(�N )(SN − z I )−1),where I is the identity matrix, g is a bounded function and
z is a complex number. This is then used to compute the asymptotically optimal bias
correction for sample eigenvalues, paving the way for a new generation of improved
estimators of the covariance matrix and its inverse.
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234 O. Ledoit, S. Péché

1 Introduction and overview of the main results

1.1 Model and results

Consider p independent samples C1, . . . ,C p, all of which are N × 1 real or complex
vectors. In this paper, we are interested in the large-N -limiting spectral properties of
the sample covariance matrix

SN = 1

p
CC∗, C = [C1,C2, . . . ,C p],

when we assume that the sample size p = p(N ) satisfies p/N → γ as N → ∞ for
some γ > 0. This framework is known as large-dimensional asymptotics. Through-
out the paper, 1 denotes the indicator function of a set, and we make the following
assumptions: C = �

1/2
N X N where

– (H1) X N is a N × p matrix of real or complex iid random variables with zero
mean, unit variance, and 12th absolute central moment bounded by a constant B
independent of N and p;

– (H2) the population covariance matrix �N is a N -dimensional random Hermitian
positive definite matrix independent of X N ;

– (H3) p/N → γ > 0 as N → ∞;
– (H4) (τ1, . . . , τN ) is a system of eigenvalues of�N , and the empirical spectral distri-

bution (e.s.d.) of the population covariance given by HN (τ ) = 1
N

∑N
j=1 1[τ j ,+∞)(τ )

converges a.s. to a nonrandom limit H(τ ) at every point of continuity of H . H
defines a probability distribution function, whose support Supp(H) is included in
the compact interval [h1, h2] with 0 < h1 ≤ h2 < ∞.

The aim of this paper is to investigate the asymptotic properties of the eigenvectors
of such sample covariance matrices. In particular, we will quantify how the eigenvec-
tors of the sample covariance matrix deviate from those of the population covariance
matrix under large-dimensional asymptotics. This will enable us to characterize how
the sample covariance matrix deviates as a whole (i.e. through its eigenvalues and its
eigenvectors) from the population covariance matrix. Specifically, we will introduce
bias-correction formulae for the eigenvalues of the sample covariance matrix that can
lead, in future research, to improved estimators of the covariance matrix and its inverse.
This will be developed in the discussion (Sects. 1.2, 1.3) following our main result,
Theorem 2, stated below.

Before exposing our results, we briefly review some known results about the spectral
properties of sample covariance matrices under large-dimensional asymptotics.

In the whole paper we denote by ((λN
1 , . . . , λ

N
N ); (uN

1 , . . . , uN
N )) a system of

eigenvalues and orthonormal eigenvectors of the sample covariance matrix SN = 1
p

�
1
2
N X N X∗

N�
1
2
N . Without loss of generality, we assume that the eigenvalues are sorted

in decreasing order: λN
1 ≥ λN

2 ≥ · · · ≥ λN
N . We also denote by (vN

1 , . . . , v
N
N ) a system

of orthonormal eigenvectors of �N . Superscripts will be omitted when no confusion
is possible.

123



Eigenvectors of sample covariance matrices 235

First the asymptotic behavior of the eigenvalues is now quite well understood. The
“global behavior” of the spectrum of SN for instance is characterized through the
e.s.d., defined as: FN (λ) = N−1∑N

i=1 1[λi ,+∞)(λ), ∀λ ∈ R. The e.s.d. is usually
described through its Stieltjes transform. We recall that the Stieltjes transform of a
nondecreasing function G is defined by mG(z) = ∫ +∞

−∞ (λ − z)−1dG(λ) for all z in
C

+, where C
+ = {z ∈ C, Im(z) > 0}. The use of the Stieltjes transform is motivated

by the following inversion formula: given any nondecreasing function G, one has that
G(b)− G(a) = limη→0+ π−1

∫ b
a Im[mG(ξ + iη)]dξ , which holds if G is continuous

at a and b.
The first fundamental result concerning the asymptotic global behavior of the spec-

trum has been obtained by Marčenko and Pastur [21]. Their result has been later
precised e.g. in [4,14,16,29,30]. In the next Theorem, we recall their result (which
was actually proved in a more general setting than that exposed here) and quote the
most recent version as given in [28].

Let m FN (z) = 1
N

∑N
i=1

1
λi −z = 1

N Tr[(SN − z I )−1], where I denotes the N × N
identity matrix.

Theorem 1 ([21]) Under Assumptions (H1) to (H4), one has that for all z ∈ C
+,

limN→∞ m FN (z) = m F (z) a.s. where

∀z ∈ C
+, m F (z) =

+∞∫

−∞

{
τ
[
1 − γ−1 − γ−1z m F (z)

]
− z
}−1

d H(τ ). (1)

Furthermore, the e.s.d. of the sample covariance matrix given by FN (λ) = N−1
∑N

i=1 1[λi ,+∞)(λ) converges a.s. to the nonrandom limit F(λ) at all points of conti-
nuity of F.

In addition, [11] show that the following limit exists:

∀λ ∈ R − {0}, lim
z∈C+→λ

m F (z) ≡ m̆ F (λ). (2)

They also prove that F has a continuous derivative which is given by F ′ = π−1Im[m̆ F ]
on (0,+∞). More precisely, when γ > 1, limz∈C+→λ m F (z) ≡ m̆ F (λ) exists for all
λ ∈ R, F has a continuous derivative F ′ on all of R, and F(λ) is identically equal
to zero in a neighborhood of λ = 0. When γ < 1, the proportion of sample eigen-
values equal to zero is asymptotically 1 − γ . In this case, it is convenient to introduce
the e.s.d. F = (1 − γ−1)1[0,+∞) + γ−1 F , which is the limit of e.s.d. of the p-
dimensional matrix p−1 X∗

N�N X N . Then limz∈C+→λ m F (z) ≡ m̆ F (λ) exists for all
λ ∈ R, F has a continuous derivative F ′ on all of R, and F(λ) is identically equal to
zero in a neighborhood of λ = 0. When γ is exactly equal to one, further complications
arise because the density of sample eigenvalues can be unbounded in a neighborhood
of zero; for this reason we will sometimes have to rule out the possibility that γ = 1.

Further studies have complemented the a.s. convergence established by the
Marčenko–Pastur theorem (see e.g. [1,5–7,9,15,23] and [2] for more references).
The Marčenko–Pastur equation has also generated a considerable amount of interest
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236 O. Ledoit, S. Péché

in statistics [13,19], finance [17,18], signal processing [12], and other disciplines. We
refer the interested reader to the recent book by Bai and Silverstein [8] for a thorough
survey of this fast-growing field of research.

As we can gather from this brief review of the literature, the Marčenko–Pastur
equation reveals much of the behavior of the eigenvalues of sample covariance matri-
ces under large-dimensional asymptotics. It is also of utmost interest to describe the
asymptotic behavior of the eigenvectors. Such an issue is fundamental to statistics (for
instance both eigenvalues and eigenvectors are of interest in Principal Components
Analysis), communication theory (see e.g. [22]), wireless communication, finance.
The reader is referred to [3], Section 1 for more detail and to [10] for a statistical
approach to the problem and a detailed exposition of statistical applications.

Actually much less is known about eigenvectors of sample covariance matrices. In
the special case where � = I and the Xi j are i.i.d. standard (real or complex) Gauss-
ian random variables, it is well-known that the matrix of sample eigenvectors is Haar
distributed (on the orthogonal or unitary group). To our knowledge, these are the only
ensembles for which the distribution of the eigenvectors is explicitly known. It has
been conjectured that for a wide class of non Gaussian ensembles, the matrix of sample
eigenvectors should be “asymptotically Haar distributed”, provided� = I . Note that
the notion “asymptotically Haar distributed” needs to be defined. This question has
been investigated by [25–27] followed by [3,22]. Therein a random matrix U is said
to be asymptotically Haar distributed if U x is asymptotically uniformly distributed
on the unit sphere for any non random unit vector x . [3,27] are then able to prove the
conjecture under various sets of assumptions on the Xi j ’s.

In the case where � �= I , much less is known (see [3,22]). One expects that the
distribution of the eigenvectors is far from being rotation-invariant. This is precisely
the aspect in which this paper is concerned.

In this paper, we present another approach to study eigenvectors of sample covari-
ance matrices. Roughly speaking, we study “functionals” of the type

∀z ∈ C
+, 	

g
N (z) = 1

N

N∑

i=1

1

λi − z

N∑

j=1

∣
∣u∗

i v j
∣
∣2 × g(τ j )

= 1

N
Tr
[
(SN − z I )−1g(�N )

]
, (3)

where g is any real-valued univariate function satisfying suitable regularity condi-
tions. By convention, g(�N ) is the matrix with the same eigenvectors as�N and with
eigenvalues g(τ1), . . . , g(τN ). These functionals are generalizations of the Stieltjes
transform used in the Marčenko–Pastur equation. Indeed, one can rewrite the Stieltjes
transform of the e.s.d. as:

∀z ∈ C
+, m FN (z) = 1

N

N∑

i=1

1

λi − z

N∑

j=1

∣
∣u∗

i v j
∣
∣2 × 1. (4)

The constant 1 that appears at the end of Equation (4) can be interpreted as a weight-
ing scheme placed on the population eigenvectors: specifically, it represents a flat
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Eigenvectors of sample covariance matrices 237

weighting scheme. The generalization we here introduce puts the spotlight on how
the sample covariance matrix relates to the population covariance matrix, or even any
function of the population covariance matrix.

Our main result is given in the following Theorem.

Theorem 2 Assume that conditions (H1)–(H4) are satisfied. Let g be a (real-val-
ued) bounded function defined on [h1, h2] with finitely many points of discontinuity.
Then there exists a nonrandom function 	g defined over C

+ such that 	g
N (z) =

N−1Tr[(SN − z I )−1g(�N )] converges a.s. to	g(z) for all z ∈ C
+. Furthermore,	g

is given by:

∀z ∈ C
+, 	g(z) =

+∞∫

−∞

{
τ
[
1 − γ−1 − γ−1zm F (z)

]
− z

}−1
g(τ )d H(τ ). (5)

One can first observe that as we move from a flat weighting scheme of g ≡ 1 to any
arbitrary weighting scheme g(τ j ), the integration kernel {τ [1 − 1

γ
− z m F (z)

γ
] − z}−1

remains unchanged. Therefore, our Equation (5) generalizes Marčenko and Pastur’s
foundational result. Actually the proof of Theorem 2 follows from some of the argu-
ments used in [28] to derive the Marchenko–Pastur equation. This proof is postponed
until Sect. 2.

The generalization of the Marčenko–Pastur equation we propose allows to con-
sider a few unsolved problems regarding the overall relationship between sample and
population covariance matrices. Let us consider two of these problems, which are
investigated in more detail in the two next subsections.

The first of these questions is: how do the eigenvectors of the sample covariance
matrix deviate from those of the population covariance matrix? By injecting func-
tions g of the form 1(−∞,τ ) into Equation (5), we quantify the asymptotic relationship
between sample and population eigenvectors. This is developed in more detail in
Sect. 1.2.

Another question is: how does the sample covariance matrix deviate from the pop-
ulation covariance matrix as a whole, and how can we modify it to bring it closer to
the population covariance matrix? This is an important question in Statistics, where
a covariance matrix estimator that improves upon the sample covariance matrix is
sought. By injecting the function g(τ ) = τ into Equation (5), we find the optimal
asymptotic bias correction for the eigenvalues of the sample covariance matrix in
Sect. 1.3. We also perform the same calculation for the inverse covariance matrix (an
object of great interest in Econometrics and Finance), this time by taking g(τ ) = 1/τ .

This list is not intended to be exhaustive. Other applications may hopefully be
extracted from our generalized Marčenko–Pastur equation.

1.2 Sample versus population eigenvectors

As will be made more apparent in Equation (8) below, it is possible to quantify the
asymptotic behavior of sample eigenvectors in the general case by selecting a function
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238 O. Ledoit, S. Péché

g of the form 1(−∞,τ ) in Equation (5). Let us briefly explain why. First of all, note
that each sample eigenvector ui lies in a space whose dimension is growing towards
infinity. Therefore, the only way to know “where” it lies is to project it onto a known
orthonormal basis that will serve as a reference grid. Given the nature of the problem,
the most meaningful choice for this reference grid is the orthonormal basis formed by
the population eigenvectors (v1, . . . , vN ). Thus we are faced with the task of charac-
terizing the asymptotic behavior of u∗

i v j for all i, j = 1, . . . , N , i.e. the projection of
the sample eigenvectors onto the population eigenvectors. Yet as every eigenvector
is identified up to multiplication by a scalar of modulus one, the argument (angle)
of u∗

i v j is devoid of mathematical relevance. Therefore, we can focus instead on its

square modulus
∣
∣u∗

i v j
∣
∣2 without loss of information.

Another issue that arises is that of scaling. Indeed as

1

N 2

N∑

i=1

N∑

j=1

∣
∣
∣u∗

i v j

∣
∣
∣
2 = 1

N 2

N∑

i=1

u∗
i

⎛

⎝
N∑

j=1

v jv
∗
j

⎞

⎠ ui = 1

N 2

N∑

i=1

u∗
i ui = 1

N
,

we study N |u∗
i v j |2 instead, so that its limit does not vanish under large-N asymptotics.

The indexing of the eigenvectors also demands special attention as the dimension
goes to infinity. We choose to use an indexation system where “eigenvalues serve
as labels for eigenvectors”, that is ui is the eigenvector associated to the i th largest
eigenvalue λi .

All these considerations lead us to introduce the following key object:

∀λ, τ ∈ R, 
N (λ, τ ) = 1

N

N∑

i=1

N∑

j=1

|u∗
i v j |2 1[λi ,+∞)(λ)× 1[τ j ,+∞)(τ ). (6)

This bivariate function is right continuous with left-hand limits and nondecreasing
in each of its arguments. It also verifies lim λ→−∞

τ→−∞

N (λ, τ ) = 0 and lim λ→+∞

τ→+∞

N

(λ, τ ) = 1. Therefore, it satisfies the properties of a bivariate cumulative distribution
function.

Remark 1 Our function 
N can be compared with the object introduced in [3]: ∀λ ∈
R, F SN

1 (λ) = ∑N
i=1 |u∗

i xN |2 1[λi ,+∞)(λ), where (xN )N=1,2,... is a sequence of non-
random unit vectors satisfying the non-trivial condition x∗

N (�N −z I )−1xN → m H (z).
This condition is specified so that projecting the sample eigenvectors onto xN effec-
tively wipes out any signature of non-rotation-invariant behavior. The main difference
is that
N projects the sample eigenvectors onto the population eigenvectors instead.

From 
N we can extract precise information about the sample eigenvectors. The
average of the quantities of interest N |u∗

i v j |2 over the sample (resp. population) eigen-
vectors associated with the sample (resp. population) eigenvalues lying in the interval
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Eigenvectors of sample covariance matrices 239

[λ, λ] (resp. [τ , τ ]) is equal to:

∑N
i=1

∑N
j=1 N

∣
∣u∗

i v j
∣
∣2 1[λ,λ](λi )× 1[τ ,τ ](τ j )

∑N
i=1

∑N
j=1 1[λ,λ](λi )× 1[τ ,τ ](τ j )

= 
N (λ, τ )−
N (λ, τ )−
N (λ, τ )+
N (λ, τ )

[FN (λ)− FN (λ)] × [HN (τ )− HN (τ )]
, (7)

whenever the denominator is strictly positive. Since λ and λ (resp. τ and τ ) can be
chosen arbitrarily close to each other (as long as the average in Equation (7) exists),
our goal of characterizing the behavior of sample eigenvectors would be achieved
in principle by determining the asymptotic behavior of 
N . This can be deduced
from Theorem 2 thanks to the inversion formula for the Stieltjes transform: for all
(λ, τ ) ∈ R

2 such that 
N is continuous at (λ, τ )


N (λ, τ ) = lim
η→0+

1

π

λ∫

−∞
Im
[
	

g
N (ξ + iη)

]
dξ, (8)

which holds in the special case where g = 1(−∞,τ ). We are now ready to state our
second main result.

Theorem 3 Assume that conditions (H1)−(H4) hold true and let
N (λ, τ ) be defined

by (6). Then there exists a nonrandom bivariate function 
 such that 
N (λ, τ )
a.s.−→


(λ, τ) at all points of continuity of
. Furthermore, when γ �= 1, the function
 can
be expressed as: ∀(λ, τ ) ∈ R

2, 
(λ, τ ) = ∫ λ
−∞

∫ τ
−∞ ϕ(l, t) d H(t) d F(l), where

∀(l, t) ∈ R
2 ϕ(l, t) =

⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

γ−1lt

(at − l)2 + b2t2 if l > 0

1

(1 − γ )[1 + m̆ F (0) t] if l = 0 and γ < 1

0 otherwise,

(9)

and a (resp. b) is the real (resp. imaginary) part of 1 − γ−1 − γ−1l m̆ F (l).

Equation (9) quantifies how the eigenvectors of the sample covariance matrix deviate
from those of the population covariance matrix under large-dimensional asymptotics.
The result is explicit as a function of m F .

To illustrate Theorem 3, we can pick any eigenvector of our choosing, for example
the one that corresponds to the first (i.e. largest) eigenvalue, and plot how it projects
onto the population eigenvectors (indexed by their corresponding eigenvalues). The
resulting graph is shown in Fig. 1. This is a plot of ϕ(l, t) as a function of t , for
fixed l equal to the supremum of Supp(F). It is the asymptotic equivalent to plotting
N |u∗

1v j |2 as a function of τ j . It looks like a density because, by construction, it must
integrate to one. As soon as the sample size starts to drop below 10 times the number
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Fig. 1 Projection of first sample eigenvector onto population eigenvectors (indexed by their associated
eigenvalues). We have taken H ′ = 1[5,6]

of variables, we can see that the first sample eigenvector starts deviating quite strongly
from the first population eigenvectors. This should have precautionary implications
for principal component analysis (PCA), where the number of variables is often so
large that it is difficult to make the sample size more than ten times bigger.

Obviously, Equation (9) would enable us to draw a similar graph for any sample
eigenvector (not just the first one), and for any γ and H verifying the assumptions of
Theorem 3. Preliminary investigations reveal some unexpected patterns. For example:
one might have thought that the sample eigenvector associated with the median sample
eigenvalue would be closest to the population eigenvector associated with the median
population eigenvalue; but in general this is not true.

1.3 Asymptotically optimal bias correction for the sample eigenvalues

We now bring the two preceding results together to quantify the relationship between
the sample covariance matrix and the population covariance matrix as a whole. As
will be made clear in Equation (12) below, this is achieved by selecting the func-
tion g(τ ) = τ in Equation (5). The objective is to see how the sample covariance
matrix deviates from the population covariance matrix, and how we can modify it to
bring it closer to the population covariance matrix. The main problem with the sam-
ple covariance matrix is that its eigenvalues are too dispersed: the smallest ones are
biased downwards, and the largest ones upwards. This is most easily visualized when
the population covariance matrix is the identity, in which case the limiting spectral
e.s.d. F is known in closed form (see Fig. 2). We can see that the smallest and the
largest sample eigenvalues are biased away from one, and that the bias decreases in γ .
Therefore, a key concern in multivariate statistics is to find the asymptotically optimal
bias correction for the eigenvalues of the sample covariance matrix. As this correction
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Fig. 2 Limiting density of sample eigenvalues, in the particular case where all the eigenvalues of the pop-
ulation covariance matrix are equal to one. The graph shows excess dispersion of the sample eigenvalues.
The formula for this plot comes from solving the Marčenko–Pastur equation for H = 1[1,+∞)

will tend to reduce the dispersion of the eigenvalues, it is often called a shrinkage
formula.

Ledoit and Wolf [20] made some progress along this direction by finding the optimal
linear shrinkage formula for the sample eigenvalues (projecting�N on the two-dimen-
sional subspace spanned by SN and I ). However, shrinking the eigenvalues is a highly
nonlinear problem (as Fig. 3 below will illustrate). Therefore, there is strong reason
to believe that finding the optimal nonlinear shrinkage formula for the sample eigen-
values would lead to a covariance matrix estimator that further improves upon the
Ledoit-Wolf estimator. Theorem 2 paves the way for such a development.

To see how, let us think of the problem of estimating�N in general terms. In order
to construct an estimator of �N , we must in turn consider what the eigenvectors and
the eigenvalues of this estimator should be. Let us consider the eigenvectors first.
In the general case where we have no prior information about the orientation of the
population eigenvectors, it is reasonable to require that the estimation procedure be
invariant with respect to rotation by any p-dimensional orthogonal matrix W . If we
rotate the variables by W , then we would ask our estimator to also rotate by the same
orthogonal matrix W . The class of orthogonally invariant estimators of the covariance
matrix is constituted of all the estimators that have the same eigenvectors as the sample
covariance matrix (see [24], Lemma 5.3). Every rotation-invariant estimator of �N is
thus of the form:

UN DN U∗
N , where DN = Diag(d1, . . . , dN ) is diagonal,

and where UN is the matrix whose i th column is the sample eigenvector ui . This is
the class that we consider.
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Fig. 3 Comparison of the optimal linear versus nonlinear bias correction formulæ. In this example, the
distribution of population eigenvalues H places 20% mass at 1, 40% mass at 3 and 40% mass at 10. The
solid line plots δ(λ) as a function of λ

Our objective is to find the matrix in this class that is closest to the population covari-
ance matrix. In order to measure distance, we choose the Frobenius norm, defined as:
‖A‖F = √

Tr(AA∗) for any matrix A. Thus we end up with the following optimization
problem: minDN diagonal ‖UN DN U∗

N −�N ‖F . Elementary matrix algebra shows that
its solution is:

D̃N = Diag(d̃1, . . . , d̃N ) where ∀i = 1, . . . , N d̃i = u∗
i �N ui .

The interpretation of d̃i is that it captures how the i th sample eigenvector ui relates to
the population covariance matrix �N as a whole.

While UN D̃N U∗
N does not constitute a bona fide estimator (because it depends on

the unobservable �N ), new estimators that seek to improve upon the existing ones
will need to get as close to UN D̃N U∗

N as possible. This is exactly the path that led
Ledoit and Wolf [20] to their improved covariance matrix estimator. Therefore, it is
important, in the interest of developing a new and improved estimator, to characterize
the asymptotic behavior of d̃i (i = 1, . . . , N ). The key object that will enable us to
achieve this goal is the nondecreasing function defined by:

∀x ∈ R, 
N (x) = 1

N

N∑

i=1

d̃i 1[λi ,+∞)(x) = 1

N

N∑

i=1

u∗
i �N ui × 1[λi ,+∞)(x). (10)

When all the sample eigenvalues are distinct, it is straightforward to recover the d̃i ’s
from 
N :
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∀i = 1, . . . , N d̃i = lim
ε→0+


N (λi + ε)−
N (λi − ε)

FN (λi + ε)− FN (λi − ε)
. (11)

The asymptotic behavior of 
N can be deduced from Theorem 2 in the special case
where g(τ ) = τ : for all x ∈ R such that 
N continuous at x


N (x) = lim
η→0+

1

π

x∫

−∞
Im
[
	

g
N (ξ + iη)

]
dξ, g(x) ≡ x . (12)

We are now ready to state our third main result.

Theorem 4 Assume that conditions (H1)–(H4) hold true and let
N be defined as in
(10). There exists a nonrandom function
 defined over R such that
N (x) converges
a.s. to 
(x) for all x ∈ R − {0}. If in addition γ �= 1, then 
 can be expressed as:
∀x ∈ R, 
(x) = ∫ x

−∞ δ(λ) d F(λ), where

∀λ ∈ R, δ(λ) =

⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

λ
∣
∣1 − γ−1 − γ−1λ m̆ F (λ)

∣
∣2

if λ > 0

γ

(1 − γ ) m̆ F (0)
if λ = 0 and γ < 1

0 otherwise.

(13)

By Equation (11) the asymptotic quantity that corresponds to d̃i = u∗
i �N ui is δ(λ),

provided that λ corresponds to λi . Therefore, the way to get closest to the population
covariance matrix (according to the Frobenius norm) would be to divide each sample
eigenvalue λi by the correction factor |1 − γ−1 − γ−1λ m̆ F (λi )|2. This is what we
call the optimal nonlinear shrinkage formula or asymptotically optimal bias correc-
tion.1 Figure 3 shows how much it differs from Ledoit and Wolf’s [20] optimal linear
shrinkage formula. In addition, when γ < 1, the sample eigenvalues equal to zero
need to be replaced by δ(0) = γ /[(1 − γ ) m̆ F (0)].

In a statistical context of estimation, m̆ F (λi ) and m̆ F (0) are not known, so they
need to be replaced by m̆ F̂ (λi ) and m̆ F̂ (0), respectively, where F̂ is some estimator
of the limiting p.d.f. of sample eigenvalues. Research is currently underway to prove
that a covariance matrix estimator constructed in this manner has desirable properties
under large-dimensional asymptotics.

A recent paper [13] introduced an algorithm for deducing the population eigen-
values from the sample eigenvalues using the Marčenko–Pastur equation. But our
objective is quite different, as it is not the population eigenvalues τi = v∗

i �N vi
that we seek, but instead the quantities d̃i = u∗

i �N ui , which represent the diag-
onal entries of the orthogonal projection (according to the Frobenius norm) of the

1 This approach cannot possibly generate a consistent estimator of the population covariance matrix accord-
ing to the Frobenius norm when γ is finite. At best, it could generate a consistent estimator of the projection
of the population covariance matrix onto the space of matrices that have the same eigenvectors as the sample
covariance matrix.
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population covariance matrix onto the space of matrices that have the same eigenvec-
tors as the sample covariance matrix. Therefore the algorithm in [13] is better suited
for estimating the population eigenvalues themselves, whereas our approach is better
suited for estimating the population covariance matrix as a whole.

Monte-Carlo simulations indicate that applying this bias correction is highly ben-
eficial, even in small samples. We ran 10,000 simulations based on the distribution of
population eigenvalues H that places 20% mass at 1, 40% mass at 3 and 40% mass
at 10. We kept γ constant at 2 while increasing the number of variables from 5 to
100. For each set of simulations, we computed the percentage relative improvement
in average loss (PRIAL). The PRIAL of an estimator M of �N is defined as

PRIAL(M) = 100 ×
[

1 − E
∥
∥M − UN D̃N U∗

N

∥
∥2

F

E
∥
∥SN − UN D̃N U∗

N

∥
∥2

F

]

.

By construction, the PRIAL of the sample covariance matrix SN (resp. of UN D̃N U∗
N )

is 0% (resp. 100%), meaning no improvement (resp. meaning maximum attainable
improvement). For each of the 10,000 Monte-Carlo simulations, we consider S̃N ,
which is the matrix obtained from the sample covariance matrix by keeping its eigen-
vectors and dividing its i th eigenvalue by the correction factor |1 − γ−1 − γ−1λi m̆ F

(λi )|2. The expected loss E‖S̃N −UN D̃N U∗
N ‖2

F is estimated by computing its average
across the 10,000 Monte-Carlo simulations. Figure 4 plots the PRIAL obtained in
this way, that is by applying the optimal nonlinear shrinkage formula to the sample
eigenvalues. We can see that, even with a modest sample size like p = 40, we already
get 95% of the maximum possible improvement.

A similar formula can be obtained for the purpose of estimating the inverse of the
population covariance matrix. To this aim, we set g(τ ) = 1/τ in Equation (5) and
define

�N (x) := N−1
N∑

i=1

u∗
i �

−1
N ui × 1[λi ,+∞)(x), ∀x ∈ R.

Theorem 5 Assume that conditions (H1)–(H4) are satisfied. There exists a non-
random function � defined over R, such that �N (x) converges a.s. to �(x) for all
x ∈ R − {0}. If in addition γ �= 1, then � can be expressed as: ∀x ∈ R, �(x) =∫ x
−∞ ψ(λ) d F(λ), where

∀λ ∈ R ψ(λ) =

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

1 − γ−1 − 2γ−1λRe
[
m̆ F (λ)

]

λ
if λ > 0

1

1 − γ
m̆ H (0)− m̆ F (0) if λ = 0 and γ < 1

0 otherwise.

(14)

Therefore, the way to get closest to the inverse of the population covariance matrix
(according to the Frobenius norm) would be to multiply the inverse of each
sample eigenvalue λ−1

i by the correction factor 1 − γ−1 − 2γ−1λi Re[m̆ F (λi )]. This
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Fig. 4 Percentage relative improvement in average loss (PRIAL) from applying the optimal nonlinear
shrinkage formula to the sample eigenvalues. The solid line shows the PRIAL obtained by dividing the i th
sample eigenvalue by the correction factor |1 − γ−1 − γ−1λi m̆ F (λi )|2, as a function of sample size. The
dotted line shows the PRIAL of the Ledoit-Wolf [20] linear shrinkage estimator. For each sample size we
generated 10,000 Monte-Carlo simulations using the multivariate Gaussian distribution. Like in Fig. 3, we
used γ = 2 and the distribution of population eigenvalues H placing 20% mass at 1, 40% mass at 3 and
40% mass at 10

represents the optimal nonlinear shrinkage formula (or asymptotically optimal bias
correction) for the purpose of estimating the inverse covariance matrix. Again, in a
statistical context of estimation, the unknown m̆ F (λi ) needs to be replaced by m̆ F̂ (λi ),
where F̂ is some estimator of the limiting p.d.f. of sample eigenvalues. This question
is investigated in some work under progress.

The rest of the paper is organized as follows. Section 2 contains the proof of The-
orem 2. Section 3 contains the proof of Theorem 3. Section 4 is devoted to the proofs
of Theorems 4 and 5.

2 Proof of Theorem 2

The proof of Theorem 2 follows from an extension of the usual proof of the Marčenko–
Pastur theorem (see e.g. [28,4]). The latter is based on the Stieltjes transform and,
essentially, on a recursion formula. First, we slightly modify this proof to consider
more general functionals	g

N for some polynomial functions g. Then we use a standard
approximation scheme to extend Theorem 2 to more general functions g.

First we need to adapt a Lemma from Bai and Silverstein [4].

Lemma 1 Let Y = (y1, . . . , yN ) be a random vector with i.i.d. entries satisfying:

Ey1 = 0, E|y1|2 = 1, E|y1|12 ≤ B,
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where the constant B does not depend on N. Let also A be a given N × N matrix.
Then there exists a constant K > 0 independent of N , A and Y such that:

E
∣
∣Y AY ∗ − Tr(A)

∣
∣6 ≤ K‖A‖6 N 3.

Proof of Lemma 1 The proof of Lemma 1 directly follows from that of Lemma 3.1
in [4]. Therein the assumption that E|y1|12 ≤ B is replaced with the assumption that
|y1| ≤ ln N .One can easily check that all their arguments carry through if one assumes
that the twelfth moment of y1 is uniformly bounded. ��

Next, we need to introduce some notation. We set RN (z) = (SN − z I )−1 and define
	
(k)
N (z) = N−1Tr[RN (z)�k] for all z ∈ C

+ and integer k. Thus, 	(k)N = 	
g
N if we

take g(τ ) = τ k, ∀τ ∈ R. In particular,	(0)N = m FN . To avoid confusion, the depen-
dency of most of the variables on N will occasionally be dropped from the notation.
All convergence statements will be as N → ∞. Conditions (H1)− (H4) are assumed
to hold throughout.

Lemma 2 One has that ∀z ∈ C
+, 	

(1)
N (z)

a.s.−→ 	(1)(z) where:

	(1)(z) = γ 2

γ − 1 − z m F (z)
− γ.

Proof of Lemma 2 In the first part of the proof, we show that

1 + zm FN (z) = p

N
− 1

N

p∑

k=1

1

1 + (N/p)	(1)N (z)
+ o(1).

Using the a.s. convergence of the Stieltjes transform m FN (z), it is then easy to deduce
the equation satisfied by	(1) in Lemma 2. Our proof closely follows some of the ideas
of [4,28]. Therein the convergence of the Stieltjes transform m FN (z) is investigated.

Let us define Ck = p−1/2
√
� Xk, where Xk is the kth column of X . Then SN =∑p

k=1 CkC∗
k . Using the identity SN − z I + z I = ∑p

k=1 CkC∗
k , one deduces that

1

N
Tr(I + z RN (z)) = 1

N

p∑

k=1

C∗
k RN (z)Ck . (15)

Define now for any integer 1 ≤ k ≤ p

R(k)N (z) := (SN − CkC∗
k − z I )−1.

By the resolvent identity RN (z)− R(k)N (z) = −RN (z)CkC∗
k R(k)N (z), we deduce that

C∗
k RN (z)Ck − C∗

k R(k)N (z)Ck = −C∗
k RN (z)CkC∗

k R(k)N (z)Ck,
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which finally gives that

C∗
k RN (z)Ck = 1

1 + C∗
k R(k)N (z)Ck

C∗
k R(k)N (z)Ck .

Plugging the latter formula into (15), one can write that

1 + zm FN (z) = p

N
− 1

N

p∑

k=1

1

1 + C∗
k R(k)N (z)Ck

. (16)

We will now use the fact that R(k)N and Ck are independent random matrices to estimate
the asymptotic behavior of the last sum in (16). Using Lemma 1, we deduce that

max
k∈{1,...,p}

∣
∣
∣C∗

k R(k)N Ck − 1

p
Tr
(

R(k)N �
) ∣
∣
∣

a.s.→ 0, (17)

as N → ∞. Furthermore, using Lemma 2.6 in [4], one also has that

1

p

∣
∣
∣Tr
[(

RN − R(k)N

)
�
] ∣
∣
∣ ≤ ||�||

py
. (18)

Thus using (18), (17) and (16), one can write that

1 + zm FN (z) = p

N
− 1

N

p∑

k=1

1

1 + (N/p)	(1)N (z)
+ δN , (19)

where the error term δN is given by δN = δ1
N + δ2

N with

δ1
N = 1

N

p∑

k=1

1
p Tr

((
RN − R(k)N

)
�
)

(
1 + 1

p Tr (RN�)
) (

1 + 1
p Tr

(
R(k)N �

))

and

δ2
N = − 1

N

p∑

k=1

C∗
k R(k)N Ck − Tr

(
R(k)N �

)

(
1 + 1

p Tr
(

R(k)N �
)) (

1 + 1
p C∗

k R(k)N Ck

) .

We will now use (18) and (17) to show that δN a.s. converges to 0 as N → ∞.

It is known that FN converges a.s. to the distribution F given by the Marčenko–
Pastur equation (and has no subsequence vaguely convergent to 0). It is proven in
[4] that under these assumptions, there exists m > 0 such that inf N FN ([−m,m]) > 0.
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In particular, there exists δ > 0 such that

inf
N

Im
[∫

1

λ− z
d FN (λ)

]

≥
∫

y

2λ2 + 2x2 + y2 d FN (λ) ≥ δ.

From this, we deduce that

∣
∣
∣
∣1 + 1

p
Tr(�RN )

∣
∣
∣
∣ ≥ Im

[
1

p
Tr(�RN )

]

≥ h1

γ
δ.

Using (18) we also get that

∣
∣
∣
∣1 + 1

p
Tr
(
�R(k)N

)∣∣
∣
∣ ≥ Im

[
1

p
Tr
(
�R(k)N

)]

≥ h1

2γ
δ.

We first consider δ1
N . Thus one has that

∣
∣
∣δ1

N

∣
∣
∣ ≤ 2||�||γ 2

N yh2
1δ

2
= O(1/N ). (20)

We now turn to δ2
N . Using the a.s. convergence (17), it is not hard to deduce that

δ2
N → 0, a.s.

This completes the proof of Lemma 2. ��
Lemma 3 For every k = 1, 2, . . . the limit limN→∞	

(k)
N (z) := 	(k)(z) exists and

satisfies the recursion equation

∀z ∈ C
+, 	(k+1)(z) =

⎡

⎣z	(k)(z)+
+∞∫

−∞
τ kd H(τ )

⎤

⎦×
[

1 + 1

γ
	(1)(z)

]

. (21)

Proof of Lemma 3 The proof is inductive, so we assume that formula (21) holds for
any integer smaller than or equal to q for some given integer q. We start from the
formula

Tr
(
�q + z�q RN (z)

) = Tr
(
�q RN (z)SN

) =
p∑

k=1

C∗
k�

q RN (z)Ck .

Using once more the resolvent identity, one gets that

C∗
k�

q RN (z)Ck = C∗
k�

q R(k)N (z)Ck

1 + C∗
k R(k)N (z)Ck

,
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which yields that

1

N
Tr
(
�q + z�q RN (z)

) =
p∑

k=1

C∗
k�

q R(k)N (z)Ck

1 + C∗
k R(k)N (z)Ck

. (22)

It is now an easy consequence of the arguments developed in the case where q = 0 to
check that

max
k∈{1,...,p}

∣
∣
∣C∗

k R(k)N (z)Ck − Tr (�RN (z))
∣
∣
∣+

∣
∣
∣C∗

k�
q R(k)N (z)Ck − Tr

(
�q+1 RN (z)

) ∣
∣
∣

converges a.s. to zero. Using the recursion assumption that limN→∞	
(k)
N (z) exists,

∀k ≤ q, one can deduce that limN→∞	
(q+1)
N (z) exists and that the limit 	(q+1)(z)

satisfies

⎡

⎣z	(q)(z)+
+∞∫

−∞
τ qd H(τ )

⎤

⎦×
[

1 + 1

γ
	(1)(z)

]

= 	(q+1)(z).

This finishes the proof of Lemma 3. ��
Lemma 4 Theorem 2 holds when the function g is a polynomial.

Proof of Lemma 4 Given the linearity of the problem, it is sufficient to prove that
Theorem 2 holds when the function g is of the form: ∀τ ∈ R, g(τ ) = τ k , for any
nonnegative integer k. In the case where k = 0, this is a direct consequence of Theorem
1.1 in [28].

The existence of a function 	(k) defined on C
+ such that 	(k)N (z)

a.s.−→ 	(k)(z) for
all z ∈ C

+ is established by Lemma 2 for k = 1 and by Lemma 3 for k = 2, 3, . . .
Therefore, all that remains to be shown is that Equation (5) holds for k = 1, 2, . . .

We will first show it for k = 1. From the original Marčenko–Pastur equation we
know that:

1 + zm F (z) =
+∞∫

−∞

τ
[
1 − γ−1 − γ−1z m F (z)

]

τ
[
1 − γ−1 − γ−1z m F (z)

]− z
d H(τ ). (23)

From Lemma 2 we know that:

	(1)(z) = γ 2

γ − 1 − z m F (z)
− γ = 1 + z m F (z)

1 − γ−1 − γ−1z m F (z)
,

yielding that

1 + zm F (z) = 	(1)(z)

1 + γ−1	(1)(z)
. (24)
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Combining Equations (23) and (24) yields:

+∞∫

−∞

τ
[
1 − γ−1 − γ−1z m F (z)

]

τ
[
1 − γ−1 − γ−1z m F (z)

]− z
d H(τ ) = 	(1)(z)

1 + γ−1	(1)(z)
. (25)

From Lemma 2, we also know that:

1 + γ−1	(1)(z) = 1

1 − γ−1 − γ−1z m F (z)
. (26)

Putting together Equations (25) and (26) yields the simplification:

	(1)(z) =
+∞∫

−∞

1

τ
[
1 − γ−1 − γ−1z m F (z)

]− z
τ d H(τ ),

which establishes that Equation (5) holds when g(τ ) = τ,∀τ ∈ R.
We now show by induction that Equation (5) holds when g(τ ) = τ k for k = 2, 3, . . .

Assume that we have proven it for k − 1. Thus the recursion hypothesis is that:

	(k−1)(z) =
+∞∫

−∞

1

τ
[
1 − γ−1 − γ−1z m F (z)

]− z
τ k−1 d H(τ ). (27)

From Lemma 3 we know that:

	(k)(z) =
⎡

⎣z	(k−1)(z)+
+∞∫

−∞
τ k−1d H(τ )

⎤

⎦×
[

1 + 1

γ
	(1)(z)

]

. (28)

Combining Equations (27) and (28) yields:

	(k)(z)

1 + 1
γ
	(1)(z)

= z	(k−1)(z)+
+∞∫

−∞
τ k−1d H(τ )

=
+∞∫

−∞

{
z

τ
[
1 − γ−1 − γ−1z m F (z)

]− z
+ 1

}

τ k−1 d H(τ )

=
+∞∫

−∞

1 − γ−1 − γ−1z m F (z)

τ
[
1 − γ−1 − γ−1z m F (z)

]− z
τ k d H(τ ). (29)
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Putting together Equations (26) and (29) yields the simplification:

	(k)(z) =
+∞∫

−∞

1

τ
[
1 − γ−1 − γ−1z m F (z)

]− z
τ k d H(τ ),

which proves that the desired assertion holds for k. Therefore, by induction, it holds
for all k = 1, 2, 3, . . . This completes the proof of Lemma 4. ��

Lemma 5 Theorem 2 holds for any function g that is continuous on [h1, h2].

Proof of Lemma 5 We shall deduce this from Lemma 4. Let g be any function that
is continuous on [h1, h2]. By the Weierstrass approximation theorem, there exists a
sequence of polynomials that converges to g uniformly on [h1, h2]. By Lemma 4,
Theorem 2 holds for every polynomial in the sequence. Therefore it also holds for the
limit g. ��

We are now ready to prove Theorem 2. We shall prove it by induction on the number
k of points of discontinuity of the function g on the interval [h1, h2]. The fact that it
holds for k = 0 has been established by Lemma 5. Let us assume that it holds for some
k. Then consider any bounded function g which has k + 1 points of discontinuity on
[h1, h2]. Let ν be one of these k + 1 points of discontinuity. Construct the function:
∀x ∈ [h1, h2], ρ(x) = g(x)× (x − ν). The function ρ has k points of discontinuity
on [h1, h2]: all the ones that g has, except ν. Therefore, by the recursion hypothesis,
	
ρ
N (z) = N−1Tr

[
(SN − z I )−1ρ(�N )

]
converges a.s. to

	ρ(z) =
+∞∫

−∞

1

τ
[
1 − γ−1 − γ−1z m F (z)

]− z
ρ(τ) d H(τ ) (30)

for all z ∈ C
+. It is easy to adapt the arguments developed in the proof of Lemma 3

to show that limN→∞	
g
N (z) exists (as g is bounded) and is equal to:

	g(z) = 	ρ(z)− [
1 + γ−1	(1)(z)

] ∫ +∞
−∞ g(τ )d H(τ )

z
[
1 + γ−1	(1)(z)

]− ν
(31)

for all z ∈ C
+. Plugging Equation (30) into Equation (31) yields:

	g(z) =
∫ +∞
−∞

{
τ−ν

τ[1−γ−1−γ−1z m F (z)]−z
− [

1 + γ−1	(1)(z)
]}

g(τ ) d H(τ )

z
[
1 + γ−1	(1)(z)

]− ν
.
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Using Equation (26) we get:

	g(z) =
∫ +∞
−∞

{
τ−ν

τ[1−γ−1−γ−1z m F (z)]−z
− 1

1−γ−1−γ−1z m F (z)

}
g(τ ) d H(τ )

z
1−γ−1−γ−1z m F (z)

− ν

=
∫ +∞
−∞

z−ν[1−γ−1−γ−1z m F (z)
]

{τ[1−γ−1−γ−1z m F (z)]−z}×[1−γ−1−γ−1z m F (z)]
g(τ ) d H(τ )

z−ν[1−γ−1−γ−1z m F (z)]
1−γ−1−γ−1z m F (z)

=
+∞∫

−∞

1

τ
[
1 − γ−1 − γ−1z m F (z)

]− z
g(τ ) d H(τ ),

which means that Equation (5)) holds for g. Therefore, by induction, Theorem 2 holds
for any bounded function g with a finite number of discontinuities on [h1, h2]. ��

3 Proof of Theorem 3

At this stage, we need to establish two Lemmas that will be of general use for deriving
implications from Theorem 2.

Lemma 6 Let g denote a (real-valued) bounded function defined on [h1, h2] with
finitely many points of discontinuity. Consider the function �g

N defined by:

∀x ∈ R, �
g
N (x) = 1

N

N∑

i=1

1[λi ,+∞)(x)
N∑

j=1

∣
∣u∗

i v j
∣
∣2 × g(τ j ).

Then there exists a nonrandom function �g defined on R such that �g
N (x)

a.s.→ �g(x)
at all points of continuity of �g. Furthermore,

�g(x) = lim
η→0+

1

π

x∫

−∞
Im
[
	g (λ+ iη)

]
dλ (32)

for all x where �g is continuous.

Proof of Lemma 6 The Stieltjes transform of�g
N is the function	g

N defined by Equa-
tion (3). From Theorem 2, we know that there exists a nonrandom function	g defined
over C

+ such that 	g
N (z)

a.s.→ 	g(z) for all z ∈ C
+. Therefore, Bai and Silverstein’s

[4] Equation (2.5) implies that: limN→∞�N (x) ≡ �g(x) exists for all x where �g

is continuous. Furthermore, the Stieltjes transform of �g is 	g . Then Equation (32)
is simply the inversion formula for the Stieltjes transform. ��
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Lemma 7 Under the assumptions of Lemma 6, if γ > 1 then for all (x1, x2) ∈ R
2:

�g(x2)−�g(x1) = 1

π

x2∫

x1

lim
η→0+ Im

[
	g(λ+ iη)

]
dλ. (33)

If γ < 1 then Equation (33) holds for all (x1, x2) ∈ R
2 such that x1x2 > 0.

Proof of Lemma 7 One can first note that limz∈C+→x Im[	g(z)] ≡ Im[	g(x)] exists
for all x ∈ R (resp. all x ∈ R − {0}) in the case where γ > 1 (resp. γ < 1). This
is obvious if x ∈ Supp(F). In the case where x /∈ Supp(F), then it can be deduced

from Theorem 4.1 in [11] that
x

1 − γ−1(1 + xm̆ F (x))
/∈ Supp(H), which ensures

the desired result. Now	g is the Stieltjes transform of�g . Therefore, Silverstein and
Choi’s [11] Theorem 2.1 implies that:

�g is differentiable at x and its derivative is:
1

π
Im
[
	g(x)

]

for all x ∈ R (resp. all x ∈ R − {0}) in the case where γ > 1 (resp. γ < 1). When we
integrate, we get Equation (33). ��

We are now ready to proceed with the proof of Theorem 3. Let τ ∈ R be given and
take g = 1(−∞,τ ). Then we have:

∀z ∈ C
+, 	

1(−∞,τ )

N (z) = 1

N

N∑

i=1

1

λi − z

N∑

j=1

∣
∣u∗

i v j
∣
∣2 × 1(−∞,τ ).

Since the function g = 1(−∞,τ ) has a single point of discontinuity (at τ ), Theorem 2

implies that ∀z ∈ C
+, 	

1(−∞,τ )

N (z)
a.s.→ 	1(−∞,τ ) (z), where:

∀z ∈ C
+, 	1(−∞,τ ) (z) =

τ∫

−∞

1

t
[
1 − γ−1 − γ−1z m F (z)

]− z
d H(t). (34)

Remember from Equation (8) that:


N (λ, τ ) = lim
η→0+

1

π

λ∫

−∞
Im
[
	

1(−∞,τ )

N (l + iη)
]

dl.

Therefore, by Lemma 6, limN→∞
N (λ, τ ) exists and is equal to:


(λ, τ) = lim
η→0+

1

π

λ∫

−∞
Im
[
	1(−∞,τ ) (l + iη)

]
dl, (35)
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for every (λ, τ ) ∈ R
2 where 
 is continuous. We first evaluate 
(λ, τ) in the case

where γ > 1, so that the limiting e.s.d. F is continuously differentiable on all of R.
Plugging (34) into (35) yields:


(λ, τ) = lim
η→0+

1

π

λ∫

−∞
Im

⎧
⎨

⎩

τ∫

−∞

1

t [a(l, η)+ ib(l, η)] − l − iη
d H(t)

⎫
⎬

⎭
dl

= 1

π

λ∫

−∞

τ∫

−∞
lim
η→0+ Im

{
1

t [a(l, η)+ ib(l, η)] − l − iη

}

d H(t) dl, (36)

where a(l, η)+ib(l, η) = 1−γ−1 −γ−1(l +iη)m F (l +iη). The last equality follows
from Lemma 7. Notice that:

Im
{

1

t [a(l, η)+ ib(l, η)] − l − iη

}

= η − b(l, η)t

[a(l, η)t − l]2 + [b(l, η)t − η]2 .

Taking the limit as η → 0+, we get:

a(l, η) −→ a = Re
[

1 − 1

γ
− lm̆ F (l)

γ

]

, b(l, η) −→ b = Im
[

1 − 1

γ
− lm̆ F (l)

γ

]

.

The inversion formula for the Stieltjes transform implies: ∀l ∈ R, F ′(l) = 1
π

Im[m̆ F

(l)], therefore b = −πγ−1l F ′(l). Thus we have:

lim
η→0+ Im

{
1

t [a(l, η)+ ib(l, η)] − l − iη

}

= πγ−1lt

(at − l)2 + b2t2 × F ′(l). (37)

Plugging Equation (37) back into Equation (36) yields that:


(λ, τ) =
λ∫

−∞

τ∫

−∞

γ−1lt

(at − l)2 + b2t2 d H(t) d F(l),

which was to be proven. This completes the proof of Theorem 3 in the case where
γ > 1.

In the case where γ < 1, much of the arguments remain the same, except for an
added degree of complexity due to the fact that the limiting e.s.d. F has a discontinuity
of size 1 − γ at zero. This is handled by using the following three Lemmas.

Lemma 8 If γ �= 1, F is constant over the interval (0, (1 − 1√
γ
)2h1).

Proof of Lemma 8 If H placed all its weight on h1, then we could solve the Marčenko–
Pastur equation explicitly for F , and the infimum of the support of the limiting e.s.d. of
nonzero sample eigenvalues would be equal to (1 −γ−1/2)2 × h1. Since, by Assump-
tion (H4), H places all its weight on points greater than or equal to h1, the infimum
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of the support of the limiting e.s.d. of nonzero sample eigenvalues has to be greater
than or equal to (1 − γ−1/2)2 × h1 (see Equation (1.9b) in Bai and Silverstein [7]).
Therefore, F is constant over the open interval (0, (1 − γ−1/2)2 × h1). ��

Lemma 9 Let κ > 0 be a given real number. Letμ be a complex holomorphic function
defined on the set {z ∈ C

+ : Re[z] ∈ (−κ, κ)}. If μ(0) ∈ R then:

lim
ε→0+

⎧
⎨

⎩
lim
η→0+

1

π

+ε∫

−ε
Im
[

−μ(ξ + iη)

ξ + iη

]

dξ

⎫
⎬

⎭
= μ(0).

Proof of Lemma 9 For all ε in (0, κ), we have:

lim
η→0+

1

π

+ε∫

−ε
Im
[

− 1

ξ + iη

]

dξ = lim
η→0+

1

π

+ε∫

−ε

η

ξ2 + η2 dξ

= lim
η→0+

1

π

[

arctan

(
ε

η

)

− arctan

(−ε
η

)]

= 1. (38)

Since μ is continuously differentiable, there exist δ > 0, β > 0 such that |μ′(z)| ≤
β,∀z, |z| ≤ δ. Using Taylor’s theorem, we get that |μ(z) − μ(0)| ≤ β|z|, ∀|z| ≤ δ.

Now we can perform the following decomposition:

lim
ε→0+

⎧
⎨

⎩
lim
η→0+

1

π

+ε∫

−ε
Im
[

−μ(ξ + iη)

ξ + iη

]

dξ

⎫
⎬

⎭

= lim
ε→0+

⎧
⎨

⎩
lim
η→0+

1

π

+ε∫

−ε
Im
[

−μ(ξ + iη)− μ(0)+ μ(0)

ξ + iη

]

dξ

⎫
⎬

⎭

= μ(0) lim
ε→0+

⎧
⎨

⎩
lim
η→0+

1

π

+ε∫

−ε
Im
[

− 1

ξ + iη

]

dξ

⎫
⎬

⎭

+ lim
ε→0+

⎧
⎨

⎩
lim
η→0+

1

π

+ε∫

−ε
Im
[

−μ(ξ + iη)− μ(0)

ξ + iη

]

dξ

⎫
⎬

⎭

= μ(0)+ lim
ε→0+

⎧
⎨

⎩
lim
η→0+

1

π

+ε∫

−ε
Im
[

−μ(ξ + iη)− μ(0)

ξ + iη

]

dξ

⎫
⎬

⎭
,
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where the last equality follows from Equation (38). The second term vanishes because:

∣
∣
∣
∣
∣
∣

lim
ε→0+

⎧
⎨

⎩
lim
η→0+

1

π

+ε∫

−ε
Im
[

−μ(ξ + iη)− μ(0)

ξ + iη

]

dξ

⎫
⎬

⎭

∣
∣
∣
∣
∣
∣

≤ lim
ε→0+

⎧
⎨

⎩
lim
η→0+

1

π

+ε∫

−ε

∣
∣
∣
∣
μ(ξ + iη)− μ(0)

ξ + iη

∣
∣
∣
∣ dξ

⎫
⎬

⎭

≤ lim
ε→0+

⎧
⎨

⎩
lim
η→0+

1

π

+ε∫

−ε
β dξ

⎫
⎬

⎭
= 0.

This yields Lemma 9. ��

Lemma 10 Assume that γ < 1. Let g be a (real-valued) bounded function defined on
[h1, h2] with finitely many points of discontinuity. Then:

lim
ε→0+ lim

η→0+
1

π

+ε∫

−ε

+∞∫

−∞
Im
{

g(τ )

τ
[
1−γ−1−γ−1(ξ+iη)m F (ξ+iη)

]−ξ−iη

}

d H(τ )dξ

=
+∞∫

−∞

g(τ )

1 + m̆ F (0)τ
d H(τ ),

where F = (1 − γ−1)1[0,+∞) + γ−1 F, and m̆ F (0) = limz∈C+→0 m F (z).

Proof of Lemma 10 One has that

∀z ∈ C
+, 1 + zm F (z) = γ + γ zm F (z), (39)

τ
[
1 − γ−1 + γ−1zm F (z)

]
− z = −z

[
1 + m F (z)τ

]
. (40)

Define:

μ(z) =
+∞∫

−∞

g(τ )

1 + m F (z)τ
d H(τ ).
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Equation (40) yields:

lim
ε→0+ lim

η→0+
1

π

+ε∫

−ε

+∞∫

−∞
Im
{

g(τ )

τ
[
1−γ−1−γ−1(ξ+iη)m F (ξ+iη)

]−ξ−iη

}

d H(τ )dξ

= lim
ε→0+ lim

η→0+
1

π

+ε∫

−ε
Im

⎧
⎨

⎩
− 1

ξ + iη

+∞∫

−∞

g(τ )

1 + m F (ξ + iη)τ
d H(τ )

⎫
⎬

⎭
dξ

= lim
ε→0+ lim

η→0+
1

π

+ε∫

−ε
Im
{

−μ (ξ + iη)

ξ + iη

}

=
+∞∫

−∞

g(τ )

1 + m̆ F (0)τ
d H(τ ),

where the last equality follows from Lemma 9. ��
We are now ready to complete the proof of Theorem 3 for the case where γ < 1.

The inversion formula for the Stieltjes transform implies that:

lim
ε→0+ [
(ε, τ)−
(−ε, τ )]

= lim
ε→0+ lim

η→0+
1

π

+ε∫

−ε
Im
[
	1(−∞,τ ) (ξ + iη)

]
dξ

= lim
ε→0+ lim

η→0+
1

π

+ε∫

−ε
Im

⎧
⎨

⎩

τ∫

−∞

d H(t)

t
[
1−γ−1−γ−1(ξ+iη)m F (ξ+iη)

]−ξ−iη

⎫
⎬

⎭
dξ

=
τ∫

−∞

1

1 + m̆ F (0) t
d H(t), (41)

where the last equality follows from Lemma 10. By Lemma 8, we know that for λ in a
neighborhood of zero: F(λ) = (1 − γ )1[0,+∞)(λ). From Equation (41) we know that
for λ in a neighborhood of zero:


(λ, τ) =
λ∫

−∞

τ∫

−∞

1

1 + m̆ F (0) t
d H(t) d1[0,+∞)(l).

Comparing the two expressions, we find that for λ in a neighborhood of zero:


(λ, τ) =
λ∫

−∞

τ∫

−∞

1

(1 − γ )
[
1 + m̆ F (0) t

] d H(t) d F(l).
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Therefore, if we define ϕ as in (9), then we can see that for λ in a neighborhood of
zero:


(λ, τ) =
λ∫

−∞

τ∫

−∞
ϕ(l, t) d H(t) d F(l). (42)

From this point onwards, the fact that Equation (42) holds for all λ > 0 can be estab-
lished exactly like we did in the case where γ > 1. This completes the proof of
Theorem 3. ��

4 Proofs of Theorems 4 and 5

4.1 Proof of Theorem 4

Lemma 2 shows that ∀z ∈ C
+, 	(1)N (z)

a.s.→ 	(1)(z), where:

∀z ∈ C
+, 	(1)(z) = γ

1 − γ−1 − γ−1z m F (z)
− γ. (43)

Remember from Equation (12) that:


N (x) = lim
η→0+

1

π

x∫

−∞
Im
[
	
(1)
N (λ+ iη)

]
dλ.

Therefore, by Lemma 6, limN→∞
N (x) exists and is equal to:


(x) = lim
η→0+

1

π

x∫

−∞
Im
[
	(1)(λ+ iη)

]
dλ (44)

for every x ∈ R where 
 is continuous. We first evaluate 
(x) in the case where
γ > 1. Plugging Equation (43) into Equation (44) yields:


(x) = lim
η→0+

1

π

x∫

−∞
Im
[

γ

1 − γ−1 − γ−1(λ+ iη)m F (λ+ iη)
− γ

]

dλ

= lim
η→0+

x∫

−∞

π−1Im [(λ+ iη)m F (λ+ iη)]
∣
∣1 − γ−1 − γ−1(λ+ iη)m F (λ+ iη)

∣
∣2

dλ

=
x∫

−∞
lim
η→0+

π−1Im [(λ+ iη)m F (λ+ iη)]
∣
∣1 − γ−1 − γ−1(λ+ iη)m F (λ+ iη)

∣
∣2

dλ

=
x∫

−∞

π−1Im
[
λm̆ F (λ)

]

∣
∣1 − γ−1 − γ−1λm̆ F (λ)

∣
∣2

dλ (45)
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=
x∫

−∞

λF ′(λ)
∣
∣1 − γ−1 − γ−1λm̆ F (λ)

∣
∣2

dλ

=
x∫

−∞

λ
∣
∣1 − γ−1 − γ−1λ m̆ F (λ)

∣
∣2

d F(λ),

where Equation (45) made use of Lemma 7. This completes the proof of Theorem 4
in the case where γ > 1.

In the case where γ < 1, much of the arguments remain the same. The inversion
formula for the Stieltjes transform implies that:

lim
ε→0+ [
(ε)−
(−ε)]

= lim
ε→0+ lim

η→0+
1

π

+ε∫

−ε
Im
[
	(1)(ξ + iη)

]
dξ

= lim
ε→0+ lim

η→0+
1

π

+ε∫

−ε
Im

⎧
⎨

⎩

+∞∫

−∞

τ d H(τ )

τ
[
1−γ−1−γ−1(ξ+iη)m F (ξ+iη)

]−ξ−iη

⎫
⎬

⎭
dξ

=
+∞∫

−∞

τ

1 + m̆ F (0) τ
d H(τ ), (46)

where the last equality follows from Lemma 10. Notice that for all z ∈ C
+:

+∞∫

−∞

τ

1 + m F (z) τ
d H(τ ) = 1

m F (z)

+∞∫

−∞

1 + m F (z) τ − 1

1 + m F (z) τ
d H(τ )

= 1

m F (z)
− 1

m F (z)

+∞∫

−∞

1

1 + m F (z) τ
d H(τ ). (47)

Plugging Equation (40) into Equation (47) yields:

+∞∫

−∞

τ

1 + m F (z) τ
d H(τ )

= 1

m F (z)
+ z

m F (z)

+∞∫

−∞

1

1 − γ−1 + γ−1zm F (z)
d H(τ )

= 1 + z m F (z)

m F (z)
, (48)
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where the last equality comes from the original Marčenko–Pastur equation. Plugging
Equation (39) into Equation (48) yields:

+∞∫

−∞

τ

1 + m F (z) τ
d H(τ ) = γ

1 + z m F (z)

m F (z)
.

Taking the limit as z ∈ C
+ → 0, we get:

+∞∫

−∞

τ

1 + m̆ F (0) τ
d H(τ ) = γ

m̆ F (0)
.

Plugging this result back into Equation (46) yields:

lim
ε→0+ [
(ε)−
(−ε)] = γ

m̆ F (0)
. (49)

By Lemma 8, we know that forλ in a neighborhood of zero: F(λ) = (1−γ )1[0,+∞)(λ).
From Equation (49) we know that for x in a neighborhood of zero:


(x) =
x∫

−∞

γ

m̆ F (0)
d1[0,+∞)(λ).

Comparing the two expressions, we find that for x in a neighborhood of zero:


(x) =
x∫

−∞

γ

(1 − γ ) m̆ F (0)
d F(λ).

Therefore, if we define δ as in (13), then we can see that for x in a neighborhood of
zero:


(x) =
x∫

−∞
δ(λ) d F(λ). (50)

From this point onwards, the fact that Equation (50) holds for all x > 0 can be estab-
lished exactly like we did in the case where γ > 1. Thus the proof of Theorem 4 is
complete. ��
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4.2 Proof of Theorem 5

As

∀x ∈ R, �N (x) = 1

N

N∑

i=1

1[λi ,+∞)(x)
N∑

j=1

∣
∣u∗

i v j
∣
∣2

τ j
,

∀z ∈ C
+, 	

(−1)
N (z) = 1

N

N∑

i=1

1

λi − z

N∑

j=1

∣
∣u∗

i v j
∣
∣2

τ j
,

and using the inversion formula for the Stieltjes transform, we obtain:

∀x ∈ R, �N (x) = lim
η→0+

x∫

−∞
Im
[
	
(−1)
N (λ+ iη)

]
dλ.

Since the function g(τ ) = 1/τ is continuous on [h1, h2], Theorem 2 implies that
∀z ∈ C

+,	(−1)
N (z)

a.s.→ 	(−1)(z), where:

∀z ∈ C
+, 	(−1)(z) =

+∞∫

−∞

τ−1

τ
[
1 − γ−1 − γ−1z m F (z)

]− z
d H(τ ). (51)

Therefore, by Lemma 6, limN→∞�N (x) exists and is equal to:

�(x) = lim
η→0+

1

π

x∫

−∞
Im
[
	(−1)(λ+ iη)

]
dλ, (52)

for every x ∈ R where � is continuous. We first evaluate �(x) in the case where
γ > 1, so that F is continuously differentiable on all of R.

In the notation of Lemma 5, we set ν equal to zero so that ∀τ ∈ R, ρ(τ ) =
g(τ )× τ = 1. Then Equation (31) implies that:

∀z ∈ C
+, 	(−1)(z) = m F (z)− [

1 + γ−1	(1)(z)
] ∫ +∞

−∞ τ−1d H(τ )

z
[
1 + γ−1	(1)(z)

] .

Using Equation (26), we obtain:

∀z ∈ C
+, 	(−1)(z) = m F (z)

z

[
1 − γ−1 − γ−1z m F (z)

]
− 1

z

+∞∫

−∞
τ−1d H(τ ).

(53)
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Thus for all λ ∈ R:

lim
η→0+ Im

[
	−1(λ+ iη)

]
= 1

λ
Im
{

m̆ F (λ)
[
1 − γ−1 − γ−1λ m̆ F (λ)

]}

= 1

λ

{
1 − γ−1 − 2γ−1λRe

[
m̆ F (λ)

]}× Im
[
m̆ F (λ)

]

= 1

λ

{
1 − γ−1 − 2γ−1λRe

[
m̆ F (λ)

]}× πF ′(λ).

Plugging this result back into Equation (52) yields:

�(x) = 1

π

x∫

−∞
lim
η→0+ Im

[
	(−1)(λ+ iη)

]
dλ

=
x∫

−∞

1 − γ−1 − 2γ−1λRe
[
m̆ F (λ)

]

λ
d F(λ),

where we made use of Lemma 7. This completes the proof of Theorem 5 in the case
where γ > 1.

We now turn to the case where γ < 1. Equation 52 implies that:

lim
ε→0+ [�(ε)−�(−ε)] = lim

ε→0+ lim
η→0+

1

π

+ε∫

−ε
Im
[
	(−1)(ξ + iη)

]
dξ. (54)

Plugging Equation (39) into Equation (53) yields for all z ∈ C
+:

	(−1)(z) = −m F (z)m F (z)− 1

z

+∞∫

−∞

1

τ − 0
d H(τ )

= 1

z

[
1 − γ − γ zm F (z)

]
m F (z)− 1

z
m̆ H (0).

Plugging this result into Equation (54), we get:

lim
ε→0+ [�(ε)−�(−ε)] = lim

ε→0+ lim
η→0+

1

π

+ε∫

−ε
Im
{

−μ(ξ + iη)

ξ + iη

}

dξ,

where μ(z) = −[1 − γ − γ zm F (z)]m F (z) + m̆ H (0). Therefore, by Lemma 9, we
have:

lim
ε→0+ [�(ε)−�(−ε)] = μ(0) = −(1 − γ )m̆ F (0)+ m̆ H (0). (55)
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By Lemma 8, we know that forλ in a neighborhood of zero: F(λ) = (1−γ )1[0,+∞)(λ).
From Equation (55) we know that for x in a neighborhood of zero:

�(x) =
x∫

−∞

[−(1 − γ )m̆ F (0)+ m̆ H (0)
]

d1[0,+∞)(λ).

Comparing the two expressions, we find that for x in a neighborhood of zero:

�(x) =
x∫

−∞

[

−m̆ F (0)+ 1

1 − γ
m̆ H (0)

]

d F(λ).

Therefore, if we define ψ as in (14), then we can see that for x in a neighborhood of
zero:

�(x) =
x∫

−∞
ψ(λ) d F(λ). (56)

From this point onwards, the fact that Equation (56) holds for all x > 0 can be estab-
lished exactly like we did in the case where γ > 1. Thus the proof of Theorem 5 is
complete. ��
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