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Abstract In this paper we present new data on the spatial

variability of peridotite composition across a kilometer-

scale mantle shear zone within the Lanzo massif (Western

Alps, Italy). The shear zone separates the central from the

northern part of the massif. Plagioclase peridotite shows

gradually increasing deformation towards the shear zone,

from porphyroclastic to mylonitic textures in the central

body, while the northern body is composed of porphyro-

clastic rocks. The peridotite displays a large range of

compositions, from fertile peridotite to refractory harz-

burgite and dunite. Deformed peridotites (proto-mylonite

and mylonites) tend to be compositionally more homoge-

neous and fertile than weakly deformed peridotites. The

composition of most plagioclase peridotites show rather

high and constant (Ce/Yb)N ratios, and YbN that cannot be

explained by any simple melting model. Instead,

refertilization modeling, consisting of melt increments

from spinel peridotite sources, particularly with E-MORB

melt, reasonably reproduces the plagioclase peridotite

whole rock composition. Combined with constraints from

Ce–Nb and Ce–Th systematics, we speculate that perido-

tites such as those from Lanzo record pervasive referti-

lization processes in the thermal boundary layer. In this

scenario, mantle shear zones might act as important areas

of melt focusing in the upper mantle that separates the

thermal boundary layer from the conductively cooled

mantle.
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Melt rock reaction � Melt focusing � Whole rock
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Introduction

Studies on orogenic peridotites and mantle xenoliths pro-

posed that melt migration and reaction is a major process in

controlling the textures, mineralogy and geochemistry of

mantle peridotite (e.g. Van der Wal and Bodinier 1996;

Godard et al. 2000; Lenoir et al. 2000, 2001; Dijkstra et al.

2002; Piccardo et al. 2007a; Bodinier et al. 2008). For

example, in Oman, the high-temperature mantle deforma-

tion and the distance from the Moho are correlated with the

chemical composition of peridotite (Godard et al. 2000). In

the Ronda massif a relatively sharp recrystallization front

has been defined, interpreted to be formed during a mag-

matic event associated with infiltration of asthenospheric

melts (Van der Wal and Bodinier 1996; Lenoir et al. 2001).

Peridotites from the Massif Central originate from different

levels marked by two sub-continental lithospheric mantle

domains, texturally and chemically distinct (refractory
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Géosciences Montpellier UMR 5243, CC60 Université
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coarse granular and fertile protogranular peridotite,

respectively, e.g. Lenoir et al. 2000). Extensive referti-

lization is intrinsically related to lithospheric thinning

processes in most of the Western Tethyan plagioclase

peridotite (e.g. Müntener et al. 2004; Piccardo et al.

2004b). Recent studies on the Lanzo massif established that

liquids produced by the upwelling asthenosphere migrated

into the overlying peridotite and modified chemistry and

texture (e.g. Müntener and Piccardo 2003). These examples

illustrate that the chemical composition and texture of

peridotite should track the interplay between melt perco-

lation/impregnation and deformation processes.

Textures and mineral chemistry of many plagioclase

peridotites are inconsistent with a residual origin and are

interpreted as the product of impregnation with melt

(Dijkstra et al. 2002; Müntener and Piccardo 2003). Sub-

stantial amounts of clinopyroxene, orthopyroxene, olivine

and Al-phases (spinel, plagioclase) reacted with, and par-

tially recrystallized from migrating melt (e.g. Müntener

and Piccardo 2003; Seyler et al. 2003). Such a refertiliza-

tion process was discussed by Elthon (1992) and Niu et al.

(1997) for some abyssal peridotites and by Dick (1989) for

some oceanic plagioclase peridotites. Recently, referti-

lization by basaltic or refractory melts has also been

invoked for abyssal spinel peridotites (Hellebrand et al.

2002; Kelemen et al. 2004), which conventionally have

been interpreted as simple residues of partial melting

(Johnson et al. 1990; Johnson and Dick 1992). The distri-

bution and abundance of melt-modified spinel and plagio-

clase peridotites within the ophiolitic peridotites of the

Ligurian Tethys indicate that substantial volumes of pris-

tine lithospheric mantle underwent these melt-related pro-

cesses along the axial zone of the future basin (Piccardo

et al. 2004a, b, 2007a). Reactive porous flow and referti-

lization are two important processes that are able to sub-

stantially modify textures, mineral modes and chemical

compositions of peridotites (Van der Wal and Bodinier

1996; Bedini et al. 1997; Godard et al. 2000; Dijkstra et al.

2001; Müntener and Piccardo 2003; Piccardo et al. 2004b).

The presence of small amounts of (interstitial) melt plays a

key role in mantle dynamics. Indeed deformation is

localized where melt is formed and/or transported. Exper-

imental and numerical studies showed that during defor-

mation melt is focused in an anastomosing network

enclosing ‘‘melt-poor’’ lenses (Holtzman et al. 2003; Katz

et al. 2006; Holtzman and Kohlstedt 2007). The presence

of melt is known to substantially decrease the resistance to

stress in solid state-flow (Hirth and Kohlstedt 1995),

promotes recrystallization and may produce weakening.

Permanent grain size reduction might occur in melt- and

H2O-free peridotites (Warren and Hirth 2006), but also in

peridotites that were affected by melt-rock reaction (e.g.

Dijkstra et al. 2002). Magmatic crystallization and shearing

are frequently associated and suggest that fault systems and

shear zones act as conduits for ascending magma (e.g.

Hutton and Reavy 1992; Brown 1994; Rosenberg and

Handy 2005; Kaczmarek and Müntener 2008).

The high temperature Alpine peridotites play a key role

in identifying these processes. They have been classically

considered as slightly depleted upper mantle material that

rose as asthenospheric diapirs (Boudier and Nicolas 1972),

and were interpreted to represent a possible source rock for

MOR basalts (Beccaluva et al. 1984; Frey et al. 1985).

Nicolas and Dupuy (1984) suggested that ophiolitic pla-

gioclase lherzolite could be residual peridotite impregnated

by a liquid with N-MORB composition. The heterogeneous

composition of the oceanic lithosphere is influenced by a

variety of melting processes (equilibrium vs. near frac-

tional) and transport processes (pervasive porous flow vs.

flow in chemically isolated conduits) (e.g. Nicolas 1989;

Kelemen et al. 1995, 1997).

In this paper we present geochemical data on plagioclase

peridotite, and its spatial relationship with an actively

deforming shear zone. Our results indicate that the most

deformed peridotite rocks display fertile compositions with

overall less variability than porphyroclastic peridotites. We

use simple geochemical and numerical models and discuss

possible mechanisms to explain these observations. We test

the refertilization hypothesis of the Lanzo massif during its

exhumation. We propose that actively deforming high

temperature shear zones in the mantle support melt

focusing, and may act as important permeability barrier.

Geological setting

The Lanzo massif is located north-west of Torino, at the Po

plain boundary (Fig. 1). The Lanzo massif is dominated by

relatively fresh plagioclase peridotite surrounded by a

serpentinite belt (Boudier and Nicolas 1972; Boudier

1978). Previous studies mapped the entire massif with the

regional distribution of pyroxenite layering, high temper-

ature foliations and gabbroic dikes (Boudier 1978; Boudier

and Nicolas 1980). The massif has been subdivided into

three parts, the northern, the central and the southern

bodies. Each body was separated by shear zones oriented

NW-SE and related to grain size reduction (\200 lm)

(Boudier 1972, 1978; Boudier and Nicolas 1972, 1980). In

the northern and central parts of the massif, pyroxenites

and high temperature foliation are mostly discordant while

in the southern body they are concordant (Fig. 1). We

focus our study on the northern shear zone, where the high

temperature foliation and the layering are parallel; in

contrast, the southern shear zone is discordant to the high

temperature foliation and strongly serpentinized, indicating

that the southern shear zone could be younger than the high
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temperature deformation. The Lanzo massif is character-

ized by a regional-scale chemical and structural variation

from the central to the northern part (Bodinier 1988;

Kaczmarek and Müntener 2008). The shear zone between

the northern and the central part of the massif displays five

different types of microstructures (Fig. 2). In the field, the

northern body appears to be much less deformed and is

mapped as porphyroclastic peridotite (Figs. 2, 3). In the

central part, the deformation increases and the grain size

decreases from southwest to northeast, which corresponds

to a change from porphyroclastic to mylonite with ultra-

mylonite bands peridotite (Figs. 2, 3 and see more petro-

graphic details in Kaczmarek and Müntener 2008).

The porphyroclastic texture is characterized by a bimodal

grain size distribution, containing weakly deformed

porphyroclasts (olivine, orthopyroxene and clinopyroxene)

with grain sizes exceeding 1 cm, embedded in a matrix of

recrystallized grains (*0.5 mm grain size) made of oliv-

ine, orthopyroxene, plagioclase, clinopyroxene and spinel.

The plagioclase is generally associated with pyroxenes as

recrystallized grains with 120� triple junctions or is sur-

rounding Cr-spinel. The porphyroclastic fine-grained tex-

ture displays a decreasing abundance and decreasing grain

size of porphyroclasts (\1 cm), and increasing proportions

of matrix minerals (Fig. 3). The proto-mylonite texture is

characterized by further grain size reduction of porphyro-

clasts (*0.5 mm) and the first occurrence of elongated

orthopyroxene (aspect ratios exceeding 10:1). The matrix is

composed of olivine, pyroxenes, spinel, and plagioclase

with grain size ranging from 50 to 200 lm. The mylonite

texture displays extremely stretched orthopyroxene (aspect

ratios up to 20:1) and a fine-grained matrix (5–50 lm)

composed of pyroxenes, olivine, spinel and plagioclase.

The plagioclase grains are larger than the other grains in

the matrix with a grain size of 50 lm. The mylonite with

ultra-mylonite bands (UMB) contains elongated porphyr-

oclasts (olivine and pyroxenes) embedded in a very fine-

grained matrix (5–15 lm) composed of olivine, pyroxenes,

plagioclase, spinel and Ti-hornblende. The latter is present

in most samples, in general around clinopyroxene, and is

more abundant in the mylonite, and in particular in

the ultra-mylonite bands and localized in the bands. In the

proto-mylonite, mylonite and mylonite with UMB, the

plagioclase is not always associated with spinel, but may

form aggregates parallel to the foliation or isolated grains

in the matrix. Porphyroclastic rocks are mapped south of

the shear zone in the central body (porphyroclastic central:

Pc) and form the bulk of the northern body (porphyro-

clastic north: Pn). The transition from the mylonite with

ultra-mylonite bands to the northern porphyroclastic peri-

dotites is relatively sharp. Strain is heterogeneously dis-

tributed and locally varies over small distances from a few

tens to hundreds of meters. The contact area is located in

the alluvial plain, and the distance between mylonite with

UMB and porphyroclastic peridotite outcrops is less than

100 m (Fig. 2). The massif contains numerous MORB-type

gabbroic dikes, which are preferentially found in the

southern and central bodies (Figs. 1, 2). They are weakly

deformed and discordant to the main foliation. U–Pb zircon

ages of the gabbroic dikes constrain mylonite activity to be

older than about 161 Ma (Kaczmarek et al. 2008).

The Lanzo massif shows evidence of melt formation and

melt extraction such as plagioclase-pyroxene clusters,

plagioclase lenses and dunites (Boudier and Nicolas 1972;

Müntener and Piccardo 2003; Piccardo et al. 2007a).

Microstructures related to reactive fractionation of silicate

liquids are found all over the Lanzo massif, particularly in

the southern part (Boudier and Nicolas 1972; 1980;
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Müntener and Piccardo 2003; Piccardo et al. 2004b,

2007a), indicating that melt migration is a regional-scale

phenomenon. Evidence for melt/rock reaction can be

observed in all peridotite types. Melt/rock reaction is

expressed, by vermicular and interstitial, mostly exsolu-

tion-free orthopyroxene, localized along the contact with

olivine and/or crosscutting larger porphyroclastic olivine

and by exsolved porphyroclastic clinopyroxene partially

replaced by intergrowths of orthopyroxene and plagioclase.

These microstructures are preferentially preserved in

weakly deformed rocks, or within large porphyroclasts in

proto-mylonite or mylonite (for details on the textures and

mineral chemistry, see Kaczmarek and Müntener 2008).

Earlier studies proposed that the Lanzo peridotite rep-

resents a residual piece of upper mantle after MORB

extraction (Bodinier 1988). The northern body is less

depleted in LREE and has lower Nd and Sr isotope ratios

than the southern body, which are similar to those of

Atlantic MORB. The central body displays transitional

geochemical features between the southern and the north-

ern bodies (Bodinier et al. 1991). It was proposed that the

northern body presents melt extraction lower than 6% and

the lherzolite was equilibrated with T-MORB (Bodinier

1988). The central and southern domains present a variable

percentage from 6% (central part) to 12% (south part) and

have affinities with T to N-MORB (Pognante et al. 1985;

Bodinier 1988; Bodinier et al. 1991). The southern body

was interpreted as mantle asthenosphere, which rose from

the garnet stability field as a high-temperature diapir em-

placed at shallow levels, accompanied by a large degree of

Fig. 2 Structural map of the shear zone between the northern and the

central part of the Lanzo massif (from Kaczmarek and Müntener

2008). The peridotite and serpentinite boundaries, the five

deformation types, the main high temperature foliation and pyroxenite

layering are shown. Samples are represented as numbers on the map.

PFG porphyroclastic fine-grained, UMB ultra-mylonite bands
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melt extraction (Nicolas 1986; Bodinier et al. 1991).

Recent studies propose that the pristine subcontinental

lithospheric mantle is refertilized by thermo-chemical

erosion produced by lithosphere/asthenosphere interaction

in an extensional, pre-oceanic setting (Müntener and Pic-

cardo 2003; Piccardo et al. 2007a). The northern body was

interpreted as older depleted MORB mantle (DMM)

material, as a piece of ancient sub-continental lithospheric

mantle, which was separated from the convective mantle

*700 Ma years ago and accreted to sub-continental litho-

sphere (Bodinier et al. 1991; Piccardo et al. 2007b). The

presence of refractory peridotite at shallow depth, are

interpreted as bands of melt percolation (Bodinier 1988).

Sample selection and analytical techniques

Thirty-six samples of plagioclase peridotite were selected

by location across the shear zone in relation to the defor-

mation gradient (Fig. 2). Modal compositions for each

lherzolite and some harzburgites are reported in eTable 1.

Samples were selected for a preferentially low degree of

serpentinization and a maximum distance from pyroxenite

layering visible in the field.

In order to reduce contamination during sample prepa-

ration, all samples of *15 cm size were crushed and

finally powdered in an agate mill. Whole rock glasses were

prepared with the addition of Li–Tetraborate (dilution of

1:10). Peridotites were analyzed by Wavelength-dispersive

X-ray fluorescence spectroscopy (XRF, Phillips PW 1404)

at the University of Fribourg (Switzerland) and the results

are presented in eTable 2. The XRF trace element precision

is generally better than 5%. Peridotite whole rock trace

elements (REE, Cs, Rb, Th, U, Nb, Ta, Sr, Zr and Hf) were

analyzed by a VG-PQ2 Turbo ? Inductively Coupled

Plasma-Mass Spectrometer (ICP-MS) at Géosciences

Montpellier (Université Montpellier II, France) and are

reported in eTable 3. The REE, Cs, Rb, Pb, Th, U, Sr, Zr

and Hf concentrations were determined by external cali-

bration following the HF/HClO4 dissolution and analytical

procedure described in detail by Ionov et al. (1992). To

avoid memory effects due to the intake of concentrated

Nb–Ta solutions in the instrument, Nb and Ta concentra-

tions were determined by using Zr and Hf, respectively, as

internal standards. This technique is an implementation to

ICP-MS analysis of the method described by Jochum et al.

(1990). The precision and accuracy of the ICP-MS analyses

including results obtained for rock standards PCC-1 and

UBN, are given in Godard et al. (2008) and are added in

eTable 3.

Trace element analyses on minerals were performed by

Laser Ablation ICP-MS at the University of Lausanne

(Switzerland). We used a pulsed 193 nm Excimer Laser

system (Lambda Physik, Geolas 200 M), coupled with a

quadrupole ICP-MS (Perkin Elmer DRC 6200), with

operating conditions of 27 kV, and 10 Hz repetition rate,

yielding a flux of ca 12 J/cm2 on the ablation site. This

laser system allows optimizing the beam size for analysis

(8–120 lm, adjusted via an aperture in the beam path) at

constant energy density on the sample surface and perfect

localization of analytical spots through a petrographic

microscope using combined transmitted and reflected light.

Helium was used as a carrier gas. The SRM 610 glass was

chosen as an external standard, Ca as the internal standard,

and data reduction employed the Glitter package (Van

Achterbergh et al. 2001). BCR2 basaltic glass was used to

monitor the reproducibility and accuracy of the system.

Bulk rock chemistry

Major elements

The studied peridotites display a range of MgO contents

between 36.6 and 40.8 wt% that are negatively correlated

Fig. 3 Microphotographs and schematic illustrations representing 5

different deformation fabrics mapped (see Fig. 2 for distribution). The

simplified illustrations indicate the localization of deformation

increasing from porphyroclastic to mylonite with ultra-mylonite

bands. The matrix microtexture is represented by a gray gradation,

darker areas correspond to smaller grain size. PFG porphyroclastic

fine-grained, UMB ultra-mylonite bands
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with SiO2, Al2O3, Na2O, Ti and Cr (Fig. 4a, SiO2 as

example). The SiO2 content is between 43.5 and 45.3 wt%.

Figure 4a reveals that the data of Bodinier (1988) present

generally higher SiO2 (*1 wt% higher) than our analyses

and the data of Piccardo et al. (2007a) present MgO con-

tents higher than peridotite from this study (41–47 wt%).

Overall, our results are broadly consistent with previously

published whole rock data.

The peridotites show a high Al2O3/SiO2 ratio (0.049–

0.090) similar to depleted plagioclase peridotite (Bodinier

1988; Rampone et al. 2005; Piccardo et al. 2007a) and

have a typical peridotite MgO/SiO2 ratio (Fig. 4b). Our

data are close to the primitive mantle (PM) line (Jagoutz

et al. 1979). The chemical composition highlights a large

compositional variability of the porphyroclastic rocks,

from Al2O3/SiO2 ratios that are rather low ([0.028)

similar to the refractory rocks of abyssal peridotite

(Godard et al. 2000) to very high ratio (0.098 and 0.112).

Some samples are enriched in Al2O3 and depleted in

SiO2 (Fig. 4b). The data of Piccardo et al. (2007a)

present systematically higher MgO/SiO2 ratios as com-

pared to the PM line (Fig. 4a), and might reflect XRF

MgO contents that are slightly too high. The peridotites

analyzed by Bodinier (1988) show a trend parallel to our

analyses on a slightly lower level, as a consequence of a

generally higher SiO2 content at a given MgO. The

reason for this apparent discrepancy between different

data sets is not known. Similar to other suites of mantle

rocks the Al2O3/CaO ratio is constant and close to

primitive mantle estimates (Fig. 4b). Some samples of

plagioclase peridotite plot above the PM line with higher

content in Al2O3.

The Lanzo plagioclase peridotites display little variation

in the mg-number (molar Mg/Mg ? Fe or Mg#, 89–90,

Fig. 4c), but generally lower values than in abyssal peri-

dotite (Mg# [ 91, e.g. Dick 1989).

The Al2O3 content scatters from 1.2 to 4.98 wt%

(eTable 2) and the major variation is recorded in the
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porphyroclastic rocks, particularly from the northern part

of the massif (Fig. 4d). Three porphyroclastic samples,

display fairly low Al2O3 content (below 2 wt%) corre-

sponding to harzburgitic or dunitic compositions. Recent

analyses from the northern body of the Lanzo massif

(Piccardo et al. 2007b) present a similar variability of

Al2O3 (Fig. 4d). MgO, Na2O, CaO, FeO, SiO2, Cr# and

TiO2 decrease from porphyroclastic to deformed rocks

(Figs. 6, 8).

Rare earth elements

The normalized REE and trace element patterns of the

analyzed samples are shown in Fig. 5. The plagioclase

lherzolites display trace element signatures characterized

by weak LREE depletion and a relatively flat M-HREE

pattern (Fig. 5). The patterns are similar in all rock types

with little variation in the (Ce/Yb)N ratio (0.2–0.4). The

absence of Eu anomalies indicates that significant plagio-

clase fractionation is unlikely.

The normalized primitive mantle composition plotted

on the diagrams of Fig. 5 (McDonough and Sun 1995),

shows a flat pattern and highlights elevated HREE

enrichment of several samples. Such samples are found in

all groups, except in the porphyroclastic peridotites.

Mylonite samples with ultra-mylonitic bands display a

rather homogeneous composition except sample L95,

which is enriched in La (Fig. 5a). Two other samples

(L104 and L103) from the mylonite group show a similar

behavior with (La/Ce)N [ 1, apparently independent of

the degree of serpentinization. Two samples from the

mylonite group present heterogeneous composition: L118

with middle to heavy REE compositions exceeding

primitive mantle values (e.g. LuN: 3.4) and L103 with a

relatively depleted composition. The proto-mylonite group

displays rather homogeneous compositions, with three

samples equal to or higher (from Gd to Lu) than PM

(Fig. 5c). The LREE composition of porphyroclastic

samples is more variable e.g. L241: 0.038 lg/g La; L212:

0.095 lg/g La (Fig. 5d). Sample L212 is one of the

samples enriched in HREE elements compared to the PM

composition.

The coarse-grained peridotites from the northern and the

central body display larger trace element variations

(Fig. 5e, f). Relative to primitive mantle, some of the

porphyroclastic peridotites from the Central body are

enriched in HREE, while the porphyroclastic peridotites

from the northern group are generally lower than primitive

mantle. A few samples display low REE (Fig. 5e, f) with

pattern similar to clinopyroxene-poor lherzolite described

by Bodinier (1988) in the southern part of the massif.

Sample W2 is clearly different from the general trend of

plagioclase lherzolite, displaying low contents in all

elements and a much smoother increase from La to Lu,

with a pattern similar to harzburgite described by Bodinier

(1988).

Other trace elements

Similar to abyssal peridotite from the Pacific and Indian

Ocean ridge-transform system (e.g. Bodinier and Godard

2003; Niu 2004), the Lanzo peridotites are characterized

by U-shaped normalized trace element patterns, with no

significant variation between different groups of defor-

mation. These patterns present weak depletions of Zr, Hf

and LREE with respect to M- and HREE (Fig. 5). The

trace element patterns show small but significant positive

spikes in Pb, with (Ce/Pb)N of 0.08–1.40, that are not

accompanied by Sr spikes. The Pb content varies between

0.01 and 0.21 lg/g and is apparently independent of the

deformation. The Nb/Ta ratio (11.6 ± 3.5) is below the

primitive mantle estimate (17.8, McDonough and Sun

1995). In addition, the peridotite displays U enrichment

relative to the neighboring elements, Th and Nb. U/Th

ratios vary between 0.18 and 3.12 as compared to PM

(0.25). Th/Nb varies from 0.01 to 0.27, which is in the

range of primitive mantle (0.12), and DMM (0.05)

(McDonough and Sun 1995; Workman and Hart 2005).

Plagioclase lherzolite from all different groups have

homogeneous and flat patterns from Pr to Lu, except for

clinopyroxene-poor lherzolite samples L228 and W2,

which generally show a lower concentration in all trace

elements (Fig. 5k, l). The elements Cs, Rb and Ba display

large variations on primitive mantle normalized diagrams

(from \0.1 to [1). Several samples from the porphyro-

clastic rocks have a relatively high LOI (from 2.5 to 9.5

wt%) and display either low or high contents in Ba, Cs

and Rb (eTable 3). We conclude that LILE elements

might have been affected by serpentinization and/or high-

pressure metamorphism but otherwise these secondary

processes had a minor influence on the overall bulk rock

composition.

The chemical variations, with respect to deformation in

terms of Al2O3, Na2O, TiO2, Ni, Zr, Sm and Yb are

illustrated in Fig. 6. It is apparent that the variability

decreases from porphyroclastic to mylonitic rocks. The

Al2O3 content in particular, illustrates a decreasing vari-

ability from porphyroclastic rocks (1.20–4.98 wt%), proto-

mylonite and PFG rocks (2.62–4.00 wt%) to mylonite with

UMB and mylonitic samples (2.83–3.62 wt%). The Na2O

variability is similar, and the deformed rocks show

homogeneity of the composition while the deformed sam-

ples have a higher content than the porphyroclastic rocks

(Fig. 6a). The TiO2 content is positively correlated with

Al2O3 (Fig. 6b). The Ni content is uniform with increasing

deformation and is higher in the mylonite with UMB and
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mylonite (from 2,100 to 2,400 lg/g, Fig. 6c). The Zr

content displays less variation in the proto-mylonite and

the fine-grained rocks compared to the porphyroclastic

rocks (Fig. 6d).

Mineral trace element chemistry

In order to test whether the bulk rock variability is corre-

lated with trace element mineral variability we measured in

situ the trace element contents of clinopyroxene, orthopy-

roxene and plagioclase from ten samples (results are given

in eTable 4, eFigure 1).

Porphyroclastic clinopyroxenes display relatively

homogeneous compositions in all samples and the (Ce/

Yb)N ratio ranging between 0.18 and 1.62 lg/g. The rims

of clinopyroxene indicate a La decrease, a weak negative

Eu anomaly and a weak MREE enrichment (from Gd to Er)

relative to the core. This chemical variation may reflect

equilibration of clinopyroxene with plagioclase (eFig. 1a,

b, f). This is well illustrated by disequilibrium reaction

textures and crystallized orthopyroxene ? plagioclase

(eFig. 1e). One exception is the harzburgite sample (W2),

which displays enriched LREE compositions, similar to

metasomatized harzburgites (e.g. Bodinier and Godard

2003) or to pyroxenes reported by Piccardo et al. (2007a).

Orthopyroxene cores display typical REE pattern with low

LREE/HREE ratios (CeN/YbN * 0.01) while orthopyrox-

ene rims are generally lower in REE relative to core

compositions (eFig. 1d–f). The interstitial orthopyroxene

grains, which are interpreted as products of melt reaction

with olivine or clinopyroxene (liquid ? olivine ? ortho-

pyroxene; liquid ? clinopyroxene ? orthopyroxene ?

plagioclase), display REE pattern similar to porphyroclas-

tic orthopyroxenes. The majority of orthopyroxene that is

related to melt-rock reactions is enriched in HREE relative

to core compositions, with ErN/YbN ratios between 0.11

and 0.25, respectively (eFig. 1g). Orthopyroxene displays

positive Zr, Hf, Ti anomalies, a Sr negative anomaly rel-

ative to elements of similar compatibility (eFig. 1i–l).

Orthopyroxene from harzburgite from the Northern Lanzo

massif (sample W2) displays less fractionated composi-

tions with a clear distinction between the three types of

orthopyroxene (eFig. 1h–l), indicating trace element

enrichment in this sample (see also Piccardo et al. 2007b).

Both pyroxenes display rather low concentrations of fluid

mobile elements (Rb and Ba) suggesting limited influence

of serpentinization or fluid circulation during Alpine sub-

duction and exhumation.

Discussion

Given the paucity of spatially controlled compositional and

structural data of plagioclase peridotites, the observed

variations of the Lanzo peridotites provide important con-

straints on the effect of deformation and melt migration on

peridotite composition. In particular the spatial variations

in bulk rock major and trace element contents may be

related to a major structural discontinuity in mantle peri-

dotites. Two distinct mechanisms may be proposed to

explain this compositional boundary. One interpretation is

that preexisting chemical heterogeneity in the mantle is

erased by mechanical (and chemical) mixing and homo-

genization via deformation. Alternatively melt migrating

by porous flow is focused beneath a structural discontinuity

and starts to partially crystallize. Below, we use our

chemical data, combined with previously published results

to discuss these two alternatives.

Bulk rock major element variability

Plagioclase lherzolite from the Lanzo massif generally

displays Al2O3 contents between 2 and 4 wt% (Bodinier

1988; Piccardo et al. 2007a). Lower concentrations are

quite rare and are preferentially found in the southwestern

part of the massif, where dunite and harzburgite are more

abundant (Boudier and Nicolas 1972; Bodinier 1988).

However, the dunites in the southern part postdate pla-

gioclase peridotite formation (Piccardo et al. 2007a) and

thus represent chemical heterogeneities that where intro-

duced after the formation of plagioclase peridotites. In the

present study we focus on the compositions of peridotite

unrelated to late dunites, and in these rocks the Al2O3

content varies from 1.2 to 5.0 wt% encompassing a large

spectrum ranging from refractory to ‘superfertile’ compo-

sitions. The variability of bulk rock major element com-

position of the Lanzo peridotite in the investigated area is

correlated to the peridotite microstructure: increasing

deformation from porphyroclastic to mylonitic rocks

(Fig. 2) is associated with a more homogeneous composi-

tion (Al2O3, TiO2, Na2O and NiO). The porphyroclastic

peridotites from the central and northern body generally

display similar compositional variation, and the presence of

depleted samples and pyroxenites indicates a heteroge-

neous mantle prior to deformation.

Major elements indicative of peridotite fertility (e.g., Al

and Ca), are uniformly high in deformed rocks and scatter

less than porphyroclastic ones (Fig. 7). The average Al2O3

content calculated on each category of deformation

Fig. 5 Plagioclase peridotite trace elements normalized to chondrite

and primitive mantle (McDonough and Sun 1995) subdivided by

deformation fabric from (a, g) mylonite with ultra-mylonite bands, (b,

h) mylonite, (c, i) proto-mylonite, (d, j) PFG and (e, f, k, l)
porphyroclastic from the northern and central body. PM primitive

mantle (McDonough and Sun 1995)

b
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indicates about 10% higher content in mylonite with ultra-

mylonite bands, mylonite and proto-mylonite than in the

porphyroclastic rocks, although this variability is not

statistically significant. A similar observation can be made

for the average CaO and MgO composition. This may

indicate the possibility of melt addition in the peridotite

and preferentially in the deformed rocks. If the melt

focusing hypothesis of Kaczmarek and Müntener (2008) is

correct, the data indicate a more homogeneous composition

and equilibration of deformed rocks.

The peridotites from this study and Piccardo et al.

(2007a) display heterogeneous TiO2 composition and are

not residues after simple melting of primitive mantle

(Fig. 8a). The Lanzo south peridotites display more

refractory compositions than samples from porphyroclastic

areas. Porphyroclastic peridotites form Lanzo north with a

very low TiO2 content contain clinopyroxenes with a high

(Sm/Yb)N ratio suggesting alkaline affinity for some

pyroxenes (as discussed by Piccardo et al. 2007b, Fig. 8a).

The deformed peridotites are enriched in TiO2 and display

low Cr content in orthopyroxenes (Fig. 8b). The enrich-

ment in incompatible element (Ti) and depletion in com-

patible element (Cr) suggests a higher fraction of melt that

percolated in deformed areas relative to the porphyroclastic

areas.

Whole rock trace element variability

The plagioclase peridotites of the Northern and Central

Lanzo massif are distinguished from Lanzo South perido-

tite by overall higher REE content, a far less frequent

occurrence of refractory harzburgite and dunite, and a

remarkable constant (Ce/Yb)N ratio (e.g. Bodinier 1988). In

addition, each class of deformation contains samples that

are enriched in REE as compared to primitive mantle

estimates (Fig. 5). Bodinier (1988) argued that the regio-

nal-scale zoning in Ce/Yb may reflect an enrichment event

that preferentially affected the northern body, or alterna-

tively, an early melting episode in the garnet stability field

that affected the southern part of the massif. These features

are not consistent with simple melting models.

The fertile compositions of some of the plagioclase

peridotites might be explained by a ‘‘marble cake’’ model

composed of heterogeneously distributed pyroxenites

mixed with peridotite as suggested by Allègre and Turcotte

(1986). In their view, pyroxenites might represent stretched

stripes of ‘oceanic crust’ that was recycled through the

mantle. However, there is no major element nor isotopic

evidence for the involvement of oceanic crust in the
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pyroxenite compositions (Bodinier 1988; Bodinier et al.

1991) and the pyroxenite layers were excluded from the

sampling. In the case of mylonite, it might be difficult to

identify small remnants of disrupted pyroxenite layering in

the field, but careful inspection of mineral chemistry

indicates that spinel from pyroxenites is generally rich in

Al and particularly low in Cr, and could clearly be dis-

tinguished from spinel in peridotite (Kaczmarek and

Müntener 2008). Such samples with a ‘‘pyroxenite signa-

ture’’ have been excluded from our dataset.

An alternative hypothesis to explain the HREE enrich-

ment in plagioclase peridotite is refertilization by diffuse

porous melt flow. The melt/rock reaction and the melt

migration textures are frequent in the Lanzo peridotite

massif and are commonly illustrated by (1) the occurrence

of orthopyroxene ? plagioclase intergrowth replacing

clinopyroxene and (2) vermicular orthopyroxene replacing

olivine porphyroclasts (e.g. Müntener and Piccardo 2003;

Piccardo et al. 2004b; Kaczmarek and Müntener 2008).

Recent textural and geochemical investigations proposed

that refertilization by basaltic or refractory melts is also an

important process in abyssal peridotites (Hellebrand et al.

2002; Kelemen et al. 2004; Seyler et al. 2007), which have

been conventionally interpreted as simple residues of

partial melting (Johnson et al. 1990; Johnson and Dick

1992). Reactive porous flow and refertilization are two

important processes that are able to deeply modify tex-

tures, mineral modes and chemical compositions of peri-

dotites (Van der Wal and Bodinier 1996; Bedini et al.

1997; Godard et al. 2000; Dijkstra et al. 2002; Müntener

and Piccardo 2003; Piccardo et al. 2004b, 2007a). The

rocks do not reveal a substantial Ce/Yb fractionation,

which is consistent with a refertilization hypothesis. If

correct, this hypothesis requires adding melt fractions of

1
1,5

2
2,5

3
3,5

4
4,5

5
5,5

34

36

38

40

42

44

46

0,0

0,1

0,2

0,3

0,4

0,5

0,6

MgO (wt%)

Al2O3 (wt%)

Yb (ppm)

NE

600 m

1200 m

900 m

a
SW

Gran Costa

Maddalene

1100

Stura di 
Lanzo

500 m

layering foliation

A A'

P central PFG
proto-

mylonite mylonite
mylonite

UMB P north

northern partcentral part

b

c

d

L199
L69

L27
L195

W2
L192

L95
L184

L187d
L208

L04
L84

L103
L104

L118
L05

L112
L122

L211
L218

La-02
L09

L110
L212

L223
L241

La-03
L245

L147
L152

L13
L42

L131
L181

L238
L52

Fig. 7 Bulk rock major and

trace elements peridotite

compositions along a cross

section of the shear zone from

SW (a) to NE (a0) (See location

on Fig. 2). a Schematic

topography of the shear zone

cross section (after Kaczmarek

and Müntener 2008). Chemical

composition in b MgO (wt%), c
Al2O3 (wt%) and d Yb (lg/g)

for peridotites subdivided by

microstructure type. Note that

peridotite samples are grouped

along the section as a function

of distance, with deformed

rocks displaying more

homogeneous compositions

than porphyroclastic rocks. P
porphyroclastic, PFG
porphyroclastic fine-grained;

UMB ultra-mylonite bands

Contrib Mineral Petrol (2010) 160:663–679 673

123



closely similar composition and thus chromatographic

processes (e.g. Navon and Stolper 1987) are unlikely to

be important in our case.

The average REE and Y content indicates a slightly

depleted composition of the northern body relative to the

central body, the difference being most obvious when

comparing ultra-mylonite and porphyroclastic rocks

(Fig. 7d). These observations suggest that deformation

controls, or is linked with the chemical composition, and

we propose that the mylonite zone might have acted as a

melt conduit. This will be substantiated below, and we

discuss additional observations in support of this

hypothesis.

Ce versus Nb and Th diagrams indicate a general posi-

tive trend from highly depleted peridotite to fertile peri-

dotite (Fig. 9). Refractory peridotite from the Oman

ophiolite or the Mid-Atlantic Ridge (Godard et al. 2000,

2008) displays low Ce, Th and Nb values contrary to

harzburgite from the Mid-Atlantic Ridge (Paulick et al.

2006), which presents high Ce, Th and Nb contents, par-

ticularly for ODP leg sites 1270–1271. The most depleted

peridotite from the Mid-Atlantic Ridge (Godard et al.

2008) recorded a high degree of partial melting and melt

extraction, similar to the peridotites from ODP leg 210

(Müntener and Manatschal 2006). At a given Ce concen-

tration, the peridotites from supra-subduction zones

(Parkinson and Pearce 1998) are depleted in Nb but not in
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Th relative to peridotite from Oman. Our data and those

from the Ronda peridotites (Bodinier et al. 2008) record Ce

enrichment at low Th and Nb concentrations, that are about

an order of magnitude lower than DMM estimates

(Fig. 9b). The Ce–Th–Nb systematics of these fresh peri-

dotites are probably not formed by interaction with fluids

(e.g. Paulick et al. 2006), but rather by melt impregnation.

The large variation of Pb content in the peridotite is

apparently not linked to the degree of deformation.

Remarkably, the mylonite with ultra-mylonite bands and

mylonite samples show Nd/Pb ratios higher than PM

composition. Diffusion rates of Pb in sulfides (solid or

melt) are very fast and samples with Nd/Pb lower than PM

are interpreted as having reacted with melt (Hart and

Gaetani 2006). The OIB and MORB have markedly higher

Nd/Pb (15 and 23, respectively) than the primitive mantle

(Sun and McDonough 1989) and numerous samples from

the Lanzo peridotite display Nd/Pb ratios higher than

MORB (up to 52.7, eTable 3). This strongly suggests that

MORB-type melt impregnated the Lanzo peridotite.

The highly incompatible elements (Cs, Rb and Ba)

enrichment is probably not related to the variation of

deformation and it is likely that such enrichments can be

attributed to secondary processes such as serpentinization,

oceanic alteration or eventually to contamination by crustal

fluids (Sharma and Wasserburg 1996; Gruau et al. 1998).

Melting and refertilization modeling

In the following, melting models will be discussed, in order

to evaluate how the trace elements signatures of the pla-

gioclase peridotite could be generated. Two simple melting

models, batch melting and fractional melting are illustrated

in Fig. 10, simulating melting in the stability field of spinel

peridotite, using a DMM and a PUM source (Sun and

McDonough 1989; Workman and Hart 2005, Fig. 10a).

Peridotite modes, partition coefficients and melting modes

are reported in eTable 5. We used the partition coefficients

compiled by Suhr et al. (1998), which are similar to many

other partition coefficient determinations for mantle

melting.

Melt extraction will lead to rapidly decreasing (Ce/Yb)N

ratios at near constant Yb concentrations in the peridotites

(Fig. 10). The plagioclase peridotites show enrichment in

Yb with a near constant (Ce/Yb)N ratio. Batch melting

models yield a much more moderate fractionation of LREE

as compared to HREE, which is shown by the relatively

high (Ce/Yb)N ratio after 1–6% melting, and a slower

decrease of Yb for a given degree of melting. In contrast to

fractional melting, the (Ce/Yb)N ratio is much less frac-

tionated (e.g., between 10 and 20% melting: 0.1 \ (Ce/

Yb)N \ 0.15) and only slightly lower than the Lanzo
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Fig. 10 Illustrations of simple fractional and batch melting models

of YbN versus (Ce/Yb)N (a) and numerical modeling of fertilization

(b). a Illustrates a model calculated with a PM and a DMM source

(PM, McDonough and Sun 1995, DMM Workman and Hart 2005).

Symbols on the modeling curve represent fractionation steps in %. b
Displays the results of numerical modeling of the (Ce/Yb)N ratio

caused by reactive porous flow modeled with the ‘‘Plate model’’ of

Vernières et al. (1997). The protolith affected by the reaction is an

olivine-rich harzburgite from this study (W2) with a modal compo-

sition of 0.81 ol, 0.164 opx, 0.018 cpx and 0.005 plg. We applied the

(1) melt reaction with ol = 0.3, qopx = 0.65, qcpx = 0.45 and

qplg = 0.2, where Liqi and Liqr are the infiltrated and residual melts,

f is the fraction of the percolating melt mass, respectively. The

porosity (/) is fixed at 0.12, whereas f was adjusted between 0.9 and

0.98 to allow for variations of R, and the enriched plagioclase

lherzolite can be obtained by a single run after 60 reaction increments.

The curves indicate the results of modeling for different R parameters.

R corresponds to the reacted phases as a function of the quantity of

melt in the system (R = (1 - f) 9 (qopx ? qcpx ? qplg)). The arrows
on the curves indicate the bottom-to-top cell evolution of melt in the

reaction column. Mineral/melt partition coefficients are taken from

Hart and Dunn (1993) for a pressure of 3 GPa and a temperature of

1380�C
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peridotites. However, more than 70% of the data have Yb

concentrations that are significantly higher than those

obtained by melting models (except assuming a value of

YbN for the depleted or primitive mantle, that is far higher

than any proposed value; e.g. McDonough and Sun 1995;

Workman and Hart 2005). After a little percentage of

melting (about 1.5% for a DMM source and 3–5% using a

PUM source by fractional and batch melting, respectively)

just some plagioclase peridotite compositions can satis-

factorily be explained. More than 70% of the peridotites

indicate a YbN that is too high to be explained by melting

processes alone. We have tested garnet and plagioclase

fields melting models, but the results are essentially the

same. We tested critical melting models, with residual melt

porosities up to 5%, but these calculations do not signifi-

cantly change the results. The YbN enrichment of peridotite

is obviously not linked to deformation. However, the (few)

depleted rocks are porphyroclastic peridotites. Surprisingly

the enriched samples are scattered in the deformed rock

type, and the highest YbN enrichment and more homo-

geneous compositions are found in the mylonite samples.

In summary, more than 70% of the Lanzo plagioclase

peridotites cannot be explained by any kind of simple

REE melting model, but requires the addition of melt

with a relatively constant and high (Ce/Yb)N ratio

(Fig. 10a). To constrain the refertilization processes

recorded by the Lanzo peridotite we applied a more

complex model simulated with the Plate Model of

Vernières et al. (1997, Fig. 10b). We simulate trace-

element fractionation during partial melting and reactive

porous flow in the Earth’s upper mantle. This model was

adapted to the simulation of Fe–Mg redistribution in

peridotite-melt systems by Bedini et al. (2002). Details of

the procedure have been reported by Ionov et al. (2005).

The modeling permits to simulate melt percolation

through and reaction with a peridotite column composed

of discrete reaction cells. Minor- and trace-elements

variations in solid and melt are controlled by the com-

bined chromatographic effects of melt transport (Navon

and Stolper 1987) and the source-sink effects of fractional

melt crystallization (Godard et al. 1995; Bodinier et al.

2008). The model was applied to a reaction process

involving precipitation of clinopyroxene ? orthopyroxene

and plagioclase at the expense of melt ? olivine. For the

‘parallel approach’ of Vernières et al. (1997), the reaction

takes the general form

/ Liqi þ Fð1� /ÞOl! ½f /þ Fð1� /Þ�Liqr

þ ð1� f Þ/qopx þ ð1� f Þ/qcpx þ ð1� f Þ/qplg ð1Þ

where Liqi and Liqr stand for the infiltrated and residual

(=‘reacted’) melts, respectively. The process is controlled

by the fraction of percolating melt mass (f), representing

the decrease of melt volume relative to the crystallization

of minerals. In this approach, the process is ongoing until

the porosity (/i) approaches 0, or alternatively, until oliv-

ine is entirely dissolved. F is the mass fraction of dissolved

olivine (relative to the initial solid matrix) and qopx, qcpx,

qplg are the crystallized mass fractions of orthopyroxene,

clinopyroxene and plagioclase, respectively. Reactions at

decreasing melt mass require that f/ ? F(1 - /) \ /.

The protolith affected by the reaction is considered to

be a depleted peridotite such as harzburgite (W2, 80.3

olivine, 16.4 opx, 1.3 cpx and 0.4 plg). The refertilization

of Lanzo lherzolite is constrained by the (Ce/Yb)N ratio

suggested a slightly enriched (lithospheric) mantle source

higher than N-MORB liquid [(Ce/Yb)N * 0.80] and

enriched as E-MORB. We tested an enriched mid-ocean

ridge basalt with (Ce/Yb)N * 1.66 (Sun and McDonough,

1989), as a potential refertilization agent. The numerical

experiment shown in Fig. 10b involves continuous infil-

tration of enriched melt (E-MORB) and successfully

reproduces the compositions of Lanzo peridotites involv-

ing pyroxenes and plagioclase forming reaction. Spinel

peridotites were transformed to refertilized, impregnated

plagioclase peridotites enriched in basaltic components.

Several experiments were run with R values (R: mass

ratio of precipitated minerals relative to infiltrated melt)

ranging from 0.026 to 0.13 (representing a high and low

crystallization rate, respectively). The initial stages of the

modeling column (e.g., close to the starting compositions)

are characterized by a high melt/rock ratio ([1) and

represents a rather constant (Ce/Yb)N. In a second part,

the modeling indicates a rapid (Ce/Yb)N enrichment

mainly controlled by CeN increase in the residual melt

related to decreasing melt mass. Most compositional

variability of the peridotite can be explained by R varying

between 0.052 and 0.078 and by a high melt/rock ratio

(e.g., the sub-horizonal parts of the modeling trends). R is

the most sensitive parameter and illustrates that referti-

lization of the Lanzo peridotite is dependent on the degree

of crystallization but also on the quantity of melt perco-

lated. Only few samples require a slightly lower initial

(Ce/Yb)N ratio corresponding to N-MORB compositions

(L95, L118, L195, L223) to be modeled successfully.

From these models we conclude that N-E MORB perco-

lation is a satisfactory model to explain that variability

and refertilization of Lanzo peridotites.

Chemical variability as a function of deformation

The Lanzo peridotites are characterized by refertilization

by N-E MORB percolation and by spatial variations

with respect to mineral chemistry and microtextures

(Kaczmarek and Müntener, 2008). The authors discussed

the effects of deformation on the compositional homo-

geneity of peridotite minerals. In the mylonite zone, the
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grain size reduction involves homogenization of spinel

compositions in terms of TiO2 and Cr#. Here we illustrate

whole rock composition as a function of distance to the

shear zone and the deformation classes (Figs. 2, 6, 8). The

results display compositional variations at the scale of the

Lanzo massif, but a homogenization trend of bulk chem-

istry in the strongly deformed rocks within the mantle shear

zone. Considering the large variability of trace elements as

a function of Al2O3, we observed a systematic correlation

relative to the microtextures: the most incompatible

elements are well correlated with Al2O3 in the coarse- and

fine-grained rocks. This positive correlation is progres-

sively lost between Al2O3 and REE and other incompatible

elements (e.g. Zr, La and Ti) with increasing deformation

(Fig. 6), mainly because of alumina homogenization. The

same is observed with compatible elements such as Ni:

the negative correlation with Al2O3 tends to be lost in

the mylonitic rocks.

Interestingly, the CeN concentration tends to be more

homogeneous with respect to YbN with increasing defor-

mation (Fig. 10). This has two important implications:

first, the homogenization is unlikely to be caused by

simple mechanical mixing, as this process would tend to

eliminate the compositional variability of all incompatible

elements; second, it is also unlikely, that solid state dif-

fusion can explain the data, as Ce diffuses orders of

magnitudes slower than Yb (Van Orman et al. 2002). If

diffusion would be the dominant mechanism one would

expect homogenization of Yb rather than Ce. For these

reasons, we prefer the interpretation that deformation

occurred in the presence of small melt fractions, which

preferentially homogenizes the more incompatible LREE

with respect to HREE.

If our refertilization model is correct, then the infiltra-

ting liquid in the Lanzo massif is most probably an

E-MORB, and thus different from many xenoliths studies,

and also different from liquids that formed the Ronda

recrystallization front (Van der Wal and Bodinier 1996;

Lenoir et al. 2001). In contrast to the recrystallization front

of the Ronda peridotite, which is related to kilometer-scale

pervasive melt percolation (Van der Wal and Bodinier

1996), and chromatographic trace element fractionation in

the deformed peridotites, the Lanzo mantle shear zone does

not show obvious chromatographic effects. We attribute

this to the combined effects of melt focusing, rapid cooling

and exhumation of the Lanzo peridotites, so that the

remaining melt fractions rapidly freeze. This is consistent

with disequilibrium spinel compositions (Kaczmarek and

Müntener 2008). The stagnating melt probably acts as a

lubricant for deformation during the early high temperature

stages and at a later stage, cooling and ongoing deforma-

tion formed fine grained rocks, which efficiently inhibit

upward migration of melt.

Implications

This study provides an explanation for the geochemical

variability in peridotite across actively deforming mantle

shear zones. Initial pervasive porous flow of melt became

focused in time and space (e.g. Kaczmarek and Müntener

2008; Müntener and Piccardo 2003): as documented by

impregnation textures in the entire zone, and gabbroic

dikes that are much more abundant in the footwall of the

shear zone. Melt percolation and refertilization are related

to plagioclase crystallization and particularly plagioclase

lenses in the most deformed rocks. The presence of pla-

gioclase may influence the localization of deformation

during subsequent subsolidus plagioclase-forming reac-

tion, which involves grain-size reduction (Newman et al.

1999). The presence of igneous reaction textures, the

localization of deformation and the grain-size reduction

all indicate that melt-enhanced deformation played a

major role in the evolution of the Lanzo shear zone. Our

new results, together with previously published data (e.g.

Piccardo et al. 2007a, b) confirm that melt migration

occurred on a kilometer-scale over the entire Lanzo

massif, but local differences exist. The porphyroclastic

peridotite displays a large range of composition, from

fertile plagioclase peridotite to refractory harzburgite and

dunite, while the deformed peridotite of the shear zone is

relatively homogeneous, accentuated by important grain

size reduction within the mylonite zone. The northern

body is generally less fertile than the central body and

represents ancient lithosphere (Bodinier et al. 1991). The

trace element composition indicates homogenization in

the highly deformed area, and at the same time some

accumulation of migrating melt. This might be explained

by infiltration and accumulation of melt along the shear

zone that acted as a melt conduit.

An important yet unresolved question is to understand

whether melt accumulation provided the necessary weak-

ening of the peridotites or high-temperature deformation

and shearing formed a permeability barrier for migrating

melts. Either way, the presence of melt in the rock will

change the rheological behavior and supports further

weakening effects. We conclude that a combination of

existing heterogeneities (pre-existing shear zones, pyroxe-

nite layers) and thermal gradients might induce the for-

mation of an intra-mantle permeability barrier.
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