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The analysis of anisotropies in the cosmic microwave background (CMB) has 
become an extremely valuable tool for cosmology. There is even hope that planned 
CMB anisotropy experiments may revolutionize cosmology. Together with 
determinations of the CMB spectrum, they represent the first precise cosmological 
measurements. The value of CMB anisotropies lies in large part in the simplicity 
of the theoretical analysis. Fluctuations in the CMB can be determined almost fully 
within linear cosmological perturbation theory and are not severely influenced by 
complicated nonlinear physics. In this contribution the different physical processes 
causing or influencing anisotropies in the CMB are discussed: the geometry 
perturbations at and after last scattering, the acoustic oscillations in the 
baryon-photon plasma prior to recombination, and the diffusion damping during 
the process of recombination. The perturbations due to the fluctuating gravitational 
field, the so-called Sachs-Wolfe contribution, is described in a very general form 
using the Weyl tensor of the perturbed geometry. 

1. I N T R O D U C T I O N  

The format ion o f  cosmologica l  structure in the universe,  inhomogenei t ies  
in the mat ter  dis t r ibut ion such as quasars at redshifts  up to z - -  5, galaxies ,  
clusters,  superclusters ,  voids,  and walls, is an outstanding,  basical ly  unsolved  
problem within the s tandard model  o f  cosmology.  We assume that the 
observed inhomogenei t ies  are formed from small  initial f luctuations by gravi-  
tational clustering.  

At  first sight it seems obvious that small  densi ty enhancements  can grow 
sufficiently rapidly  by gravi ta t ional  instabili ty.  But global  expansion o f  the 
universe and radiat ion pressure counteract  gravity, so that, e.g., in the case 
of  a rad ia t ion-dominated ,  expanding universe  no densi ty  inhomogenei t ies  can 
grow significantly.  Even in a universe domina ted  by pressureless  matter, 
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cosmic dust, growth of density perturbations is strongly reduced by the 
expansion of the universe. 

Furthermore, we know that the universe was extremely homogeneous 
and isotropic at early times. This follows from the isotropy of the 3 K cosmic 
microwave background (CMB), which represents a relic of the plasma of 
baryons, electrons, and radiation at times before protons and electrons com- 
bined to neutral hydrogen. After a long series of upper bounds, measurements 
with the DMR instrument aboard the COsmic Background Explorer satellite 
(COBE) have finally established anisotropies in this radiation (Smoot et  al., 
1992; Wright et  al., 1992) at the level of 

(.(T(n) - F(n'))2_ t( ~ lO-'~ ~ angular scales 7~ -- 0 -< 90~ 
n-n '  =cos0) 

Such an angle-independent spectrum of fluctuations on large angular 
scales is called a Harrison-Zel'dovich spectrum (Harrison, 1970; Zel'dovich, 
1972). It is defined by yielding constant mass fluctuations on horizon scales 
at all time, i.e., if ln(t) denotes the expansion scale at time t, 

((~d4/M) 2 (h = ln)) = const, independent of time 

The COBE result, the observed spectrum and amplitude of fluctuations, 
strongly support the gravitational instability picture. 

There exist two main classes of models which predict a Harrison- 
Zel'dovich spectrum of primordial fluctuations: In the first class, quantum 
fluctuations expand to super Hubble scales during a period of inflationary 
expansion in the very early universe and 'freeze in' as classical fluctuations 
in energy density and geometry (Mukhanov et  al., 1991). In the second class, 
a phase transition in the early universe at a temperature of about 1016 GeV 
leads to topological defects which induce perturbations in the geometry and 
in the matter content of the universe (Kibble, 1980). Both classes of models 
are in basic agreement with the COBE findings, but differ in their prediction 
of anisotropies on smaller angular scales. 

On smaller angular scales the observational situation is somewhat con- 
fusing and contradictory (Smoot and Scott, 1994; Hu et al., 1997), but many 
anisotropies have been measured with a maximum of about A T / T  ~ (3 - 
2) x 10 -5 at angular scale 0 ~ (1 _+ 0.5) ~ There is justified hope that the 
experiments planned and underway will improve this situation within the 
next few years. Figure 1, presents the experimental situation as of'spring 1996. 

In this paper we outline a formal derivation of general formulas which 
can be used to calculate the CMB anisotropies in a given cosmological model. 
Since we have the chance to address a community of relativists, we make 
full use of the relativistic formulation of the problem. In Section 2 we derive, 
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Fig. 1. The corresponding quadrupole amplitude Qn~ versus the corresponding spherical har- 
monic index e. The amplitude Qn~t(s corresponds roughly to the temperature fluctuation on 
the angular scale 0 - -rr/e. The solid line indicates the predictions from a standard cold dark 
matter model. Figure taken from Smoot and Scott (1994). 

Liouville's equation for massless particles in a perturbed Friedmann universe. 
In Section 3 we discuss the effects of nonrelativistic Compton scattering 
prior to decoupling. This fixes the initial conditions for the solution to the 
Liouville equation and leads to a simple approximation of the effect of 
collisional damping. In the next section we illustrate our results with a few 
simple examples. Finally, we summarize our conclusions. 

Notat ion We denote conformal time by t. Greek indices run from 0 to 
3, Latin indices run from 1 to 3. The metric signature is chosen ( - +  + +). 
The Friedmann metric is thus given by ds 2 = a 2 ( t ) ( - d t  2 + ~odxidxJ), where "y 
denotes the metric of  a 3-space with constant curvature K. Three-dimensional 
vectors are denoted by boldface symbols. We set h = c = kBoltzm~n, = 1 
throughout. 

2. T H E  L I O U V I L L E  E Q U A T I O N  F O R  MASSLESS P A R T I C L E S  

2.1. Generalities 

Collisionless particles are described by their one-particle distribution 
function, which lives on the seven-dimensional phase space 

~ , .  = {(x,p) ~ T A t l g ( x ) ( p , p )  = - m  2} 
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Here At denotes the spacetime manifold and T~t its tangent space. The fact 
that collisionless particles move on geodesics translates to the Liouville 
equation for the one-particle distribution function f .  The Liouville equation 
reads (Stewart, 1971). 

Xg(f) = 0 (2.1) 

In a tetrad basis (e~)3=o of ~ ,  the vector field Xg on @,, is given by (see, 
e.g., Stewart, 1971) 

Xg = (p~e~ - oJ~(p)p~ + )  (2.2) 

where to~. are the connection 1-forms of  (At, g) in the basis e ~, and we have 
chosen the basis 

(e~)~= 0 and ~D / on 7~m, p = p~e~ 
P =z 

We now show that for massless particles and conformally related metrics, 

g ~  = a2g~v 

(Xff)(x, p) = 0 is equivalent to (X-ef)(x, ap) = 0 (2.3) 

This is easily seen if we write Xg in a coordinate basis: 

with 

Xg = b~O~ - Fi~b~b ~ 0 ------2 

Ob' 

1 
F ~  = ~ gi~(g~,~ + g~,o _ g~.~) 

The variables b ~ are the components of  the momentum p with respect to the 
coordinate basis: 

p = p~e~ = b~O~ 

If (e~) is a tetrad with respect to g, then ~ = ae~, is a tetrad basis for g. 
Therefore, the coordinates of ap = a p ~  = a2p~e~ = a2br with respect 
to the basis 0~ on (At, g) are given by aZb ~. In the coordinate basis thus our 
statement (2.3) follows if we can show that 

(X-gf)(x ~, aZb ') = 0 iff (SJC)(x ~, b i) = 0 (2.4) 
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Set t ing v = ap = v~g~ = w~'O~, we have v ~ = ap ~ and w ~" = a2b ~'. Using 
p2 = O, we obtain the fo l lowing relation for the Christoffel  symbols  of  g and g,: 

2a ~, b'~b i F~f~b"b~ = ['~f~b'~b f~ + " 
a 

For  this step it is crucial  that the part icles are massless!  For  mass ive  par t ic les  
the statement is of  course not true. Insert ing this result  into the Liouvi l le  
equation,  we find 

a2Xgf = w~(Or~flb _ 2 --~ bi Of) _ ~ w ~ w ~  O----~Of (2.5) 

where  0 J i b  denotes  the derivat ive of  f w.r.t, x ~ at c o n s t a n t  (bi). Using 

Oufl b 3ofl w + 2 a ,  bi Of 
a 3b' 

we see, that the braces in (2.5) just  cor respond to 3 j I w .  Therefore ,  

a 2 X j ( x  ' p) = w~,3~fl~ _ r  w%v ~ 3f 
O W  i = Xff(x ,  ap) 

which proves our c la im.  This statement is jus t  a precise way of  express ing  
conformal  invariance of  massless  part icles.  

2.2. Free, Massless Particles in a Perturbed Friedmann Universe 

We now apply this general  f ramework  to the case o f  a per turbed Fried-  
mann universe.  For  s implici ty,  we restrict  our analysis  to the case K = 0, 
i.e., f~ = 1. The  metr ic  of  a per turbed Fr iedmann universe with densi ty  
parameter  f~ = 1 is g iven by ds 2 = g~dx~dx ~ with 

g ~  = a2(xl~,~ + h ~  = a 2 ~  (2.6) 

where ('q.~) = d i a g ( - ,  + ,  + ,  + )  is the flat Minkowsk i  metr ic  and (h~,~) is 
a smal l  perturbat ion,  Ih~l  < <  1. 

F rom (2.3), we conclude  that the Liouvi l le  equat ion in a per turbed 
Fr iedmann  universe is equivalent  to the Liouvi l le  equat ion in per turbed Min-  
kowski  space,  

(Xff)(x,  v) = 0 (2.7) 

with v = v ~  = a p ~ .  2 

2 Note that also Friedman universes with nonvanishing spatial curvature, K #: 0, are conformally 
flat and thus this procedure can also be applied for K r 0. Of course, in this case the conformal 
factor a 2 is no longer just the scale factor, but depends on position. A coordinate transformation 
which transforms the metric of K r 0 Friedmann universes into a conformally flat form can 
be found, e.g., in Choquet-Bruhat et al. (1982). 
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We now want to derive a linear perturbation equation for (2.7). If ~" is 
1 v -  a tetrad in Minkowski space, ~ = ~, + -~h~ev is a tetrad w.r.t, the perturbed 

geometry g. For (x, v"~,) E P0, thus, (x, v"g~) ~ /5 0. Here P0 denotes the 
zero-mass, one-particle phase space in Minkowski space and Po is the phase 
space with respect to g, perturbed Minkowski space. We define the perturba- 
tion F of the distribution function by 

f ( x ,  v"E~) = fix,  v ~ , )  + F(x, v ~ )  (2.8) 

Liouville's equation for f then leads to a perturbation equation for F. We 
choose the natural tetrad 

1 ~ = O~ - ~ h~O~ 

with the corresponding basis of 1-forms 

1 
0~' = dx~' + ~ h ~ d x  v 

Inserting this into the first structure equation, dO ~' = - t o p / h  dx ~, one finds 

1 
to~v = - ~  (h~.~ - h~x.~,)0 x 

Using the background Liouville equation, namely that f is only a function 
of v = ap, we obtain the perturbation equation 

V . . 

(Or + niOi)F = - ~  [(hio - hoo.i)n i + (hij - hoj,i)n'n"] d---v 

where we have set vi = vni, with v 2 = Z,.3=l(v~) z, i.e., n gives the momentum 
direction of the particle. Let us parametrize the perturbations of the metric by 

( - 2 A  B~ ) (2.9) 
(h~.,,) = Bi 2HL~ii + 2Hij 

with ~ = 0. Inserting this above, we obtain 

(0 ,+n~0~)F= - t i t .+  A~ +-~ B~ n ~ + I : I~ j -~  B~j nin j v ~  

From (2.10) we see that the perturbation in the distribution function in each 
spectral band is proportional to v(d]f/dv). This shows once more that gravity 
is achromatic. We thus do not lose any information if we integrate this 
equation over photon energies. We define 
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m = - -  Fv 3 dv 
pr a4 

4m is the fractional perturbation of the brightness t, 

----- a-4 I fv3 dv I, 

Setting t(n, x) = ~(T(n, x)), one obtains that ~ = (rr/60)T4(n, x). Hence, m 
corresponds to the fractional perturbation in the temperature, 

T(n, x) = 7"(1 + m(n, x)) (2.1 l) 

Another derivation of equation (2.11) is given in Durrer (1994). According 
to (2.10), the v dependence of F is of the form v(df/dv).  Using now 

4"rr f ~ v4 dv = - 4  I [fv3 dv dl) = -4pr  a4 (2.12) 

we find 

F(x r', n i, v) = - m ( x  ~, ni)v 

This shows that m is indeed the quantity which is measured in a CMB 
anisotropy experiment, where the spectral information is used to verify that 
the spectrum of perturbations is the derivative of a blackbody spectrum. Of 
course, in a real experiment located at a fixed position in the universe, the 
monopole and dipole contributions to m cannot be measured. They cannot 
be distinguished from a background component and from a dipole due to 
our peculiar motion w.r.t, the CMB radiation. 

Multiplying (2.10) with v 3 and integrating over v, we obtain the equation 
of motion for m, ( , ) ( 1 )  

Otto + niOim = [21t. + A i + -~ B i n  i + 121ij - ~ Bid n inj (2.13) 

It is well known that the equation of motion for photons only couples 
to the Weyl part of the curvature (null geodesics are conformally invariant). 
However, the r.h.s, of (2.13) is given by first derivatives of the metric only, 
which could at best represent integrals of the Weyl tensor. To obtain a local, 
nonintegral equation, we thus rewrite (2.13) in terms of V2m. It turns out 
that the most suitable variable is, however, not V~-m, but X, which is defined by 

( , ) l 
X ------- V:m - V'-Hr - ~/T.{j - ~ (V2Bi-  30Yo'ij)n i 

l 1 
where (rij --- --~ (Bij + Bi.i) + ~ ?)oBt 't + l:tii 
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Note that X and V 2 m  only differ by the monopole contribution, W-HL -- 
(1/2)HIj j., and the dipole term, ( 1 / 2 ) ( V 2 B i  - 3OJo'ij)n i. The higher multipoles 
of•  and V 2 m  agree. An observer at fixed position and time cannot distinguish a 
monopole contribution from an isotropic background and a dipole contribution 
from a peculiar motion. Only the higher multipoles, l ->- 2, contain information 
about temperature anisotropies. For a fixed observer, therefore, we can identify 
V-2x with ~T/T .  

In terms of metric perturbations, the electric and magnetic part, of the 
Weyl tensor are given by (e.g., Magueijo, 1992; Durrer, 1994) 

1 2 H "2 H r r = -2 [Aij(A - HL) -- drij --  7 2 H  o - ~ Hllmm~ij + il,j + )t,~] (2.14) 

1 

with Aij = O~Oj - (1/3)~q7 ~" (2.15) 

Explicitly working out (0, 4- niOi)• using (2.13) yields, after some 
algebra, the equation of motion for • 

(a t + rlic~i)X "= 3niO;~ii + nknJ~-kliCgt~ij - ~  • t ,  x, n) (2.16) 

where Ekl i is the totally antisymmetric tensor in three dimensions with ~123 
~- 1. The spatial indices in this equation are raised and lowered with ~,j 
and thus index positions are irrelevant. Double indices are summed over, 
irrespective of their positions. 

Equation (2.16) is the main result of this paper. We now discuss it, 
rewrite it in integral form, and specify initial conditions for adiabatic scalar 
perturbations with or without seeds. 

In (2.16) the contribution from the electric part of the Weyl tensor is a 
divergence, and therefore does not contain tensor perturbations. On the other 
hand, scalar perturbations do not induce a magnetic gravitational field. The 
second contribution to the source term in (2.16) thus represents a combination 
of vector and tensor perturbations. If vector perturbations are negligible (as, 
e.g., in models where initial fluctuations are generated during an epoch of 
inflation), the two terms on the r.h.s of (2.16) thus yield a split into scalar 
and tensor perturbations which is local. 

Since the Weyl tensor of the Friedmann-Lema]tre universes vanishes, 
the r.h.s, of (2.16) is manifestly gauge invariant (this is the so-called Stewart- 
Walker lemma; Stewart and Walker, 1974). Hence the variable X is also gauge 
invariant. Another proof of the gauge invariance of X, discussing the behavior 
of F under infinitesimal coordinate transformations, is presented in Durrer 
(1994). 
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The general solution of (2.16) is given by 

X(t, x, n) = SO(t',  x + (t' - t)n, n) d t '  + • x + (ti - t)n, n) 
i 

(2.17) 

where S ~ is the source term on the r.h.s, of (2.16). 
In Appendix A we derive the relations between the geometric source 

term SO and the energy-momentum tensor in a perturbed Friedmann universe. 

3. T H E  COLLISION TERM 

In order for equation (2.17) to provide a useful solution, we need to 
determine the correct initial conditions X(td~c) at the moment of decoupling 
of matter and radiation. Before recombination, photons, electrons, and baryons 
form a tightly coupled plasma, and thus X cannot develop higher moments 
in n. The main collision process is nonrelativistic Compton scattering of 
electrons and photons. The only nonvanishing moments in the distribution 
function before decoupling are the zeroth, i.e., the energy density, and the 
first, the energy flow. We therefore set 

where 

(3.1) 

_ ~p(r)  
4HL + 27-Z(Hij) (3.2) 

P 

= -T('W[4o ~3 p(~) + B"- 23 7_~(O,.(ru) (3.3) 

D(g r) and V (') are gauge-invariant density and velocity perturbation variables 
(Kodama and Sasaki, 1980; Durrer, 1994). 

In the tight-coupling or fluid limit, the initial conditions can also be 
obtained from the collision term. Setting At - V-2X, one finds the following 
expression for the collision integral (Durrer, 1994): 

C[A~] = a~rrn~ --  -~ 
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The last term is due to the anisotropy of the cross section for nonrelativistic 
Compton scattering, with 

M q = " ~  nin j _ 3 ~ij ~ d ~  

is a gauge-invariant perturbation variable for the distribution function of 
photons. V ~b) denotes the baryon velocity field, crr and ne are the Thomson 
cross section and the free electron density, respectively. To make contact 
with the literature, we note that .kt = | + qb, where 19 is the perturbation 
variable describing the CMB anisotropies defined in Hu and Sugiyama (1995) 
and d~ denotes a Bardeen potential (see Section 4). Since .kt and 19 differ 
only by a monopole term, they give rise to the same spectrum of temperature 
anisotropies for e --> 1. ~t satisfies the Boltzmann equation 

(0, + n ia i )~  = 7-2~r + C [ ~ ]  (3.5) 

where b ~ is the gravitational source term given in (2.16). In the tight-coupling 
limit, tv -= (acrrne) -1 < <  t, we may, to lowest order in (trlt), just set the 
square bracket on the fight-hand side of (3.4) equal to zero. Together with 
(3.3), this yields 

v(b) = V (r) 

Neglecting gravitational effects, the right-hand side of Boltzmann's equation 
then leads to 

O~gr) 4 V -  V (b) 4 D(gb) = ~ = ~ (3.6) 

where the last equal sign is due to baryon number conservation. In other 
words, photons and baryons are adiabatically coupled. Expanding (3.5) one 
order higher in tr, one obtains Silk (1968) damping, the damping of radiation 
perturbations due to imperfect coupling. 

Let us estimate this damping by neglecting gravitational effects and the 
time dependence of the coefficients in the Boltzmann equation (3.5) since 
we are interested in time scales tv < <  t. We can then look for solutions of  
the form 

V ~b) ~ ~ ~ exp[i(kx - ~t)] 

We also neglect the angular dependence of the collision term. Solving (3.5) 
for ~t, we then find 

A/t (l/4)D~r) + ik �9 n V  Ib) 
= " (3.7) 

1 - itv(to - k .  n) 
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The collisions also induce a drag force in the equation of motion of the 
baryons which is given by 

f 4p~ (V(r) _ ikV(b) ) Fi _ atrrneP~,tr C[./~]n i d f l  = -~r 

With this force, the baryon equation of motion becomes 

ktoV (b) + i ( a /a ) kV  (b) = i k ~  - F/pb 

To lowest order in t i l t  and ktr, this leads to the following correction to the 
adiabatic condition V (~ = V(r): 

trtokV (b) = 49---5 (ikV (b) - V (r>) (3.8) 
3pb 

From (3.6) we obtain the relation k "  V (r )  : - (3/4)toD 7) to lowest order. 
Using this approximation, we find, after multiplying (3.8) with k, 

V(b) _ (3/4)(O 
trk2to R _ ik 2 D~g r) (3.9) 

with R = 3pflpr. The densities Ph and Pr denote the baryon and radiation 
densities, respectively. Inserting this result in (3.7) leads to 

1 + (3p~to/k)/(l - i t r toR)D (r) 
= ,e (3.10) 

1 - itr(to - klx) 4 

where we have set p, = k �9 n/k. From this result, which is valid on time 
scales shorter than the expansion time (length scales smaller than the horizon), 
we can derive a dispersion relation to(k). In lowest order totr we obtain 

to = too - i~ (3.1 l) 

with 

4 
R 2 + ~ (R + I) 

k 
and "y = k2tr (3.12) 

a)~ - x/3(l + R) 6(R + 1) 2 

At recombination R -- 0.1, so that 3' - 2k2tr/15. 
We have thus found that, due to diffusion damping, the photon perturba- 

tions thus undergo an exponential decay which can be approximated by 

I~tl ~ e x p ( - 2 k Z t r t / 1 5 )  on scales t > >  1/k > >  tr (3.13) 

In general, the temporal evolution of radiation perturbations can be split 
into three regimes: Before recombination, t < <  td~c, the evolution of photons 
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can be determined in the fluid limit. After recombination, the free Liouville 
equation is valid. Only during recombination does the full Boltzmann equation 
have to be considered, but also there collisional damping can be reasonably 
well approximated by an exponential damping envelope (Hu and Sugiyama, 
1996), which is a somewhat sophisticated version of (3.13). 

4. EXAMPLE:  ADIABATIC SCALAR PERTURBATIONS 

We now want to discuss equation (2.16) with initial conditions given 
by equation (3.1) in some examples. 

Perturbations are called 'scalar' if all three-dimensional (tensors w.r.t 
their spatial components on hypersurfaces of constant time) can be obtained 
as derivatives of scalar potentials. 

Scalar perturbations of the geometry can be described by two gauge- 
invariant variables, the Bardeen (1980) potentials ~ and W. The variable 
is the relativistic analog of the Newtonian potential. In the Newtonian limit, 
- ~  = W = the Newtonian gravitational potential. In the relativistic situation, 

is better interpreted as the perturbation in the scalar curvature on the 
hypersurfaces of constant time (Durrer and Straumann, 1988). In terms of 
the Bardeen potentials, the electric and magnetic components of the Weyl 
tensor are given by (Magueijo, 1992) 

1 
~ij = 2 Aij(~ -- ~Ir), ~]~ij = 0 (4.1) 

where A 0 denotes the traceless part of the second derivative, Aq = Oiaj - 
-~i jV 2. The  Liouville equation (2.16) then reduces to 

(0, + niOi)~ = niOi(~ - qt)  (4.2) 

With the initial conditions given in (3.1) we find the solution 

- ~  (to, Xo, n) = .kt(t0, Xo, n) 

= [~D(gr) + rlioiW~b) + "~tt -- f~] (tdec, Xdec) 

- ( ~  - ~ ) ( t ,  x ( t ) )  dt ( 4 . 3 )  
dec 

where xa~c = Xo - (to - tdec)n and correspondingly x(t) = Xo - (to - t)n. 
We now want to replace the fluid variables D~ r) and V ~b) wherever possible 

by perturbations in the geometry. To this goal, let us first consider the general 
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situation, when one part of the geometry perturbation is due to perturbations 
in the cosmic matter components and another part is due to some type of 
seeds, which do not contribute to the background energy and pressure. The 
Bardeen potentials can then be split into contributions from matter and seeds: 

do = dO,,, + do.,, g2" = ~ , ,  + q t  (4.4) 

To proceed further, we must assume a relation between the perturbations in 
the total energy density and energy flow Dg and V and the corresponding 
perturbations in the photon component. The most natural assumption here is 
that perturbations are adiabatic, i.e., that 

D~')/(I + Wr) = Dg](l + w) and V (b) = V ('1 = V 

where w -- p/p denotes the enthalpy, i.e., wr = 1/3. For wr r w this condition 
can only be maintained on superhorizon scales or for tightly coupled fluids. 
For decoupled fluid components, the different equations of state lead to a 
violation of this initial condition on subhorizon scales. 

In order to use the perturbed Einstein equations to replace D~ and V by 
geometric perturbations, we define yet another density perturbation variable, 

D----Dg + 3(1 + w) a-" V - 3 ( 1  + w)do 
a 

D (r) = D~ r) + 4 a_" iCr) _ 4do 
o 

The matter perturbations D and V determine the matter part of the Bardeen 
potentials via the perturbed Einstein equations (see, e.g., Durrer, 1994). The 
following relation between do,. and D can also be obtained using (4.1) and 
(AI6) in the absence of seeds: 2(:/ D = - ~  V2do~ ~ (kt)2dom 

5 *o - | = + w ) v  
a 2\a] 

The term D, respectively, D (r), is much smaller than the Bardeen potentials 
on superhorizon scales and it starts to dominate on subhorizon scales, kt > >  
1. For this term, therefore, the adiabatic relation is not useful and we should 
not replace D ~r) by [4/3(1 + w)]D. The same holds for O~V ~b), which is of 
the order of ktdo,,. However, (d/a)~ r~ is of the same order of magnitude as 
the Bardeen potentials and thus mainly relevant on superhorizon scales. 
There the adiabatic condition makes sense and we may replace (gz/a)V by 
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its expression in terms of geometric perturbations. Keeping only D (r) and 
aiV Ib) in terms of photon fluid variables, (4.3) becomes 

I (:) BT -,- 1 + 3w ~ , ,  -,- 2 r  
-~- (xo, to, n) = ~s 3 + 3------~ 3(1 + w~ 

+ n~aiV ~b)] (xd,c, td~c) 
1 D(r) 

I 
tO 

- ( ~  - ~ ) ( x ( t ) ,  t) ( 4 . 5 )  
dec 

This is the most general result for adiabatic scalar perturbations in the 
photon temperature. It contains geometric perturbations, acoustic oscillations 
prior to recombination, and the Doppler term. Silk damping, which is relevant 
on very small angular scales (Lasenby, 1996), is neglected, i.e., we assume 
"instantaneous recombination." Equation (4.5) is valid for all types of matter 
models, with or without cosmological constant and/or spatial curvature (we 
just assumed that the latter is negligible at the last scattering surface, which 
is clearly required by observational constraints). The first two terms in the 
square bracket are usually called the ordinary Sachs-Wolfe contribution. The 
integral is the integrated Sachs-Wolfe effect. The third and fourth terms in 
the square bracket describe the acoustic Doppler oscillations, respectively. 
On superhorizon scales, kt < <  I, they can be neglected. 

To make contact with the formula usually found in textbooks, we finally 
constrain ourselves to a universe dominated by cold dark matter (CDM), i.e., 
w = 0 without any seed perturbations. In this case ~.~ = ~s = 0 and it is 
easy to show that xp. = _ ~  and that �9 = �9 = 0 (see, e.g., Durrer, 1994). 
Our results then simplify on superhorizon scales, kt < < l, to the well-known 
relation of Sachs and Wolfe (1967) 

T- w = ~ qe(xo - ton, tj~) (4.6) 

5. CONCLUSIONS 

We have derived all the basic ingredients to determine the temperature 
fluctuations in the CMB. Since the fluctuations are so small, they can be 
calculated fully within linear cosmological perturbation theory. Note, how- 
ever, that density perturbations along the line of sight to the last scattering 
surface might be large, and thus the Bardeen potentials inside the Sachs-Wolfe 
integral might have to be calculated within nonlinear Newtonian gravity. But 
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the Bardeen potentials themselves remain small (as long as the photons never 
come close to black holes) such that (4.5) remains valid. In this way, even 
a CDM model can lead to an integrated Sachs-Wolfe effect, which then is 
known as the Rees-Sciama effect. Furthermore, do to ultraviolet radiation 
of the first objects formed by gravitational collapse, the universe might 
become reionized and electrons and radiation become coupled again. If this 
reionization happens early enough (z > 30), the subsequent collisions lead 
to additional damping of anisotropies on angular scales up to about 5 ~ 
However, present CMB anisotropy measurements do not support early reion- 
ization and the Rees-Sciama effect is probably very small. Apart from these 
effects due to nonlinearities in the matter distribution, which depend on the 
details of the structure formation process, CMB anisotropies can be deter- 
mined within linear perturbation theory. 

This is one of the main reason why observations of CMB anisotropies 
may provide detailed information about the cosmological parameters (Hu et 
al., 1997): The main physics is linear and well known and the anisotropies 
can thus be calculated within an accuracy of 1% or so. The detailed results 
do depend in several ways on the parameters of the cosmological model, 
which can thus be determined by comparing calculations with observations. 

There is, however, one caveat: If the perturbations are induced by seeds 
(e.g., topological defects), the evolution of the seeds themselves is in general 
nonlinear and complicated. Therefore, much less accurate predictions have 
been made so far for models where perturbations are induced by seeds (see, 
e.g., Durrer and Zhou, 1996; Durrer et al., 1996; Crittenden and Turok, 1995). 
In this case, the observations of CMB anisotropies might not help very much 
to constrain cosmological parameters, but they might contain very interesting 
information about the seeds, which according to present understanding origi- 
nate from very high temperatures, T -- 1016 GeV. The CMB anisotropies 
might thus hold some "fossils" of the very early universe, of physics at an 
energy scale which we can never probe directly by accelerator experiments. 

APPENDIX. AN EQUATION OF MOTION FOR THE WEYL 
T E N S O R  

The Weyl tensor of a spacetime (At, g) is defined by 

C~Vo~p Rp.,,o.p ~ ~[p.o"] 1 R~[p. ,~ 1 = - =~[,~"pi + ~ s[~,spi ( A 1 )  

where [ix...v] denotes antisymmetrization in the indices ix and v. The Weyl 
curvature has the same symmetries as the Riemann curvature and it is traceless. 
In addition, the Weyl tensor is invariant under conformal transformations: 

C~'~,,p(g) = C~%,,p(a'-g) 
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( C a u t i o n :  This equation only holds for the given index position.) In four- 
dimensional spacetime, the Bianchi identities together with Einstein's equa- 
tions yield equations of motion for the Weyl curvature. In four dimensions, 
the Bianchi identities 

Rv.v[crp;X] : 0 

are equivalent to (Choquet-Bmhat et  al . ,  1982) 

C ~ . t ~  = R~I~:a ~ _ 1 g~[~R:~ 1 
6 

This together with Einstein's equations yields 

1 g.~i,~R;a] ) C~ '~  = 8.rrG(T'~,~;~] - 

(A2) 

(A3) 

which is the projection onto the subspace of tangent space normal to u. The 
decomposition of the Weyl tensor yields its electric and magnetic 
contributions: 

where xl '~v~ denotes the totally antisymmetric 4-tensor with 110123 = v / ~  �9 
Due to symmetry properties and the tracelessness of the Weyl curvature, % 
and ~ are symmetric and traceless, and they fully determine the Weyl curva- 
ture. One easily checks that %,~ and ~ are also conformally invariant. 
We now want to perform the corresponding decomposition for the energy- 
momentum tensor of  some arbitrary type of seed, TS~. We define 

Ps - -  T t ~  ur 

1 T(S)h~.V 
PS =-- ~ --~,v.. 

1 
- a ~  ~ - - h v T ~ S ) u a  - ~ - ~ . .  , q,  = - _  T~i 

a 

(A6) 

(A7) 

(A8) 

c~lx v ~ CIa.kv~UkU tr 

1 
~ .  = ~ C~x~uX'q ~,,u~ 

(A4) 

(AS) 

h ~ g ~  + u~u~ 

where TCv is the energy-momentum tensor, T = T~. 
Let us now choose some timelike unit vector field u, u z = - I. We then 

can decompose any tensor field into longitudinal and transverse components 
with respect to u. We define 
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a13 ~ %, ,  - h ~ h ~ , T ~  - h~.~ps (A9) 

We then can write 

T ~  = psur + pshr + q~u~ + ur + %~ (AIO) 

This is the most general decomposition of a symmetric second-rank tensor. 
It is usually interpreted as the energy-momentum tensor of an imperfect fluid. 
In the frame of an observer moving with four-velocity u, Ps is the energy 
density, Ps is the isotropic pressure, q is the energy flux, u �9 q = 0 ,  and "r is 
the tensor of  anisotropic stresses, "r~,,h ~ = "r~u ~' = 0, 

We now want to focus on a perturbed Friedmann universe. We therefore 
consider a four-velocity field u which deviates only in first order from the 
Hubble flow: u = (1/a)Oo + first order. Friedmann universes are conformally 
flat, and we require the seed to represent a small perturbation on a universe 
dominated by radiation and cold dark matter (CDM). The seed energy- 
momentum tensor and the Weyl tensor are of  thus of first order, and (up to 
first order) their decomposition does not depend on the choice of  the first- 
order contribution to u; they are gauge-invariant. But the decomposition of 
the dark matter depends on this choice. Cold dark matter is a pressureless 
perfect fluid. We can thus choose u to denote the energy flux of the dark 

p. u matter, T~u = - p c u  ~'. Then the energy-momentum tensor of the dark matter 
has the simple decomposition 

T~Q = pcu~u~ (A l 1) 

With this choice, the Einstein equations (A3) linearized about an lq = 1 
Friedmann background yield the following 'Maxwell  equations' for E and 
B (Ellis, 1971): 

(i) Constraint  equations: 

o i ~  i/ = 4.trG-qjl3~ul3qtr 

tgic~ij = 8 7 r G ( ~ a 2 p c D j +  a 2 o s j  - 0 %  - qj 

(A12) 

(Al3) 

(ii) Evolut ion equations: 

a~i j  + d~i j  2 ~ f~ ~:~ - a hcfqj)B.~u c~ a = -4"trGa2ha(i'qj)f3~vuB'r a~:v (A14) 

~o + a ~ij + ah~i~b)~u ~ = -47rG(aq  0 - a - %j + r + apcuij) (AI5) 
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where ( i . . .  j )  denotes symmetrization in the indices i and j .  The symmetric 
traceless tensor fields q ~  and u~, are defined by 

I 

1 h~.,,u~, 
/ ' /p.u = U (p . ; v )  - -  

In (A14) and (A15) we have also used that for the dark matter perturbations 
only scalar perturbations are relevant; vector perturbations decay quickly. 
Therefore u is a gradient field u~ = U:i for some suitably chosen function 
U. Hence the vorticity of the vector field u vanishes, ul~;~ I = 0. With 

"qoijk = a'*~-ijk, Ps = a - 2 T S ,  qi = - a - t Z S i  

we obtain from (AI3) 

0 ~ o  = 8 ~ G  pca2Do + ~ r S j  - ~ 0i'r~j + a - T (A16) 

In (A16) and the following equations summation over double indices is 
understood, irrespective of their position. 

To obtain the equation of motion for the magnetic part of the Weyl 
curvature we take the time derivative of (AI4), using u = (lla)Oo + first 
order and rlo0k = a4~k. This leads to 

a , m  

(AI7) 

where we have again used that u is a gradient field and thus terms like e,-jkU0,k 
vanish. We now insert (A15) into the first square bracket above and replace 
product expressions of the form eij~ea,, and eijket,,,,, with double and triple 
Kronecker deltas. Finally we replace divergences of B with the help of (A 12). 
After some algebra, we obtain 

E ] I a] ~tm~i ~y)t + a_ ~1~t = - V z ~ i y  - 4"rrG~t,,,~i 2aql,my) + %t,,,, - -~ 'r))t.~ 
a ,rn 

Inserting this into (Al7) and using energy-momentum conservation of the 
seed, we finally find the equation of motion for ~ :  

a-t(a~);?: - V2~ij -~w) = 8"rrt../tf,j (A 18) 
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with 

= ~t,~i[-Totu3,, + %t.m] (A19) 

Equation (A18) is the linearized wave equation for the magnetic part of the 
Weyl tensor in an expanding universe. A similar equation can also be derived 
for %. 

Since dark matter just induces scalar perturbations and ~ii is sourced 
by vector and tensor perturbations only, it is independent of the dark matter 
fluctuations. Equations (A16) and (A18) connect the source terms in the 
Liouville equation of Section 2, O~%+j and ffSii, to the perturbations of the 
energy-momentum tensor. 
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