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Abstract A large number of human protein-coding genes

are finely regulated by one or more microRNAs. Members

of this small noncoding RNA family have emerged as

important post-transcriptional regulators of gene expres-

sion and are involved in a number of disease phenotypes.

Variability in the human genome is extensive and includes

the common and rare single nucleotide polymorphisms

(SNPs) and copy number variations (CNVs). The func-

tional significance of the genome’s variability is under

intense investigation. In this article we review the emerg-

ing literature on how human genomic variation influences

the outcome of microRNA targeting and the associated

phenotypic effects. Illustrative examples are discussed that

demonstrate the biological importance of functional poly-

morphisms affecting miRNA-mediated gene regulation.

Introduction

The human genome contains many forms of genetic vari-

ation. One class of variants comprises the millions of single

nucleotide polymorphisms (SNPs) first identified more than

30 years ago in the b-globin gene cluster (Kan and Dozy

1978), and recently cataloged in different populations

(Hinds et al. 2005; The International HapMap Consortium

2003). A second common class of variation are copy

number variants (CNVs), also identified about 30 years ago

in the a-globin gene cluster (Goossens et al. 1980; Kan

et al. 1975). A considerable effort is now devoted toward

understanding the extent and magnitude of CNVs in human

populations (Wheeler et al. 2008). Here we review the

emerging evidence of the effect of human genetic variation

on microRNA-mediated gene regulation and discuss how

human interindividual variability can influence the out-

come of microRNA targeting.

miRNAs and their functions

MicroRNAs (miRNAs, miR), which are short, noncoding

RNA molecules (*21 nt), have revealed a new dimension

in the complexity of translation control. Our current

understanding of the functions of miRNAs is incomplete

(Bushati and Cohen 2007). There is considerable evidence

that miRNAs function by binding to complementary

sequences that usually lie in the 30 untranslated regions

(30UTR) of target mRNAs to induce cleavage, repression of

productive translation, and regulation of mRNA stability in

the cytoplasm (Ambros 2004; Bartel 2004; Bushati and

Cohen 2007; Carrington and Ambros 2003; Filipowicz

et al. 2008; Jackson and Standart 2007; Nilsen 2007).

Recently, studies revealed additional functions of miRNAs

such as upregulation of target mRNA translation upon cell-

cycle arrest (Vasudevan et al. 2007), import into the

nucleus (Hwang et al. 2007), or even the secretion of the

miRNAs from the cell (Valadi et al. 2007). A novel aspect

of miRNA-mediated repression with a noncoding transcript

in Arabidopsis thaliana that can regulate the activity of an

miRNA by mimicking its target site has been demonstrated

(Franco-Zorrilla et al. 2007). Some authors suggest that

some RNAs have a nonproductive interaction with a

complementary miRNA to inhibit and regulate the activity

of the miRNA. These examples indicate that miRNA
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molecules have very diverse functions that remain to be

explored.

To date, the miRNA registry (MiRBase) contains 6397

mature miRNAs, among which 678 are human miRNAs

(April 2008, release 11.0). miRNAs can be encoded in

independent transcription units, in polycistronic clusters, or

within the introns of protein-coding genes (Bartel 2004).

Thus far, most registered miRNAs are widely expressed

and highly conserved. Deep sequencing of small RNA

libraries and cell-type–specific analyses are currently

valuable approaches to uncovering miRNAs with less

abundant expression; thus, the catalog of miRNAs is

expected to grow substantially in the future (Bar et al.

2008; Glazov et al. 2008; Sunkar et al. 2008).

miRNA expression profiles indicated that some miRNAs

are under complex control during development and in a

variety of tissues (Farh et al. 2005; Lim et al. 2005; Stark

et al. 2005). These studies suggest that miRNAs define

highly specific cell identities and have a critical role in cell

differentiation. In C. elegans, the miRNA lousy-6 (lsy-6) is

specifically activated by the transcription factor die-1 in

ASE left cells, whereas lsy-6 is downregulated by miR-273

and then activated by the transcription factor cog-1 in ASE

right cells (Chang et al. 2004; Johnston and Hobert 2003;

Johnston et al. 2005). Genetic data demonstrated that lsy-6,

cog-1, miR-273, and die-1 act in a regulatory double-

negative feedback loop (Johnston et al. 2005). This inverse

expression of lsy-6 controls laterality of the nematode

chemosensory system and is an excellent illustration of the

role of miRNAs in controlling terminally differentiated

cellular states.

Although the proteins mediating miRNA biogenesis and

function have been clarified, the precise mechanism by

which miRNAs regulate the expression of target mRNAs

remains unclear. Mature miRNAs preferentially form

nonperfect duplexes with the target mRNA (usually in the

mRNA 30UTR) and recruit a repressing complex termed

the RNA-induced silencing complex (RISC). This regula-

tion can be highly pleitropic, with one miRNA able to

target several hundred different transcripts. In fact, bioin-

formatic prediction indicates that 30% of animal genes may

be miRNA targets.

Principles of miRNA biogenesis

miRNAs are transcribed by RNA polymerase II (Bartel

2004) as long primary transcripts (pri-miRNAs, 100 nt-

10 kb) and are then processed within the nucleus into

hairpin-shaped precursor miRNAs (pre-miRNAs, *70 nt)

by the RNase III enzyme Drosha (Lee et al. 2003) and the

double-stranded RNA-binding domain cofactor DGCR8/

Pasha (DiGeorge syndrome critical region gene 8) (Denli

et al. 2004; Gregory et al. 2004; Han et al. 2004; Landthaler

et al. 2004; Lee et al. 2003). An alternative miRNA pro-

cessing pathway has recently been described that uses

splicing processes to bypass Drosha cleavage and to gen-

erate miRNA precursors from short intronic sequences

(Berezikov et al. 2007; Okamura et al. 2007; Ruby et al.

2007). These small intronic sequences of noncoding RNA

are called mirtrons.

In the cytoplasm, Dicer (RNase III) processes the pre-

miRNAs to generate *22-nt miRNA duplexes (Lund et al.

2004). One strand remains a mature miRNA and is then

assembled into the effector complex RISC (Khvorova et al.

2003; Schwarz et al. 2003).

Principles of miRNA—mRNA interactions

To specify repression, miRNAs seem to require only short

stretches of complementarity to a mRNA, following a broad

set of principles that have been identified experimentally

and by bioinformatic studies (Brennecke et al. 2005; Do-

ench and Sharp 2004; Grimson et al. 2007; Lewis et al.

2005; Lytle et al. 2007; Nielsen et al. 2007). However, the

mechanistic details of miRNA–mRNA interactions are

poorly understood and there are always exceptions that

make the predictions of miRNA targets difficult. Many

studies have confirmed that the interaction is initiated by a

continuous and perfect base pairing of seven contiguous

nucleotides at positions 2-8 from the 50 end of the miRNA,

representing the ‘‘seed region’’ (Lewis et al. 2003, 2005).

Mismatches, a guanine–uracil pairing (GU), or bulges in the

seed sequences disturb the binding of miRNA with this

target site and consequently affect function (Brennecke

et al. 2005). However, it has been observed that an A on

position 1 of the miRNA (50) and either A or U at position 9

can boost miRNA targeting, although these do not need to

base pair with target nucleotides (Grimson et al. 2007).

Other characteristics specify targeting: mismatches and

bulges are present in the central part of the miRNA-target

site duplex, a core region of 30 pairing to residues 13-16

within the miRNA 30 end. However, the degree of repres-

sion is also related to UTR contexts and factors that can

improve site efficiency (Grimson et al. 2007): multiple,

closely spaced target sites act cooperatively, high local AU

content in the vicinity of the miRNA target site improves

site efficiency, and effective sites are located preferentially

near both the poly(A) tail and the stop codon. As part of the

different models proposed for miRNA–mRNA interactions,

miRNA target sites can be categorized into two distinct

classes: 50-dominant and 30-compensatory. 50-Dominant

target sites have perfect base pairing with at least 7-8 nt at

the 50 end of the miRNA; the base pairing to the rest of the

miRNA is considered irrelevant (Chen and Rajewsky 2006;

Lewis et al. 2003). 30-Compensatory target sites have

extended base pairing to the 30 end of the miRNA in order to
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compensate for an imperfect or shorter stretch of base

pairing with the 50 end of the miRNA (Gupta et al. 2006;

Kiriakidou et al. 2004; Schratt et al. 2006; Stark et al. 2005).

Genetic variation

Genetic variations range from large chromosome anoma-

lies to single-nucleotide changes. Recently, multiple

studies have identified a large number of submicroscopic

CNVs of DNA segments ranging from kilobases (kb) to

megabases (Mb) in size (Beckmann et al. 2007). CNVs

consist of deletions, insertions, duplications, and complex

multisite variants in comparison with a reference genome.

All those DNA sequence variations could potentially affect

the maturation of miRNAs, the silencing machinery, the

structure or the expression level of mature miRNA, and the

base pairing at the target site, and have functional role for

miRNA-mediated gene regulation. We focus on human

miRNAs and review all the evidence for human regulatory

polymorphisms perturbing miRNA function and thus in

turn causing phenotypic variations and disorder.

Polymorphisms and heterogeneity

of miRNA sequences

Polymorphism in pri-, pre-, and mature miRNA

sequences

A representative mammalian pri-miRNA comprises a stem

(*33 bp) with a terminal loop and flanking sequences

(*100 bp). Experiments show that a part of the terminal

loop (Zeng and Cullen 2005; Zeng et al. 2005) and

sequences flanking the stem loop (Han et al. 2006; Lee

et al. 2003; Zeng and Cullen 2003) are critical for pro-

cessing by Drosha and Dicer. It has been hypothesized that

polymorphisms in pre-miRNA may influence the miRNA

maturation and thereby modulate miRNA expression.

A total of 173 human pre-miRNAs in 96 Japanese

individuals have been sequenced (Iwai and Naraba 2005).

The study identified ten SNPs in ten pre-miRNA hairpins

among which only one SNP in the mature sequence of

miR-30c-2 is likely to affect stem integrity (this prediction

has not yet been confirmed experimentally).

In another study, a bioinformatic search selected 323

known SNPs located within 227 human pre-miRNA

sequences (Duan et al. 2007). Twelve of these SNPs were

within pre-miRNA sequences and one, a G/U polymor-

phism, located at the eighth nucleotide within the mature

sequence of miR-125a, has been functionally character-

ized. This SNP (rs12975333) blocks in vitro the processing

of pri-miRNA into pre-miRNA and alters the translation

suppression by miR-125a on a well-known Lin-28 target

mRNA. The biological consequences of these miRNA

SNPs remain to be determined.

In a similar study, the occurrence of common SNPs in

474 human pre-miRNAs found by screening the dbSNP

database was studied (Saunders et al. 2007). Sixty-five

SNPs (including indel polymorphisms) in 49 pre-miRNAs

were found, thus exhibiting a SNP density of *1.3 SNPs

per kilobase pair. Only three miRNAs (hsa-mir-125a, hsa-

mir-627, and hsa-mir-662) were found to have SNPs within

the seed region (rs12975333, rs2620381, and rs9745376,

respectively). The conclusion of the study was that miRNA

genes have low polymorphism density and that most

identified polymorphisms are not within the seed region,

indicative of strong selective constraint on human pre-

miRNAs. None of these polymorphisms has been tested

experimentally to determine whether these SNPs might

affect the structure or processing of miRNAs.

A germline DNA variant (C/T) in the primary sequence

of the miRNA cluster encoding for miR-16-1 and miR-15a

(7 bp in the 30 direction after the precursor) has been

identified (Calin et al. 2005). This DNA variant was found

in 11 of 75 patients with chronic lymphocytic leukemia,

but not seen in 160 subjects without cancer. This nucleo-

tide variation results in reduced mature expression of miR-

16-1 and miR-15 in vitro and in vivo and is associated with

deletion of the normal allele containing this miR cluster.

A recent example illustrates how a common polymor-

phism in a miR precursor can consequently affect the

mature miRNA expression level. Jazdzewski et al. (2008)

reported a G/C (rs 2910164) SNP in pre-miR-146a that

results in vitro in reduced amounts of mature miR-146a

and contributes to the genetic predisposition to papillary

thyroid carcinoma.

A recent genome-wide analysis in healthy individuals

revealed 43 miRNAs mapping in CNV regions in one study

(Redon et al. 2006), while another study identified 14

CNVs encompassing 21 known miRNAs (Wong et al.

2007). It is not known if the variation in copy number of

the miRNAs alters their function and contributes to the

phenotypic diversity in humans.

30- and 50-end heterogeneity of miRNAs-isomiRs

Detailed analysis of mature miRNA sequences revealed an

extensive degree of variation at the terminal nucleotides

compared to the current miRBase reference sequences

(Cummins et al. 2006; Lagos-Quintana et al. 2002;

Landgraf et al. 2007; Morin et al. 2008; Ruby et al. 2006;

Wu et al. 2007). This population of variants in known

miRNAs is collectively termed isomiRs. All cited studies

observed in most cases nonrandom and conserved 30-end
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heterogeneity with 30-end deletions and extensions of one

to three nucleotides. The most prevalent type of modifi-

cations generated single-nucleotide 30 extensions that differ

from the genomic sequence. In contrast, 50 ends were more

homogeneous, with only a few cases of variation (Landgraf

et al. 2007; Morin et al. 2008). These results predict that a

particular miRNA hairpin may generate numerous mature

miRNAs.

Although the biological consequence of this observation

remains to be determined, such variants might act by

influencing the miRNA half-life, subcellular localization,

and miRNA target specificity (particularly 50-end varia-

tion). In addition, the most abundant isomiRs’ sequences

need to be determined for each miRNA, and it is essential

to verify whether any of these variants associate within

RISC and function as gene silencers.

Polymorphisms affecting miRNA–mRNA

interactions

Polymorphism in miRNA target sites

The thermodynamics of RNA–RNA interaction plays an

essential role in the binding of a miRNA with its target

mRNA; it is proposed that SNPs at miRNA binding sites

may alter the expression of target genes. Polymorphism

density is significantly lower in conserved target site

regions that are complementary to the seed region of the

miRNA (Chen and Rajewsky 2006). SNPs in this region

are expected to be functional and they are candidates for

causal variants of human disease. Several studies scanned

for the occurrence of SNPs in human 30 UTRs with the

purpose of identifying SNPs that may modulate expression

of computationally predicted miRNA target sites (Bao

et al. 2007; Chen and Rajewsky 2006; Georges et al. 2007;

Saunders et al. 2007). Among the 120,000 known 30 UTR

SNPs, 19,913 modified putative miRNA targets either by

destroying predicted conserved target sites (785) or pre-

dicted nonconserved target sites (9470) or by creating

10,283 novel predicted target sites (http://www.patrocles.

org; Georges et al. 2007).

The first evidence that mutations in a miRNA target site

might affect the phenotype came from a study of the gene

SLITRK1, considered a strong candidate for Tourette’s

syndrome (Abelson et al. 2005). Mutation screening in 174

unrelated individuals with Tourette’s syndrome revealed a

G-to-A transition in the 30 UTR of SLITRK1 that was not

present in 1800 normal individuals. This variant is pre-

dicted to stabilize the interaction of 30 UTR of SLITRK1

with miR-189 by changing a G:U wobble pair to an A:U

Watson-Crick pair at position 9 of the miRNA. It was

demonstrated in vitro that the 30 UTR of SLITRK1 indeed

facilitates miR-189-mediated downregulation of a lucifer-

ase reporter in Neuro2a cells, and the G-to-A variant

resulted in a repression of luciferase expression compared

to the wild type. There is a developmentally regulated and

overlapping expression pattern of SLITRK1 mRNA and

miR-189 in brain regions previously implicated in Tou-

rette’s syndrome (Abelson et al. 2005). Moreover,

SLITRK1 promotes dendritic growth while the mutation

likely results in a loss of function. These results suggest an

association of rare SLITRK1 sequence variants with Tou-

rette’s syndrome (Abelson et al. 2005).

Another example of a functional SNP in the target

miRNA sequence is related to hypertension. A SNP rs5186

(1166A/C) in the 30 UTR for the angiotensin receptor-1

(AGTR1) gene has been characterized (Sethupathy et al.

2007). The 1166C allele of AGTR1 has been shown to

increase the risk of essential hypertension in several asso-

ciation studies in various populations (EHT [MIM

145500]). Moreover, it has been shown independently that

increased levels of AGTR1 contribute to cardiovascular

disease (Song and White 2002; Van Geel et al. 2000) and

antagonists of AGTR1 are now widely used in the treat-

ment of hypertension (Burnier and Brunner 2000). The

likely mechanism through which SNP rs5186 regulates

AGTR1 protein levels has recently been elucidated (Se-

thupathy et al. 2007). This SNP has been localized in a

target site for human miR-155 within the 30 UTR of AGTR1

(Martin et al. 2006). Using reporter silencing assays, it was

shown that miR-155 downregulates the expression of only

the A and not the C allele of rs5186. Thus, the C allele may

be functionally associated with hypertension by abrogating

regulation by miR-155, thereby increasing AGTR1 levels

(Sethupathy et al. 2007). Moreover, miR-155 maps to

human chromosome 21 and it was observed by quantitative

real-time PCR that miR-155 is overexpressed in trisomy 21

individuals. Fibroblasts from monozygotic twins discordant

for trisomy 21 showed that the AGTR1 protein is lower in

trisomy 21 fibroblasts compared to normal. Remarkably, it

has been reported that individuals with trisomy 21 have

lower diastolic and systolic blood pressure levels than age-

and gender-matched controls (Draheim et al. 2002; Mor-

rison et al. 1996). Overexpression of miR-155 in trisomy

21 is likely to excessively suppress the AGTR1 common

allele; this may contribute to the lower blood pressure in

trisomy 21 individuals.

There are four additional examples of loss of miRNA

target site sequences due to SNPs. The presence of SNP

829C/T (rs34764978) in the 30 UTR of DHFR led to a loss

of miR-24 function and resulted in dihydrofolate reductase

overexpression and methotrexate resistance (Mishra et al.

2007). Furthermore, SNP 3142C/G (rs1063320) in the

HLA-G 30 UTR affects the targeting of miR-148a, miR-

148b, and miR-152 and is associated with risk of asthma in
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children (Tan et al. 2007). Wang et al. (2008) demonstrated

a direct link between miR-433 and a common SNP

(rs12720208, T/C) located in the 30 UTR of fibroblast

growth factor 20 (FGF20), already associated with an

increased risk for Parkinson’s disease. The risk allele for

this SNP abolished the miR-433 functional activity and

increased the translation activity of FGF20 and a-synuclein

expression.

Another recent example of loss of miRNA target site

sequences due to SNPs is that type 2 diabetes implicated

miR-657 and the IGF-II receptor gene (IGF2R). IGF2R is

located in a region that has been shown to be related to

insulin resistance and obesity-related metabolic phenotypes

(Duggirala et al. 2001). A case control association study

concluded that the ACAA insertion/deletion (144/140 bp)

polymorphism at the 30 UTR of the IGF2R might partici-

pate in the pathogenesis of type 2 diabetes (Villuendas

et al. 2006). Recently, new evidence showed that hsa-miR-

657 can post-transcriptionally regulate the IGF2R expres-

sion levels in Hep G2 cells by targeting its 30 UTR.

Moreover, it has been demonstrated that the ACAA

insertion/deletion polymorphism alters the interaction

between IGF2R and miR-657 (Lv et al. 2008).

On the other hand, a DNA variant can create a gain of a

miRNA target site. QTL mapping and genetic analysis

reveal a G-to-A substitution in the 30 UTR of the GDF8

gene implicated in the polygenic hypermuscularity of

Texel sheep (Clop et al. 2006). This point mutation creates

two novel target sites for miR-1 and miR-206 (sharing a

common seed sequence), which are highly expressed in

skeletal muscle. In the presence of the mutation, there was

a threefold reduction of circulating myostatin and 1.5-fold

reduction in the GDF8 transcript level. The novel miRNA

target sites were also experimentally validated.

Polymorphisms affecting miRNA expression

To date there are no SNPs described that affect miRNA

expression levels. It is anticipated that such variation will

be discovered in the near future as the miRNAs are better

characterized, and more genomic variants, common or rare,

will be functionally analyzed and be associated with

phenotypes.

Conclusions

The study of SNPs has revealed that any two randomly

selected human genomes differ by 0.1% (Frazer et al.

2007). A fraction of this genetic variation would affect

functional elements directly and will have a causative role

in the phenotype. It is therefore expected that genetic

variability would also affect the function of miRNAs. This

review points out the emergence of a new class of regu-

latory variability that might substantially contribute to the

heritability of complex traits. Some illustrative examples

have been discussed here. However, the majority of this

functional variability (particularly rare private variants)

may remain unknown. The miRNA function provides

excellent opportunities for the discovery of potential epi-

static interactions between polymorphisms in miRNA

genes and their targets as important risk allele combina-

tions. Because miRNAs affect the fine-tuning of gene

expression, we predict that functional variants related to

miRNA biology will likely be involved in the complex

multifactorial phenotypes.

Acknowledgments The authors’ lab is supported by the Swiss

National Science Foundation, the NCCR Frontiers in Genetics, The

European Union, the NIH, and the Lejeune and ChildCare Founda-

tions. We thank our laboratory colleagues for discussions, critical

reading, and numerous suggestions.

Web Resources

dbSNP: http://www.ncbi.nlm.nih.gov

SeattleSNPS database: http://pga.gs.washington.edu

International HapMap project: http://www.hapmap.org

Perlegen Sciences: http://genome.perlegen.com

Patrocles: http://www.patrocles.org

PolymiRTS: http://compbio.utmem.edu/miRSNP/

Tarbase: http://www.diana.pcbi.upenn.edu/tarbase.html

References

Abelson JF, Kwan KY, O’Roak BJ, Baek DY, Stillman AA et al

(2005) Sequence variants in SLITRK1 are associated with

Tourette’s syndrome. Science 310:317–320

Ambros V (2004) The functions of animal microRNAs. Nature

431:350–355

Bao L, Zhou M, Wu L, Lu L, Goldowitz D et al (2007) PolymiRTS

Database: linking polymorphisms in microRNA target sites with

complex traits. Nucleic Acids Res 35:D51–D54

Bar M, Wyman SK, Fritz BR, Qi J, Garg KS et al (2008) MicroRNA

discovery and profiling in human embryonic stem cells by deep

sequencing of small RNA libraries. Stem Cells

Bartel DP (2004) MicroRNAs: genomics, biogenesis, mechanism, and

function. Cell 116:281–297

Beckmann JS, Estivill X, Antonarakis SE (2007) Copy number

variants and genetic traits: closer to the resolution of phenotypic

to genotypic variability. Nat Rev Genet 8:639–646

Berezikov E, Chung WJ, Willis J, Cuppen E, Lai EC (2007)

Mammalian mirtron genes. Mol Cell 28:328–336

Brennecke J, Stark A, Russell RB, Cohen SM (2005) Principles of

microRNA-target recognition. PLoS Biol 3:e85

Burnier M, Brunner HR (2000) Angiotensin II receptor antagonists.

Lancet 355:637–645

Bushati N, Cohen SM (2007) microRNA functions. Annu Rev Cell

Dev Biol 23:175–205

Calin GA, Ferracin M, Cimmino A, Di Leva G, Shimizu M et al

(2005) A microRNA signature associated with prognosis and

C. Borel, S. E. Antonarakis: Polymorphic miRNA-mediated gene regulation 507

123

http://www.ncbi.nlm.nih.gov
http://pga.gs.washington.edu
http://www.hapmap.org
http://genome.perlegen.com
http://www.patrocles.org
http://compbio.utmem.edu/miRSNP/
http://www.diana.pcbi.upenn.edu/tarbase.html


progression in chronic lymphocytic leukemia. N Engl J Med

353:1793–1801

Carrington JC, Ambros V (2003) Role of microRNAs in plant and

animal development. Science 301:336–338

Chang S, Johnston RJ Jr, Frokjaer-Jensen C, Lockery S, Hobert O

(2004) MicroRNAs act sequentially and asymmetrically to

control chemosensory laterality in the nematode. Nature

430:785–789

Chen K, Rajewsky N (2006) Natural selection on human micro-

RNA binding sites inferred from SNP data. Nat Genet

38:1452–1456

Clop A, Marcq F, Takeda H, Pirottin D, Tordoir X et al (2006) A

mutation creating a potential illegitimate microRNA target site

in the myostatin gene affects muscularity in sheep. Nat Genet

38:813–818

Cummins JM, He Y, Leary RJ, Pagliarini R, Diaz LA Jr et al (2006)

The colorectal microRNAome. Proc Natl Acad Sci USA

103:3687–3692

Denli AM, Tops BB, Plasterk RH, Ketting RF, Hannon GJ (2004)

Processing of primary microRNAs by the microprocessor

complex. Nature 432:231–235

Doench JG, Sharp PA (2004) Specificity of microRNA target

selection in translational repression. Genes Dev 18:504–511

Draheim CC, McCubbin JA, Williams DP (2002) Differences in

cardiovascular disease risk between nondiabetic adults with

mental retardation with and without Down syndrome. Am J

Ment Retard 107:201–211

Duan R, Pak C, Jin P (2007) Single nucleotide polymorphism

associated with mature miR-125a alters the processing of pri-

miRNA. Hum Mol Genet 16:1124–1131

Duggirala R, Blangero J, Almasy L, Arya R, Dyer TD et al (2001) A

major locus for fasting insulin concentrations and insulin

resistance on chromosome 6q with strong pleiotropic effects

on obesity-related phenotypes in nondiabetic Mexican Ameri-

cans. Am J Hum Genet 68:1149–1164

Farh KK, Grimson A, Jan C, Lewis BP, Johnston WK et al (2005) The

widespread impact of mammalian microRNAs on mRNA

repression and evolution. Science 310:1817–1821

Filipowicz W, Bhattacharyya SN, Sonenberg N (2008) Mechanisms

of post-transcriptional regulation by microRNAs: are the

answers in sight? Nat Rev Genet 9:102–114

Franco-Zorrilla JM, Valli A, Todesco M, Mateos I, Puga MI et al

(2007) Target mimicry provides a new mechanism for regulation

of microRNA activity. Nat Genet 39:1033–1037

Frazer KA, Ballinger DG, Cox DR, Hinds DA, Stuve LL et al (2007)

A second generation human haplotype map of over 3.1 million

SNPs. Nature 449:851–861

Georges M, Coppieters W, Charlier C (2007) Polymorphic miRNA-

mediated gene regulation: contribution to phenotypic variation

and disease. Curr Opin Genet Dev 17:166–176

Glazov EA, Cottee PA, Barris WC, Moore RJ, Dalrymple BP et al

(2008) A microRNA catalog of the developing chicken embryo

identified by a deep sequencing approach. Genome Res 18:957–

964

Goossens M, Dozy AM, Embury SH, Zachariades Z, Hadjiminas MG

et al (1980) Triplicated alpha-globin loci in humans. Proc Natl

Acad Sci USA 77:518–521

Gregory RI, Yan KP, Amuthan G, Chendrimada T, Doratotaj B et al

(2004) The Microprocessor complex mediates the genesis of

microRNAs. Nature 432:235–240

Grimson A, Farh KK, Johnston WK, Garrett-Engele P, Lim LP et al

(2007) MicroRNA targeting specificity in mammals: determi-

nants beyond seed pairing. Mol Cell 27:91–105

Gupta A, Gartner JJ, Sethupathy P, Hatzigeorgiou AG, Fraser NW

(2006) Anti-apoptotic function of a microRNA encoded by the

HSV-1 latency-associated transcript. Nature 442:82–85

Han J, Lee Y, Yeom KH, Kim YK, Jin H et al (2004) The Drosha-

DGCR8 complex in primary microRNA processing. Genes Dev

18:3016–3027

Han J, Lee Y, Yeom KH, Nam JW, Heo I et al (2006) Molecular basis

for the recognition of primary microRNAs by the Drosha-

DGCR8 complex. Cell 125:887–901

Hinds DA, Stuve LL, Nilsen GB, Halperin E, Eskin E et al (2005)

Whole-genome patterns of common DNA variation in three

human populations. Science 307:1072–1079

Hwang HW, Wentzel EA, Mendell JT (2007) A hexanucleotide

element directs microRNA nuclear import. Science 315:97–100

Iwai N, Naraba H (2005) Polymorphisms in human pre-miRNAs.

Biochem Biophys Res Commun 331:1439–1444

Jackson RJ, Standart N (2007) How do microRNAs regulate gene

expression? Sci STKE 2007:re1

Jazdzewski K, Murray EL, Franssila K, Jarzab B, Schoenberg DR

et al (2008) Common SNP in pre-miR-146a decreases mature

miR expression and predisposes to papillary thyroid carcinoma.

Proc Natl Acad Sci USA 105:7269–7274

Johnston RJ, Hobert O (2003) A microRNA controlling left/right

neuronal asymmetry in Caenorhabditis elegans. Nature

426:845–849

Johnston RJ Jr, Chang S, Etchberger JF, Ortiz CO, Hobert O (2005)

MicroRNAs acting in a double-negative feedback loop to control

a neuronal cell fate decision. Proc Natl Acad Sci USA

102:12449–12454

Kan YW, Dozy AM (1978) Polymorphism of DNA sequence adjacent

to human beta-globin structural gene: relationship to sickle

mutation. Proc Natl Acad Sci USA 75:5631–5635

Kan YW, Holland JP, Dozy AM, Charache S, Kazazian HH (1975)

Deletion of the beta-globin structure gene in hereditary persis-

tence of foetal haemoglobin. Nature 258:162–163

Khvorova A, Reynolds A, Jayasena SD (2003) Functional siRNAs

and miRNAs exhibit strand bias. Cell 115:209–216

Kiriakidou M, Nelson PT, Kouranov A, Fitziev P, Bouyioukos C et al

(2004) A combined computational-experimental approach pre-

dicts human microRNA targets. Genes Dev 18:1165–1178

Lagos-Quintana M, Rauhut R, Yalcin A, Meyer J, Lendeckel W et al

(2002) Identification of tissue-specific microRNAs from mouse.

Curr Biol 12:735–739

Landgraf P, Rusu M, Sheridan R, Sewer A, Iovino N et al (2007) A

mammalian microRNA expression atlas based on small RNA

library sequencing. Cell 129:1401–1414

Landthaler M, Yalcin A, Tuschl T (2004) The human DiGeorge

syndrome critical region gene 8 and its D. melanogaster
homolog are required for miRNA biogenesis. Curr Biol

14:2162–2167

Lee Y, Ahn C, Han J, Choi H, Kim J et al (2003) The nuclear

RNase III Drosha initiates microRNA processing. Nature
425:415–419

Lewis BP, Shih IH, Jones-Rhoades MW, Bartel DP, Burge CB

(2003) Prediction of mammalian microRNA targets. Cell

115:787–798

Lewis BP, Burge CB, Bartel DP (2005) Conserved seed pairing, often

flanked by adenosines, indicates that thousands of human genes

are microRNA targets. Cell 120:15–20

Lim LP, Lau NC, Garrett-Engele P, Grimson A, Schelter JM et al

(2005) Microarray analysis shows that some microRNAs down-

regulate large numbers of target mRNAs. Nature 433:769–773

Lund E, Guttinger S, Calado A, Dahlberg JE, Kutay U (2004) Nuclear

export of microRNA precursors. Science 303:95–98

Lv K, Guo Y, Zhang Y, Wang K, Jia Y et al (2008) Allele-specific

targeting of hsa-miR-657 to human IGF2R creates a potential

mechanism underlying the association of ACAA-insertion/dele-

tion polymorphism with type 2 diabetes. Biochem Biophys Res

Commun 374:101–105

508 C. Borel, S. E. Antonarakis: Polymorphic miRNA-mediated gene regulation

123



Lytle JR, Yario TA, Steitz JA (2007) Target mRNAs are repressed as

efficiently by microRNA-binding sites in the 50 UTR as in the 30

UTR. Proc Natl Acad Sci USA 104:9667–9672

Martin MM, Lee EJ, Buckenberger JA, Schmittgen TD, Elton TS

(2006) MicroRNA-155 regulates human angiotensin II type 1

receptor expression in fibroblasts. J Biol Chem 281:18277–

18284

Mishra PJ, Humeniuk R, Mishra PJ, Longo-Sorbello GS, Banerjee D

et al (2007) A miR-24 microRNA binding-site polymorphism in

dihydrofolate reductase gene leads to methotrexate resistance.

Proc Natl Acad Sci USA 104:13513–13518

Morin RD, O’Connor MD, Griffith M, Kuchenbauer F, Delaney A

et al (2008) Application of massively parallel sequencing to

microRNA profiling and discovery in human embryonic stem

cells. Genome Res 18:610–621

Morrison RA, McGrath A, Davidson G, Brown JJ, Murray GD et al

(1996) Low blood pressure in Down’s syndrome, A link with

Alzheimer’s disease? Hypertension 28:569–575

Nielsen CB, Shomron N, Sandberg R, Hornstein E, Kitzman J et al

(2007) Determinants of targeting by endogenous and exogenous

microRNAs and siRNAs. RNA 13:1894–1910

Nilsen TW (2007) Mechanisms of microRNA-mediated gene regu-

lation in animal cells. Trends Genet 23:243–249

Okamura K, Hagen JW, Duan H, Tyler DM, Lai EC (2007) The

mirtron pathway generates microRNA-class regulatory RNAs in

Drosophila. Cell 130:89–100

Redon R, Ishikawa S, Fitch KR, Feuk L, Perry GH et al (2006) Global

variation in copy number in the human genome. Nature

444:444–454

Ruby JG, Jan C, Player C, Axtell MJ, Lee W et al (2006) Large-scale

sequencing reveals 21U-RNAs and additional microRNAs and

endogenous siRNAs in C. elegans. Cell 127:1193–1207

Ruby JG, Jan CH, Bartel DP (2007) Intronic microRNA precursors

that bypass Drosha processing. Nature 448:83–86

Saunders MA, Liang H, Li WH (2007) Human polymorphism at

microRNAs and microRNA target sites. Proc Natl Acad Sci U S

A 104:3300–3305

Schratt GM, Tuebing F, Nigh EA, Kane CG, Sabatini ME et al (2006)

A brain-specific microRNA regulates dendritic spine develop-

ment. Nature 439:283–289

Schwarz DS, Hutvagner G, Du T, Xu Z, Aronin N et al (2003)

Asymmetry in the assembly of the RNAi enzyme complex. Cell

115:199–208

Sethupathy P, Borel C, Gagnebin M, Grant GR, Deutsch S et al

(2007) Human microRNA-155 on chromosome 21 differentially

interacts with its polymorphic target in the AGTR1 30 untrans-

lated region: a mechanism for functional single-nucleotide

polymorphisms related to phenotypes. Am J Hum Genet

81:405–413

Song JC, White CM (2002) Clinical pharmacokinetics and selective

pharmacodynamics of new angiotensin converting enzyme

inhibitors: an update. Clin Pharmacokinet 41:207–224

Stark A, Brennecke J, Bushati N, Russell RB, Cohen SM (2005)

Animal microRNAs confer robustness to gene expression and

have a significant impact on 30UTR evolution. Cell 123:1133–

1146

Sunkar R, Zhou X, Zheng Y, Zhang W, Zhu JK (2008) Identification

of novel and candidate miRNAs in rice by high throughput

sequencing. BMC Plant Biol 8:25

Tan Z, Randall G, Fan J, Camoretti-Mercado B, Brockman-Schneider

R et al (2007) Allele-specific targeting of microRNAs to HLA-G

and risk of asthma. Am J Hum Genet 81:829–834

The International HapMap Consortium (2003) The International

HapMap Project. Nature 426:789–796

Valadi H, Ekstrom K, Bossios A, Sjostrand M, Lee JJ et al (2007)

Exosome-mediated transfer of mRNAs and microRNAs is a

novel mechanism of genetic exchange between cells. Nat Cell

Biol 9:654–659

Van Geel PP, Pinto YM, Voors AA, Buikema H, Oosterga M et al

(2000) Angiotensin II type 1 receptor A1166C gene polymor-

phism is associated with an increased response to angiotensin II

in human arteries. Hypertension 35:717–721

Vasudevan S, Tong Y, Steitz JA (2007) Switching from repression to

activation: microRNAs can up-regulate translation. Science

318:1931–1934

Villuendas G, Botella-Carretero JI, Lopez-Bermejo A, Gubern C,

Ricart W et al (2006) The ACAA-insertion/deletion polymor-

phism at the 30 UTR of the IGF-II receptor gene is associated

with type 2 diabetes and surrogate markers of insulin resistance.

Eur J Endocrinol 155:331–336

Wang G, van der Walt JM, Mayhew G, Li YJ, Zuchner S et al (2008)

Variation in the miRNA-433 binding site of FGF20 confers risk

for Parkinson disease by overexpression of alpha-synuclein. Am

J Hum Genet 82:283–289

Wheeler DA, Srinivasan M, Egholm M, Shen Y, Chen L et al (2008)

The complete genome of an individual by massively parallel

DNA sequencing. Nature 452:872–876

Wong KK, de Leeuw RJ, Dosanjh NS, Kimm LR, Cheng Z et al

(2007) A comprehensive analysis of common copy-number

variations in the human genome. Am J Hum Genet 80:91–104

Wu H, Neilson JR, Kumar P, Manocha M, Shankar P et al (2007)

miRNA profiling of naive, effector and memory CD8 T cells.

PLoS ONE 2:e1020

Zeng Y, Cullen BR (2003) Sequence requirements for microRNA

processing and function in human cells. RNA 9:112–123

Zeng Y, Cullen BR (2005) Efficient processing of primary microRNA

hairpins by Drosha requires flanking nonstructured RNA

sequences. J Biol Chem 280:27595–27603

Zeng Y, Yi R, Cullen BR (2005) Recognition and cleavage of primary

microRNA precursors by the nuclear processing enzyme Drosha.

EMBO J 24:138–148

C. Borel, S. E. Antonarakis: Polymorphic miRNA-mediated gene regulation 509

123


	Functional genetic variation of human miRNAs and phenotypic consequences
	Abstract
	Introduction
	miRNAs and their functions
	Principles of miRNA biogenesis
	Principles of miRNA?mRNA interactions

	Genetic variation
	Polymorphisms and heterogeneity �of miRNA sequences
	Polymorphism in pri-, pre-, and mature miRNA sequences
	3&vprime;- and 5&vprime;-end heterogeneity of miRNAs&minus;isomiRs

	Polymorphisms affecting miRNA-mRNA �interactions
	Polymorphism in miRNA target sites

	Polymorphisms affecting miRNA expression
	Conclusions
	Acknowledgments
	Web Resources



<<
  /ASCII85EncodePages false
  /AllowTransparency false
  /AutoPositionEPSFiles true
  /AutoRotatePages /None
  /Binding /Left
  /CalGrayProfile (None)
  /CalRGBProfile (sRGB IEC61966-2.1)
  /CalCMYKProfile (ISO Coated v2 300% \050ECI\051)
  /sRGBProfile (sRGB IEC61966-2.1)
  /CannotEmbedFontPolicy /Error
  /CompatibilityLevel 1.3
  /CompressObjects /Off
  /CompressPages true
  /ConvertImagesToIndexed true
  /PassThroughJPEGImages true
  /CreateJDFFile false
  /CreateJobTicket false
  /DefaultRenderingIntent /Perceptual
  /DetectBlends true
  /ColorConversionStrategy /sRGB
  /DoThumbnails true
  /EmbedAllFonts true
  /EmbedJobOptions true
  /DSCReportingLevel 0
  /SyntheticBoldness 1.00
  /EmitDSCWarnings false
  /EndPage -1
  /ImageMemory 524288
  /LockDistillerParams true
  /MaxSubsetPct 100
  /Optimize true
  /OPM 1
  /ParseDSCComments true
  /ParseDSCCommentsForDocInfo true
  /PreserveCopyPage true
  /PreserveEPSInfo true
  /PreserveHalftoneInfo false
  /PreserveOPIComments false
  /PreserveOverprintSettings true
  /StartPage 1
  /SubsetFonts false
  /TransferFunctionInfo /Apply
  /UCRandBGInfo /Preserve
  /UsePrologue false
  /ColorSettingsFile ()
  /AlwaysEmbed [ true
  ]
  /NeverEmbed [ true
  ]
  /AntiAliasColorImages false
  /DownsampleColorImages true
  /ColorImageDownsampleType /Bicubic
  /ColorImageResolution 150
  /ColorImageDepth -1
  /ColorImageDownsampleThreshold 1.50000
  /EncodeColorImages true
  /ColorImageFilter /DCTEncode
  /AutoFilterColorImages false
  /ColorImageAutoFilterStrategy /JPEG
  /ColorACSImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /ColorImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /JPEG2000ColorACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /JPEG2000ColorImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /AntiAliasGrayImages false
  /DownsampleGrayImages true
  /GrayImageDownsampleType /Bicubic
  /GrayImageResolution 150
  /GrayImageDepth -1
  /GrayImageDownsampleThreshold 1.50000
  /EncodeGrayImages true
  /GrayImageFilter /DCTEncode
  /AutoFilterGrayImages true
  /GrayImageAutoFilterStrategy /JPEG
  /GrayACSImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /GrayImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /JPEG2000GrayACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /JPEG2000GrayImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /AntiAliasMonoImages false
  /DownsampleMonoImages true
  /MonoImageDownsampleType /Bicubic
  /MonoImageResolution 600
  /MonoImageDepth -1
  /MonoImageDownsampleThreshold 1.50000
  /EncodeMonoImages true
  /MonoImageFilter /CCITTFaxEncode
  /MonoImageDict <<
    /K -1
  >>
  /AllowPSXObjects false
  /PDFX1aCheck false
  /PDFX3Check false
  /PDFXCompliantPDFOnly false
  /PDFXNoTrimBoxError true
  /PDFXTrimBoxToMediaBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXSetBleedBoxToMediaBox true
  /PDFXBleedBoxToTrimBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXOutputIntentProfile (None)
  /PDFXOutputCondition ()
  /PDFXRegistryName (http://www.color.org?)
  /PDFXTrapped /False

  /Description <<
    /ENU <>
    /DEU <>
  >>
>> setdistillerparams
<<
  /HWResolution [2400 2400]
  /PageSize [5952.756 8418.897]
>> setpagedevice


