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Abstract We present a high precision particle-by-particle
3D reconstruction of granular systems composed of monodis-
persed spheres (sphere packings); the experimental approach
is based on magnetic resonance imaging techniques. Our
measurements revealed a strong correlation between the
volume defined by the distance to the first nearest neigh-
bor and the long-range average density. The main contri-
bution to the amplitude decay of the correlation function
can be described as exponential rather than power law up
to a range equal to 7 sphere diameters. No evidence of geo-
metrical structural changes as a function of the density was
observed and neither regular crystallites nor any other sta-
tistically significant structures could be ascribed to a spe-
cific local arrangement. We concluded that granular com-
paction is the result of a process through which the sys-
tem changes the average size of local structures without
changing their local geometrical characteristics. These con-
clusions are supported by two-body correlation functions
and Voronoi polyhedra space decomposition. The results
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provide a different perspective on the mechanisms underly-
ing compaction with respect to previous works, and allow
to discriminate between the different existing theoretical
approaches.
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Granular materials are complex systems composed of a large
number of particles interacting mainly via contact forces [1–
3]. Experimentally, granular systems show a rich and com-
plex behavior (e.g. self-organized criticality [4], nonlinear
dynamics [5,6] and jamming [7]). Granular media can also
be used to model even more complicated problems, such as
glasses [8]. The first studies on the problem of sphere pack-
ings date back to Kepler’s work [9]. In modern times, the
seminal papers by Bernal [10] and Scott [11] introduced the
main mathematical tools and concepts now common to the
field. In recent years this field has seen a renewed interest
[12,13]: several studies tackled open problems such as the
nature of sphere-sphere correlation, the geometric properties
of the first shell (defined by the distance and arrangement
between nearest neighbors), and the onset of crystallization
with respect to compaction; the studies spanned from exper-
imental investigations using MRI [6,14] or other techniques
[15–17] to theoretical approaches [18–22] and simulations
[23,24].

These systems have been widely studied experimentally
from a rheological and structural as well as from a theo-
retical point of view, focusing on the large-scale properties
of the samples, the short-scale geometric arrangements and
the nature of the physical interactions between the particles
that are nonetheless crucial since they define the local prop-
erties, which in turn define the global static and dynamic
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behavior. Granular systems are also a fertile field for numer-
ical approaches.

To focus on the structural aspect, we obtained full tomo-
graphic views, by means of MRI [25], of packings composed
of around 2 · 104 monodispersed 3 mm diameter D polymer
spheres (Fig. 1a). The output 3D matrix consisted of a water
density map with an isotropic resolution of 0.2mm ≈ D/15.
The spheres were immersed in a cylindrical container filled
with water doped with paramagnetic relaxing agents (copper
aqua ions; see Sect. 1). The number of spheres was chosen
in order to obtain statistically significant information while
focusing on the precision of the reconstruction. We prepared
three packings with different densities (see Sect. 1).

The densities were chosen in order to be representative
of the upper half of the range of disordered sphere pack-
ings, between the limits defined by the Random Loose Pack-
ing (RLP) [26,27] and the Random Close Packing (RCP)
[10,27,28]. We determined the error on the 3D localization
of the reconstructed centers to be approximately 3 · 10−3 D,
commensurate with the dispersion in the spheres radius
1.6 · 10−3 D determined through the Archimede’s method.
This relative precision is comparable to other reported mea-
surements with different techniques [15]. To avoid boundary
effects, the reconstructed packings were cropped. For each
sample we defined a cylindrical region of interest (ROI), the
surface of which was chosen to be 4 diameters away from
the packing boundaries (container walls and packing top sur-
face) and we discarded all spheres outside the ROI (in gray in
Fig. 1a). All spheres lying inside each ROI defined our entire
samples respectively (in color in Fig. 1a). The samples were
treated as a whole and we also analyzed subROIs determined
by evenly dividing the entire ROI with two horizontal planes
to obtain three subsamples composed of the upper, middle
and lower part of the entire sample.

The mathematical and geometrical analyses of the spheres
position were based on the sphere-sphere correlation func-

tion f (r) in Eq. 1 and on Voronoi polyhedra space decompo-
sition respectively. Apart from a difference in average density
between the subsamples, no other specific features or inho-
mogeneities were detected in the individual parts and we
concluded that the partial volumes can be seen as individual
entities with similar properties.

The radial correlation function f (r) is defined as the aver-
age number of sphere centers per unit of volume at distance
r from a given sphere placed in the origin, rescaled by the
average volume of one sphere, Vb,

f (r) =
〈

Nδ(r) · Vb

Vδ(r)

〉
(1)

where Vδ(r) is the volume of the spherical shell of radius r .
The shell thickness δ was adjusted to obtain a good com-
promise between noise and resolution (in our case δ ≈
10−3 D). Nδ(r) was the number of sphere centers located
within the distance interval (r − δ/2, r + δ/2). The average
value (indicated with 〈·〉) is determined by taking into account
all spheres located within the actual region of interest (ROI
or subROI). The function f (r) contains information about
local structure, medium range order and long range average
sample density. It can only be calculated for particles that are
at least at a distance r from the ROI borders thus significantly
decreasing the quantity of useful spheres available for long
range determinations, especially in small-sized ROI. Follow-
ing the idea of Scott [29], we introduced a corrected correla-
tion function fc(r) that overrides the limitation through the
substitution of Vδ(r) by V int

δ (r), its fraction intersecting the
ROI, such as to have

fc(x) =
〈

Nδ(x) · Vb

V int
δ (x)

〉
(2)

where we define x = r/D to normalize the distances by the
sphere diameter and thus have a general expression that is
independent of the size of the spheres. This definition allows

Fig. 1 a Computer-generated image of a reconstructed packing. The
entire region of interest (ROI) is shown in color, the different colors
corresponding to spheres at increasing distance from the ROI center.
The gray spheres were discarded for the analyses. b Corrected correla-
tion function fc(x) calculated for a typical sample. The features from

which we extract the four main parameters are highlighted in color: (1)
red line average density ρ; (2) green line amplitude decay envelope; (3)
pink line Gaussian fit of the peak at x ≈ 1 (c); (4) blue line shape of
fc(x) around x ≈ 2 (color figure online)
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Fig. 2 a Correlation length λ, in units of spheres diameter, as a func-
tion of the average density ρ. b Average number of nearest neighbors
〈N N 〉 as a function of the average density ρ. c Inverse estimated first
shell volume P−3

1 as a function of the average density ρ (a linear fit of
the data is shown in magenta). d Detail of the shape of f ′

c(x ′) around

x ′ ≈ 2. Each color represents a sample (black line 1; red line 2; green
line 3; see Sect. 1) and each symbols corresponds to a specific part of
the samples (square entire samples, triangle upper part, circle middle
part, inverted triangle lower part) (color figure online)

for a dramatical increase in statistics for large x values and
a decrease in distortions in the mesoscopic range.

Following the MRI acquisitions and the subsequent recon-
struction and cropping procedures, we computed fc(x). We
focused on four parameters extracted from the analysis of
fc(x):

– the average density ρ deduced from the long-range
asymptotic value of fc(x);

– the center of the short-range peak (x ≈ 1) of fc(x);
– the shape of fc(x) in the medium range x ≈ 2;
– the envelope of fc(x) and in particular its decaying shape.

The average density ρ was deduced by calculating the
mean value of fc(x) after the oscillations amplitude decayed
below the noise level (typically for x > 8, see Fig. 1b-red).

Estimating the distribution of the number of mechanical
neighbors of single particles (i.e. the neighbors exerting a
force on them), or even its average value, from experimen-
tal data is a nontrivial problem due to the unavoidable noise
present in the measurements. The method described herein
cannot be used to discriminate between spheres in mechani-
cal contact and spheres separated by a slightly larger distance
and not exerting force on one another (quasi-mechanical). We
define the nearest neighbors (N N ) as both mechanical and
quasi-mechanical neighbors of a single sphere. All N N con-
tribute to the peak of fc(x) centered at x ≈ 1. We observed
that this peak does not appear exactly at the same value of x
in all samples. Let P1 be the exact x position of the center of
this peak for a given sample. The value of P1 is estimated via
a Gaussian fit of the upper half of the peak to minimize the
effect of the distortions appearing on the right side (Fig. 1c).
Although the characterization of this peak does not allow a
straightforward determination of the sphere-sphere mechan-
ical interaction properties, it gives information on the short
range geometrical structure. The value of P3

1 can be used to

estimate the average volume of the first shell. The inverse of
this volume, linked to the short-range correlations, was plot-
ted for each samples and their fractional parts as a function
of the average density ρ, which is an indicator of how beads
arrange in the long-range1 (Fig. 2c). The results revealed a
strong and approximately linear correlation between P−3

1 and
ρ in the range 0.6 < ρ < 0.64. The average number of near-
est neighbors 〈N N 〉, estimated by integrating the Gaussian
fit of the peaks centered at x = P1, shows no correlation with
respect to ρ (Fig. 2b). We used the two parameters P1 and
ρ to rescale the correlation function and its argument in the
following manner:

f ′
c(x ′) = fc(x/P1)

ρ
(3)

As shown in Fig. 2d, the rescaled correlation functions f ′
c(x ′)

match both the period and amplitude of the oscillations2 in
the range 1.7 < x < 2.2. Furthermore, with the proposed
rescaling the overlapping of different correlation functions
is improved also at larger x values. The tight correlation
between P1 and the average density along with the inde-
pendence of 〈N N 〉 on the value of ρ suggest that the differ-
ence in density between samples are not linked to changes in
structural properties but rather to the average distance of the
nearest neighbors which defines the size of the first shell. In
this picture the volume of the first shell directly determines
the long range density.

The nearly identical shape of the rescaled correlation func-
tions at the second maximum between 1.7 < x < 2.2, as well

1 P−3
1 is the natural choice to perform a comparison with ρ, since it

has itself the dimensions of a density.
2 Some minor differences are still apparent, mainly in the small peaks
superimposed to the oscillations at x = √

3 and x = 2. These differ-
ences can be related to samples inhomogeneities and tend to disappear
as the ROI size decreases, although the noise level increases and blurs
observations.
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Fig. 3 a Renormalized single-particle density ρ̂N as a function of the
number of faces N of the Voronoi polyhedra for all entire samples
and their partial volumes (vertical bars represent standard deviation
for entire samples). b Distribution P(N ) of the number of faces of the
Voronoi polyhedra. Symbol and color codes are defined as in Fig. 2.
The data corresponding to the 3 entire samples are linked by straight

segments as guide for the eyes. c Probability density maps of the two
Steinhardt structural order parameters Q4 and Q6 for the three entire
samples; the white lines represent the average values of Q4 and Q6
respectively. Q4 and Q6 average values and standard deviations are
identical for the three samples, within the error margin (color figure
online)

as the improvement in the superposition of different correla-
tion functions at larger x values, support this hypothesis.

The damped oscillations observed in fc(x) for x > 1
(see Fig. 1b-green) express the amplitude of the correla-
tion between the sphere under investigation and the spheres
located at distance x D. The period of the oscillations was
found to be essentially constant (�x ≈ 0.9) over the entire
accessible range, only slightly increasing with increasing
x . We determined the oscillation damping by measuring
the absolute difference between the value of the oscillation
amplitude extrema, P H(x), and the average density ρ of the
samples:

q(x) = |P H(x) − ρ|. (4)

The different theories proposed to describe the long-range
behavior of the correlation function support either an expo-
nential amplitude decay or a power law tail [5,6,23,30]. Our
results showed that the main contribution to the envelope of
the correlation function can be well described by an expo-
nentially decaying function ∝ e−x/λ, in which λ represents
the correlation length.3 For the accessible range of our mea-
surements, 1 < x < 7, the correlation length was found to be
1.1D < λ < 1.35D (Fig. 2a). This value did neither depend
on the sample size nor on the average density.

Our analysis led to the conclusion that structural modifi-
cations of sphere packings, originate from local rearrange-
ments at the scale of the first shell only. With the exception
of the random nature of the single sphere shell geometry,
the rearrangements do not change, on average, the structural

3 The exponent p found with a power law fitting was in the range
1.9 < p < 2.5. If extrapolated, this power law would give an infinite
correlation length that is not coherent with common understanding of
granular systems. Indeed we underline that this does not preclude the
possibility of a different scaling law at longer ranges, nor a more com-
plex behavior at mesoscopic ranges (e.g. a superposition of shorter scale
exponential decay with a larger scale power law, etc...).

characteristics of the sample and only lead to modifications
of the average distance of the first shell nearest neighbors.
These variations in distance and their effects on the volume
of the first shell propagate at a mesoscopic and long range,
leading to an expansion or a shrinkage of the entire sample.

To support our conclusions, a geometrical analysis based
on Voronoi polyhedra [31] was performed to extract struc-
tural information from our data. Following space decompo-
sition, we calculated the volume of each single polyhedron,
Vi , and defined single-particle densities, ρi = π D3

6Vi
.

The values of the Steinhardt structural order parameters
Q4,i and Q6,i [32], very sensitive indicators of the presence
of geometrical order, were also computed for each polyhe-
dron. The Steinhardt parameters were computed using the
presence of a common face in the Voronoi decomposition as
criterion to define neighborhood. Note that in this approach,
all information related to the size of the structures is con-
tained in ρ = 〈ρi 〉,4 whereas the details of the geometry are
encoded in Q4, in Q6, in the distribution P(N ) of the num-
ber of faces of the Voronoi polyhedra, as well as in the ratios
between average polyhedra volumes as a function of number
of faces. Voronoi polyhedra represent the geometrical struc-
ture not only at a local scale (x ≈ 1) but also up to a distance
of x ≈ 1.8−2.0, mixing information related to the first shell
and the mesoscopic region.

To examine the relationship between the geometry of the
Voronoi polyhedra and the sample density, we defined ρN

as the average single-particle density for each value of N
and we normalized it by the global average density to obtain
ρ̂N = ρN /ρ (Fig. 3a). This is equivalent to the same rescaling
which was applied to the correlation function. We observed
that ρ̂N only varies by less than 10 % over the whole range

4 Note that despite the different definition the value obtained from the
set of ρi gives the same result as the value determined from the corre-
lation function (Fig. 1b-red), within the error margin.
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of N in which we have a significant number of measured
polyhedra (11 ≤ N ≤ 16). The maximum of the average
density is found at N = 12. As for the rescaled correla-
tion function f ′

c(x ′), the renormalized single-particle den-
sity ρ̂N is essentially identical for all samples and their
subsamples. This observation leads to two important con-
siderations; on one hand it indicates that the scaling rela-
tion is valid not just on average for f ′

c(x ′), but also for the
local structures; on the other hand, it means that the over-
all arrangement of the first shell, up to x = 1.8 and not just
the peak at x = 1, are scaling with the density. In addition,
P(N ) is independent on the sample density5 regardless of
the sample density. Finally, the probability density maps of
(Q4,i , Q6,1) (Fig. 3c) demonstrate that no specific structure
was detectable in any of the samples. The probability density
was significantly larger than zero over a wide area centered
around (Q4, Q6) = (0.11, 0.34). However, no accumulation
of points was observed in the proximity of (Q4, Q6) pairs
that are characteristic of either hcp, fcc, bcc and sc crystals,
or icosaedral structures (see e.g. [33]).

The present study reveals a strong correlation between
the volume of the shell defined by the nearest neighbors
(first shell) and the average density of the sample. To the
best of our knowledge, this scaling relation is reported for
the first time. Even if it is a well known fact for molecular
liquids, it had been conjectured for granulars in the sixties
[10], and subsequently abandoned. This is the first time it is
directly observed in a real granular material. We believe that
the high degree of monodispersion and reconstruction preci-
sion of our measurements is crucial in obtaining the present
result.6 The inverse of the estimated volume of the first shell
indeed showed a linear dependence on the sample density.
The sphere-sphere correlation function is essentially iden-
tical for all samples if it is simply rescaled by the sample
density and the average distance between nearest neighbors.
This demonstrates that the compaction of sphere packings
is linked to the variation of the first shell size rather than to
structural rearrangements. Our measurements showed that
the main contribution to the correlation amplitude decay for
the mesoscopic range (up to r/D = 7) can be described as
an exponential rather than a power law tail. We observed

5 The slight differences that can be observed between distribu-
tions are due to noise. Indeed, if we consider a simple picture
in which a single polyhedron with N faces is randomly chosen
from the distribution P(N ), the standard deviation is σ(P(N )) =√

P(N )(1 − P(N ))/(n − 1) with n the total number of spheres in the
sample. Comparing P(N ) from different samples we found that their
difference is at most 2σ .
6 Since the correlation we found between ρ and P1, resides on a very
narrow region (P−3

1 varies by less than 0.04D−3 meaning P1 changes of
about 0.013D) we believe that this effect could not be detectable without
a so high bead monodispersion as we have (to make a comparison the
bead diameter dispersion in [15] 1.59 ± 0.05 mm corresponds to about
3 times the full vertical axis of Fig. 2c).

no sign of accumulation in the probability density maps of
the two Steinhardt structural order parameters Q4 and Q6

around typical values of regular lattices. We thus conclude
that no regular crystalline order was present in the samples.
Moreover, no accumulation of (Q4, Q6) pairs was detected,
suggesting the absence of statistically significant quasicrys-
talline or non-crystalline structures with defined values of Q4

and Q6. In dry packed samples below the 0.64 density limit,
Aste et al. [15] observed the presence of (Q4, Q6) pairs close
to the values expected for perfect fcc and hcp crystals. They
estimated the occurrence of these pairs to be even greater
than 10 %.

Although our criterion to define neighbors for Q4 and Q6

calculation differs from the one used in [15], in our con-
ditions of high monodispersion and low friction due to the
aqueous environment we did not find any (Q4, Q6) pair close
to crystalline-like values. The lack of cristallinity in our sam-
ples is in agreement with previous observations on packings
below the RCP density. If the packing density is below the
RCP limit, crystallization is not expected both in the case of
simulated frictionless ideal spheres [34,35] and in the case of
frictional experimental data on dry packings [36]. We should
also underline that in contrast with our system, colloidal sys-
tem do show crystallization in most cases [37]. In the latter
case, however, capillary forces modify considerably the force
chains. We stress that the high degree of monodispersion and
reconstruction precision of our measurements are crucial in
obtaining our result.

Our methods and findings opened new perspectives for
investigating the nature and properties of disordered sphere
packing, both from an experimental and an interpretative
point of view. Novel approaches for optimization problems,
information theory and the study of the jamming transition
could be designed and we can foresee countless potential
industrial applications in which powders or grains require
compaction or handling.

1 Materials and methods

The packings considered in this work were composed of
sharply monodisperse, diameter D = 3.015 mm plastic
spheres (Polyoxymethylene, R.P.G. International, Italy). The
particle volume distribution has been measured through the
Archimede’s method, giving a standard error on the diameter
of 0.005 mm. The spheres were placed in a vertical plastic
cylinder, filled with a contrast medium (water containing a
concentration of 40mM CuSO4). All packings were prepared
by slowly pouring the spheres (approximately 20,000) in the
container prefilled with the solution, carefully avoiding the
presence of air bubbles. Prior to perform the MRI measure-
ments, the packings were vertically vibrated using sinusoidal
agitation at different frequencies in the range 40–1,000 Hz,
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with average acceleration modulus 1g <
√〈z̈2(t)〉 < 3g,

and avoiding convection (aging procedure). Packing 1 was
aged for 48 h, packing 2 for 2 h, and packing 3 for 30 min
(numbers corresponds to those displayed in Figs. 2 and 3).
All other parameters were kept identical.

The packings were scanned in a Siemens 7T clinical scan-
ner using a birdcage MRI volume coil (designed to accom-
modate a human head). The 3D images were then acquired
using a standard Gradient Echo Imaging (GRE) technique
(T R = 50 ms, T E = 3.79 ms, total acquisition time of 6 h).
The output 3D matrix consisted of a water density map with
an isotropic resolution of 0.2 mm. After having applied a
threshold on the amplitude of each voxel, the tomographies
were Hough transformed to produce spatially separated sets
of voxels associated to each sphere. The position of each
sphere was then determined from the mass center of the cor-
responding set of voxels. Several postprocessing checks were
performed to ensure the complete reconstruction of the pack-
ings (every single sphere was mapped). We estimated the
error on the 3D localization of the reconstructed centers to
be on the order of 3 · 10−3 D, commensurate with the disper-
sion in the spheres radius 1.6 · 10−3 D. From a simple error
propagation calculation, the expected standard error on the
Gaussian peak at x = 1 should be about 4.8 · 10−3 D. This
value is in very good agreement with all the observed corre-
lation functions. Due to the extreme monodispersion in the
sphere diameters, the standard deviation is dominated by the
reconstruction precision.

In order to avoid boundary effects, we discarded the
spheres placed at a distance lower than four diameters from
the container walls (gray spheres in Fig. 1a). Our entire region
of interest (ROI) typically contained about 4,500 spheres in
a cylindrical volume of diameter 11D and height 15D (col-
ored spheres in Fig. 1a). The subsamples were defined by
dividing the entire ROIs with horizontal planes in three non
overlapping parts of identical volume.
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