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Abstract. The question of the measurement of strategic long-term financial risks is of considerable importance.
Existing modelling instruments allow for a good measurement of market risks of trading books over relatively
small time intervals. However, these approaches may have severe deficiencies if they are routinely applied to
longer time periods. In this paper we give an overview on methodologies that can be used to model the evolution
of risk factors over a one-year horizon. Different models are tested on financial time series data by performing
backtesting on their expected shortfall predictions.
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1. Introduction

Most of the current research in asset management and market risk management focuses on
short-term risk (daily, weekly). Clearly, in many cases, a long-term analysis (e.g. quarterly,
yearly) is just as relevant and important. Indeed, in financial institutions (e.g. banks) risk
measures are typically calculated for a one-day to two-week horizon. In insurance for
instance risk exposures must be measured and managed over much longer (i.e. yearly) time
spans. While for the measurement of short-term financial risks some consistent and reliable
frameworks already exist, for longer time horizons, only relatively few papers can be found
in the academic literature.

Existing modelling instruments such as RiskMetrics allow for a relatively good measure-
ment of market risks of trading books. These models, however, have some severe deficiencies
if they are applied to longer time periods (typically one year), as needed in the case of strate-
gic investments of institutional investors or within insurance. A notable exception is the
ForeSight Technical Document [29] of the RiskMetrics Group which focuses on forecasting
beyond a two year horizon.

In this paper we develop a theoretically well-understood and empirically-founded concep-
tual framework for the measurement of long-term financial risk of strategic investment port-
folios. The main criterion to judge the appropriateness of different models is the reliability
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of expected shortfall estimates of profit and loss distributions for financial portfolios over
a period of one year. Expected shortfall was chosen as risk measure because it is coherent
for continuous distributions in the sense of Artzner et al. [3].

An obvious approach to model yearly financial risks is to use standard methodologies for
short-termrisks (i.e. forahorizon 2 < 1 year), and to apply a scaling rule for the gap between
h and 1 year. It is well known that daily (or higher frequency) returns are dependent due
to volatility clustering, while returns over a longer time horizon (fortnightly, monthly data)
are closer to being independent. Because of the weaker dependence for lower frequency
data, time aggregation rules usually perform better when starting with longer horizons. On
the other hand, the serious statistical restrictions due to the small number of low frequency
data should also be taken into account. There is a tradeoff between bias and variance. The
pivotal point is the choice of the data frequency on which to calibrate the models.

In this paper we present our findings on the evolution of single risk factors. Sections 3 to 6
give an overview on approaches that can be used to model the risk factors. In these sections
we first investigate dynamical models like random walks, AR(p) and GARCH(1,1) models,
which allow to model price changes. Then we propose a static approach based on heavy-
tailed distributions. We follow a unified framework for the presentation of the results across
the different approaches. First, the model including the statistical tools used to estimate
the parameters is described, then it is shown how returns can be aggregated. Finally, the
methodology to compute value-at-risk and expected shortfall is given. In Section 7 the
performances of the different models are compared with each other. First they are calibrated
using exchange rate data, stock indices, 10-year government bonds and single stock data at
different frequencies. Performing backtesting for the corresponding expected shortfall (and
value-at-risk) predictions finally answers the question which model (and at which frequency)
gives the most reliable estimation of one-year asset risk. Additionally, a variance analysis
for the time series models is provided, and confidence intervals for expected shortfall and
value-at-risk for the random walk approach are computed. The final section contains the
main conclusions that can be drawn from these investigations.

In order to keep the paper relatively short, the reader is occasionally referred to a RiskLab
Technical Report Kaufmann and Patie [27] for further details.

2. Definitions and notation
We introduce a minimum set of definitions and notation. Fix some real-valued continuously
distributed random variable R with finite mean on some probability space (2, A, P). R is

considered the return of some asset. By [E[-] we denote expectation with respect to P. Fix
also some confidence level p.

Definition 2.1. The value-at-risk at level p of R is defined as
VaR?(R) = —inf{x € R | P[R < x] > p},

i.e. VaR?(R) is the negative p-quantile of R.
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Definition 2.2. The expected shortfall at level p of R is defined as

ES?(R) = —E[R | R < —VaR”(R)].

For continuous distributions, expected shortfall is coherent, whereas value-at-risk does
in general not fulfil the subadditivity property required for a risk measure to be coherent.

Definition 2.3. A measure of risk p is subadditive, if p(R* + R?) < p(R®) + p(R") for
all random variables R?, R?.

Artzner et al. [3] explain why the subadditivity property is a natural requirement for risk
measures and show that this property holds under certain restrictions on the discounted
risks, as well as on the underlying probability space. Rockafellar and Uryasev [36] give an
equivalent representation of the conditional expected value as the solution of an optimization
problem only requiring the probability distribution of the risk to be continuous. From this
minimization problem, Pflug [35] shows the convexity (including the subadditivity property)
of expected shortfall. Finally, Acerbi and Tasche [1] and Rockafellar and Uryasev [37]
give an alternative definition of conditional value-at-risk, which is identical to expected
shortfall for continuous distributions, but stays coherent even in the case of discontinuous
underlying return distributions. Moreover, this alternative definition of conditional value-
at-risk (and hence for continuous distributions also expected shortfall) is consistent with
second degree stochastic dominance, which is important for decision theory, see Ogryczak
and Ruszczynski [34]. In Embrechts et al. [20] it is shown that value-at-risk is coherent for
elliptically distributed risk factors.

Notation. Throughout the rest of the paper we use the following notation. S, denotes the
asset price at time ¢, s, = log S; is the asset log-price, & denotes the length (in days) of
one period, R, = % is the one-period asset return, r, = s, — s, the one-period asset
log-return, and r¥ denotes the k-period (i.e. kh-day) asset log-return (think of k& days being
1 year). The mean p of one-period asset log-returns is assumed to be constant over time,

and 7, = r; — p is the centered one-period asset log-return.

3. Random walks

A simple, but for many practical applications crucial starting model for #-day log-returns
is the random walk model with normal innovations.

Definition 3.1. The process (s;);enn 18 @ random walk process with constant trend and
normal innovations, if for all ¢ € AN it satisfies the equation

S, = S_p + 1, withr, - N(u, o?). 3.1)
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3.1. Scaling rule

When changes in the log-price are independent and identically distributed with mean © = 0
and variance o2 < 00, then the k-period log-returns r* = Z;:é ri—i; have mean zero and
standard deviation v/ko . Hence the one-period volatility can be multiplied by the square-
root-of-time to calculate the k-period volatility in the i.i.d. case. Assuming additionally
normality like in (3.1), the same scaling law holds for the quantiles.

It is well known that daily log-returns show neither independent nor normally distributed
behaviour (see Fama [21], or Campbell et al. [8]). Lower frequency data are closer to the
normality assumption which is needed to apply the square-root-of-time rule; see for instance
Campbell et al. [8] and Dacorogna et al. [11]. Hence, this scaling rule should work better
for models fitted to monthly or even lower frequency data.

In general, the square-root-of-time scaling rule cannot be applied directly to log-returns.
First the mean u has to be subtracted. For i.i.d. normally distributed one-period log-returns
with constant mean u = E[r;] and constant variance o> = IE[rtz], the following rule for k-

. d d e e
period log-returns holds: r,k ~ku+ k(@ — u), where ~ denotes equality in distribution.
The one-period mean pu and the one-period standard deviation o can be estimated via

o= % Y ripand 6 = \/ ﬁ Yo (rin — )% The square-root-of-time rule leads to
6% = k & for the k-period variance. The trend for k periods can be estimated by 2% = k /1.

3.2.  Estimation of value-at-risk and expected shortfall

The estimate for a k-period (think of one year) value-at-risk at level p is
VaR” = —(exp(2* + 6*x7) — 1), (3.2)

and correspondingly for expected shortfall,

N _ Ak
ES’ = —<exp (ﬂk + (02) ) @(xpp ) — 1), (3.3)

where x? is the p-quantile of a standard normal random variable, and & denotes the cumu-
lative standard normal distribution function.

4. Autoregressive processes

A first model that takes into account the dependence of subsequent log-returns is the AR(p)
process.
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Definition 4.1. The process (s;),;eny 18 an AR(p) process with trend, if for all + € AN it
satisfies the equation

P
So= Y aisin+ e 4.1)
i=1

where a; are (constant) coefficients fulfilling the stationarity condition Zip=1 la;| < 1,
€ ~ N(o + uit, 0%), (€)enn are independent, and o2 is the variance of the innovation
process.

The constant term 1 has only a translation effect on the process (s;);<;n. Hence setting
the constant term to zero has no effect on log-returns (r;);c;n. Equation (4.1) can be rewritten
as an AR(p)-process with i.i.d. N(0, o2) innovations:

a;Si—in + €, tehN, 4.2)

P
E[Z

i=1

iid.

where 5; = s, — ut are the detrended log-prices, 1 = € ~ N(0,0?),and q;, o2

_m
]_Zf:l a;’
are as in (4.1).

4.1. Scaling rule

For one-period steps, the AR(p)-process (4.2) can be used to model the detrended log-prices
(5¢)renn- To calculate k-period parameters from a sample of n h-day periods, we proceed
as follows:

— Subtract the linear trend from log-prices s;: 5, = s, — fit fort € hN, where i = %

— Fit the AR(p)-process to the drift-free one-period log-prices (5;);cpn: maximum like-
lihood estimation (MLE) gives the estimates p,a; i = 1,..., p) and &.. Note that
6, = ﬁ Zle(ah)z is the volatility of the innovation process (€;);c;n and not of the
detrended log-prices (5;);enn-

— At time ¢, forecast the k-period log-return using the relation ¥ = khji + 71, where
1M = Sipkn —S;, and ;4 is defined recursively: 5,4 j, = 25):1 AiSi4(j—m (=1, ..., k),
ands, =75, foru <t.

— Forecast the k-period volatility using the scheme 6% = 65,/211‘;(1) 8%, where 8 = 1,

8§ = Z,j:l a;8;_;, a; =0foralli > p.

Conditioned on s;, the one-year forecast s, has distribution N (s; + 1k, (0%)?), where p*

and 0¥ can be estimated as shown in the above steps.
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4.2.  Estimation of value-at-risk and expected shortfall
Like in the random walk model, the k-period value-at-risk at level p can be estimated by
VaR” = —(exp(i* + 65 x7) — 1), (4.3)

and the corresponding expected shortfall by

A kY2 _ sk
BsP = —<exp (ﬂk—i- (02) ) @(xf’p ") 1>7 (4.4)

where x? is the p-quantile of a standard normal random variable, and ® denotes the cumu-
lative standard normal distribution function.

S. The GARCH(1,1) model

A widely used approach to model the dependence between subsequent one-period log-
returns via the volatility, is the famous family of GARCH(1,1) processes.

Definition 5.1. The process (s;);cnn 18 generated by a GARCH(1,1) process, if for all
t € hN it satisfies the equation

S = Si—p + 1, where r, =7 4+, (5.1)
and (7 );enn 1S @ GARCH(1,1) process:

ry = 01 €,

2 =2 2
G[ = Qp + alrtfh + ﬁlodtfhv

&iid. Ele]=0, E[¢]=1 (5.2)

In this paper, the innovations (€, ),;c;n are assumed to be Student-¢ distributed, and the
stationarity conditions 0 < oy < 00,1 > 0, 81 > 0 and @y + B; < 1 are assumed to be
fulfilled.

This model is known to be well-suited for reproducing the heteroscedastic behaviour of
the conditional volatility of financial daily returns. In practice, it is intensively used for
estimating the 10-day value-at-risk; see however the critical paper Stéricd [38]. One often
fits the model to daily data, and then applies the square-root-of-time rule to extend the
results to a longer time horizon (e.g. 10 days). Brummelhuis and Kaufmann [7] show that
the square-root-of-time rule works well to scale a one-day 1% value-at-risk to a 10-day
1% value-at-risk in GARCH(1,1) processes. However, this scaling is inappropriate when
applied to long term horizon conversion. Christoffersen et al. [10] discuss the square-root-
of-time scaling rule, showing that in GARCH(1,1) models for large k (such as k > 15
days) applying this standard rule to the strongly varying short-time volatilities o; leads to
an overestimation of (actually low) volatility fluctuations of k-period log-returns (see also
McNeil and Frey [31] for a critical discussion of this scaling rule).
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5.1. Scaling rule

Drost and Nijman [13] investigate the temporal aggregation of so-called weak GARCH
processes. We refer to their paper for the formal definition of this version of GARCH
processes. The so-called Drost-Nijman formula allows to extend short-term risk estimates to
longer horizons. Suppose the one-period log-prices (s, ),cny are generated by a GARCH(1,1)
process as in Definition 5.1, with symmetric innovations. Drost and Nijman [13] show that,
under regularity conditions, the corresponding k-period log-prices are generated by a weak
GARCH(1,1) process with

2 _ 2 2
(0/)" = w0+t (Fp)” + B (0/ )" (5.3)
where (f,k),ekhN denote the centered k-period log-returns, ok o = ka()%, k1 =
(a1 + BF — Bi1, and |Br] < 1 is the solution of the quadratic equation : +f;§;-1|)2 =
aloy+B) —b '
m . Further,
1— 81 —a))?*(1 — B? —2a
a = k(1= )42k (k — 1y P o) Ul . 1)
(k — DA = (a1 + B1)*)
(k —1—k(ar + B1) + (o1 + By — a1 Bi(e + 1))
+4 > and
I —(ar + B1)
1 — (o + B)*
b= — et L
(e — ey Brlen + ) 77— @ L B?

Note that the Drost-Nijman scaling rule does not give exact information about the distri-
bution of the innovations (etk )teknN- Only even moments (up to order four) are calculated.
Indeed, all odd moments are zero because of the symmetry assumption for one-period inno-
vations. We follow the approach of modelling k-period innovations (€X); ¢y with Student-¢
distributions with correct first five moments (i.e. two even moments). The second moment
E[ef] equals one. The fourth moment, the conditional k-period kurtosis «*, can be calculated
via the unconditional k-period kurtosis K

k__ 1_(a1+,31)2+0512 ~k

= — (5.4)
1 — (o1 + Bi)? +afk*
The unconditional kurtosis ¥ of (ftk )teknN 1S given by
~k k-3 (k — 1 — k(a1 4 B1) + (a1 + BN ar — a1 Bi(er + B1)

K- =34+

o1 (1 —a; — B2(1 — B2 — 20, 8))

(5.5)
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(see Drost and Nijman [13]), where ¥ denotes the unconditional one-period kurtosis, which
can be expressed via the conditional one:

1 — (a1 + Br)? .
L—(a1+B1)?—ai>(k— 1)

K= (5.6)
Proofs of Egs. (5.4) and (5.6) can be found in the Technical Report, Kaufmann and Patie [27].
When Student-# distributions are assumed for one-period innovations (¢, );c;n, the esti-

mation procedure for the parameter v* of the Student-,« distributed k-period innovations
consists of the following steps:

— Estimate the parameter v of the Student-7, distributed one-period innovations.
— Calculate the conditional kurtosis x via k = 3U"_’46.

Calculate the unconditional kurtosis k¥ via (5.6).

Apply (5.5) to get the unconditional kurtosis K* for k-period log-returns.
Calculate the conditional kurtosis «* for k-period log-returns via (5.4).

Calculate the parameter vk of the Student-z,« distributed innovations (etk )rekhN Via v
4k —6
Kk—3 "

k:

Since o1 + B1 < 1 (and vy > 0, B; > 0), the stationarity condition 0 < o 1 + .1 < lis
fulfilled for the k-period parameters, and the asymptotic behaviour limy_, % == (;,0 o)
holds. From the formulas for o | and S ;, it can be seen that ax,; — 0 and f;,; — 0 as
k — oo. This means that long term volatility fluctuations stay rather small. More precisely,
asymptotically the volatility becomes constant, and therefore the weak GARCH(1,1) process
behaves in the limit like a random walk.

To make the quasi maximum likelihood estimation (QMLE) procedure for the parameters
in the one-period GARCH(1,1) process more stable (but somewhat less flexible), we simplify
model (5.2) and continue working with standard normally distributed innovations for one-

period log-returns:

_ _ iid.
Fo=o0€6, of =dg+oiFt, +piot,, & ~ N(O,1). (5.7)

After estimating &, &, and B, the Drost-Nijman scaling rule can be applied to calculate
A0, Qk,1 and Bk,l for the centered k-period log-returns. For estimating vk, we use the six
steps listed above. In the first step, we take the limit v — oo, which corresponds to assuming
standard normally distributed one-period innovations (¢;);cnn, and which yields « = 3 in
the second step.

An alternative approach to taking v — oo would be to continue working with Student-¢
distributed one-period innovations, and to only assume normality during the estimation
procedure (to get &g, ¢&; and B1). The parameter v can then be estimated from the residuals.
Gouriéroux [24] shows that this so-called pseudo-maximum-likelihood method yields a
consistent and asymptotically normal estimator, see also Straumann [41] and Straumann
and Mikosch [42].
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At time ¢, the k-period conditional volatility 6% = &(¢, t) can be forecasted using a

recursive relation: for t* = t —(n — 1)kh, ..., t —kh, t (where n stands for the total number
of k-period log-returns) 6%(t*, t) = &g + & (rk — p*¥)? + B162(t* — kh, t), starting with
6%(t —nkh,t) = nk’il :'igl(r,_,-h — [1)%. For the k-period mean we use 0% = kfu, where

[t stands for the QMLE for the mean one-period log-return up to time .

5.2.  Estimation of value-at-risk and expected shortfall

Since the k-period innovations are fitted with Student-¢ distributions, the k-period (one-year)
value-at-risk at level p can be estimated by

VaR” = —(exp (2" + 6% x%) — 1), (5.8)

and the corresponding expected shortfall by

p
ES” = —(lf exp (* + 6% x%)dg — 1), (5.9)
P Jo

where x/ denotes the p-quantile of a Student-, distributed random variable with mean zero
and variance one. The integral in (5.9) can be evaluated numerically.

As shown in Kaufmann and Patie [27], stationarity conditions are often violated for
parameters estimated on a one-month (or longer) horizon. Hence, in the present paper,
GARCH(1,1) models are only calibrated on shorter horizons.

6. Heavy-tailed distributions

Extreme Value Theory (EVT) provides procedures for estimating extreme quantiles. It has
attracted much interest from the finance industry lately. For an exhaustive description of
EVT see the monograph of Embrechts et al. [19]. Applications to risk management are
summarised in Embrechts [18].

Definition 6.1. Log-returns r, = s, — s,_, of the process (s;);cny are said to have a heavy-
tailed distribution, if for all # € AN they satisty

Plr, < —x]=x"%L(x) asx — o0, 6.1)

where o € R and L is a slowly varying function, i.e. lim,_, LL((’;)) = 1forallz > 0.

For heavy-tailed distributions (6.1), the mth moment is infinite for all m > «.
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6.1. Scaling rule

A natural estimator for the tail index « is the so-called Hill estimator

1< ;
&J==7§:bgcﬁ>, 6.2)
i=1

ro

where n is the sample size and r( is the /th order statistic (i.e. rqy < rp) < -+ < 1),
taken as a threshold. Other estimators, as discussed in Embrechts et al. [19], can also be
used.
From (6.1), estimates for the p-quantile fcl{’ , can be derived. On the one hand, putting
x = —rg leads to % = Plr < rpyl = (—rg) *L(=rg)). On the other hand, setting
X = —x,”’n yields
p= I[D[r < xll,)n] = (_xl[,’n)_al‘(_xll,’n)' (6.3)

Combining these equations gives the estimate

I 1/&n
fﬂZW(@) : (6.4)

Equation (6.4) yields an easy way to calculate the p-quantile once the tail (shape) parame-
ter « is estimated. As the Hill estimator (6.2) is based upon the lowest order statistics, only
a proportionally small subsample of the whole data set is considered. Consequently, a large
data set to start with is desirable. Therefore, rather high frequency data should be used to
estimate o, and to calculate fcf »- Then, a theoretical scaling rule can be applied to get the
quantile estimate at the required frequency.

For one-period log-returns which are i.i.d., and which satisfy (6.1), by the subexponen-
tiality property (see e.g. Feller [23, VIIL.8, p.271] and more in detail Embrechts et al. [19]),
the k-period log-returns (r), iy fulfil

P[rtk < —x] =kx *L(x)(1+0(1)), asx — oo. (6.5)

This result supplements the central limit theorem by providing information concerning the
tails. It describes the self-additivity in the tails of heavy-tailed distributions. The implication
of this result for portfolio analysis has been discussed in the specific case of non-normal
stable distributions by Fama and Miller [22]. In that case ¢ < 2 holds, and the variance is
therefore infinite. Here we focus on the finite variance case. Dacorogna et al. [11] show the
following asymptotic result, which can be derived from (6.3) and (6.5):

xbP ~ glexp g p— 0, (6.6)

where x*? is the p-quantile of the k-period log-returns. This means that for a constant
probability p, increasing the time horizon by a factor k increases the p-quantile for the
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heavy-tailed model by a factor k'/%. For financial log-returns, the estimated tail index &
usually belongs to the interval (2, 5) (see Dacorogna et al. [11] and Straetmans [40] for
empirical studies on foreign exchange rate and stock index data). For « > 2, the fac-
tor k'/% is smaller than for the normal model, where the value-at-risk is increased by
the factor k'/2. Hence the square-root-of-time rule—used very often in practice to scale
quantiles—Ileads to an overestimation of value-at-risk. More details about this time ag-
gregation issue for heavy-tailed distributions can be found in Kaufmann and Patie [27],
Section 7.2.3.

In comparison with the normal model, the probability of an extreme one-period loss is
higher for the heavy-tailed model. However, as we saw before, the multiplication factor
used to obtain the multi-period value-at-risk is smaller for heavy-tailed log-returns (k'/%,
o € (2,5)) than for normal log-returns (k'/%). Based on this, the value of an estimated
extreme k-period quantile may still be larger for the normal model than for the EVT model,
if k is chosen large enough (as shown by simulation in Dacorogna et al. [11]).

6.2. Estimation of value-at-risk and expected shortfall

Estimates for the k-period value-at-risk at level p can be derived by applying the quantile
transformation (6.6) to one-period values fulfilling (6.1):

— k)40
VaR"™ = — exp np }’(lmp) -1 s (67)

and for the corresponding one-year expected shortfall

=7 1 P k ln,p 1/&1'”%”
ES" = — ; A exXp nq r([M)) dq—l s (68)

where [, , = [n(p + 0.045 4+ 0.005 h) ], o?l_nl = % 25:1 log(ri)/r)) is the Hill estimator,
and r(;) denotes the /th order statistic of one-period log-returns. The integral in the estimation
of ES” can be evaluated numerically. The choice made for In,p works well in practice; it
turns out that the results are rather insensitive to the exact choice of /, ,.

7. Model comparison

In this section, the suitability of the models for estimating one-year financial risks is com-
pared. As explained before, we first fix a horizon 2 < 1 year, on which the various models
are calibrated. For the gap between /1 days and one year (kh days), we use the corre-
sponding scaling rule. This finally gives the values for one-year value-at-risk and expected
shortfall.

Modelling i-day log-returns causes a first uncertainty. Scaling h-day log-returns to one-
year log-returns produces a second uncertainty. The optimal horizon /4 for a chosen model
is the one leading to the minimal total uncertainty, in our case measured by the quality of
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the prediction for expected shortfall. In Section 7.1.1 the measures used for backtesting
expected shortfall estimates are described. In order to find eventually the best model among
the ones investigated, the backtesting measures are evaluated and compared for all the
models for several intermediate horizons /.

7.1.  Backtesting

7.1.1. Descrtptton of the backtesting measures. For backtesting the forecasted expected
shortfall ES , we introduce two measures. The first measure VS evaluates excesses below
the negative of the estimated value-at-risk VaR This is a standard method for backtesting
expected shortfall estimates. In detaﬂ we proceed as follows: every model provides for
each point of time ¢ an estimation ES for the one-year ahead expected shortfall ES”. Now
the difference between the observed one-year (k-period) return Rf‘ and the negative of the
estimation ESIP is taken, and then the conditional average of these differences is calculated,
conditioned on {RF < —@f},

ES t o (Rk ( - ]j::gf))) 1{Rf< 7@,’)}

n .,
t=ty 1{Rﬁf<—VaR{}

A good estimation for expected shortfall will lead to a low absolute value of V5.

This first measure sticks very closely to the theoretical definition of expected shortfall.
Its weakness is that it depends strongly on the VaR estimates (without adequately reflecting
the goodness/badness of these values), since only values which fall below the VaR threshold
are considered. This is possibly a fraction which is far away from 1% of the values—which
is the fraction one would actually like to average over. Hence, when analysing the values of
V,ES, these results should be combined with the ones given by the frequency of exceedances
Vired which will be described below.

In practice, one is primarily interested in the loss incurred in a one in 1/ p-event, as op-
posed to getting information about the behaviour below a certain estimated value. Therefore
we introduce a second measure VZES, which evaluates values below the “one in 1/ p-event’:

ES t to D 1ip,pry
V,” = 1 ,
z 1o {D,<D"}

where D, = R — (= ESP) and D" denotes the empirical p-quantile of {D,}, ;<. Note
that, since ES is an estimate on a level p, we expect D, to be negative in less than one
out of 1/p cases. A good estimation for expected shortfall will again lead to a low absolute
value of V5.

The next step is to combine the two measures VS and VFS:

}VIES| + |V2ES|

2
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This measure—which tells how well the forecasted one-year expected shortfall fits real
data—will be used in this paper to backtest the quality of the models.

We introduce one more measure that provides information about the quality of the esti-
mators: the frequency of exceedances

1

nh—rty+1 Zl{Rk_@f)}'

1=ty

Vfreq —

This measure is used by the Basel Committee on Banking Supervision, which in order
to encourage institutions to report their true value-at-risk numbers, devised a system in
which penalties are set depending on the frequency of violations. A good estimation for
value-at-risk will lead to a value of V'™ which is close to the level p.

7.1.2. Backtesting results. 'We start this section by describing the set-up for backtesting ex-
pected shortfall. For each data set, the models (random walk, AR(p) process, GARCH(1,1)
process, heavy-tailed distributions) are calibrated at different frequencies (one day, one
week, one month, three months, one year). For the GARCH(1,1) model, horizons from
one month upwards are missing since stationarity conditions are violated for the estimated
parameters. For heavy-tailed distributions there are not enough quarterly and yearly data to
estimate the tail index with the Hill and indeed any other EVT based estimator.

In a second step, one-year value-at-risk and expected shortfall are estimated as described
in Sections 3.2-6.2. Finally, the backtesting measures presented in Section 7.1.1 are evalu-
ated. Comparing the results across all models and all calibration horizons then tells which
model yields the most reliable estimation for one-year asset risk.

In a first study, we use foreign exchange rates, stock indices, and 10-year bonds from
five different markets. In a second part, we concentrate on single stocks. For all data sets
under investigation, the well-known stylized facts of financial log-returns can be observed:
leptokurtosis (which decreases with increasing time horizon), skewness (which is persistent
for all time horizons), and significant positive autocorrelations; see Kaufmann and Patie [27]
for details.

(a) Foreign exchange rates, stock indices and 10-year bonds

We first use the following data sets, obtained from Datastream: foreign exchange rates
(DEM/CHF, GBP/CHF, USD/CHF, JPY/CHF), stock indices (SMI, DAX, FTSE, S&P,
NIKKEI), 10-year government bonds (CH, DE, UK, US, JP). For each of these data
sets, when trying to backtest the models, one encounters the problem that the number
of yearly data is rather small to estimate model parameters and proceeding the back-
testing in a significant way. This problem can be handled by aggregating the backtest-
ing results for several data sets. For each of the four foreign exchange rates, 16 years
of data are available (1985-2000, n = 4173 daily log-returns). For both stock indices
and bonds we have five samples each containing 11 years of data (1990-2000, n =
2869 daily log-returns). The backtesting is carried out on each sample independently, and
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then the results are aggregated within each of the three types of data. In detail, for each
level p, each model, each intermediate horizon & and each data sample, we proceed as
follows:

— Estimate the yearly forecasted expected shortfall EAS,” on a window containing half of the
data. [ = |n/2h] non-overlapping h-day log-returns are used for this estimation.

— Compare these estimates with the observed one-year returns Rf.

— Move the window by one, then repeat steps 1 and 2 till the end of the data set.

— Finally, for each of the three pooled samples (foreign exchange rates, stock indices and
bonds), the risk measures can be evaluated as described in 7.1.1.

The results for the three types of data for p = 1% and p = 5% are presented in Tables 1,
2 and 3. Since risk managers are mainly interested in rare event cases, our main focus will
be on the outcomes for the 1% expected shortfall. Results for the 5% level will be used to
confirm the reliability and the flexibility of each approach.

For foreign exchange rates (Table 1) all four models seem to perform rather well for
appropriate choices of the calibration horizon 4. The best results are obtained when the
models are calibrated with monthly (2 = 22) or quarterly (2 = 65) data. This be-
haviour was expected, since most scaling rules (for random walks, AR(p) processes, heavy-
tailed distributions) require some independence structure between returns and, in some
cases, the normality assumption for innovations. Low frequency (2 > 22) returns are
closer to fulfil this hypothesis than daily or weekly returns. Concerning the compari-
son across models, it can be observed that the random walk and the heavy-tailed dis-
tributions perform better than the other models. However, one should point out that the
heavy-tailed approach is not reliable at frequencies other than the monthly one. While
the random walk model and the heavy-tailed distributions slightly overestimate the risk
measures, the AR(p) model underestimates them, which can be explained by the fre-
quent underestimation of variance for this approach. We will come back to this issue in
Section 7.3.

For stock indices (Table 2) the same lines of analysis can be followed. Here, the ran-
dom walk model with 2 < 65 days and the GARCH(1,1) model calibrated on daily data
outperform the other models. Finally, for 10-year government bonds (Table 3), the ran-
dom walk models calibrated on horizons 4 < 65 days provide the most reliable forecasts
for one-year 1% expected shortfall, and they are at the same time reliable on the 5%
level.

Summarising the results for the three types of data, we can say that random walk processes
with a constant trend and normal innovations, calibrated on horizons 4 < 65 days are
a good choice. They clearly outperform the other models under investigation. However,
these backtesting results do not provide direct information about the variability of the risk
measures. For the random walk models with normal innovations, we will investigate this
issue in Section 7.4 by calculating confidence intervals for expected shortfall and value-at-
risk.
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(b) German stock data

After backtesting foreign exchange rates, stock indices and government bonds, we now
do the same for single stocks. For this study we use a data set of 22 single stocks which are
part of the German stock index DAX.

Like in (a), there do not exist enough stationary returns per stock in order to perform
the backtesting in a straightforward way. In the case of German stock data, we evaluate
the backtesting measures on the pooled sample of all 22 stocks. Each sample contains 23.5
years of data (n = 6146 daily values). We proceed as described in (a).

The results for p = 1% and p = 5% are presented in Table 4. It can be seen that
for this data set the random walk model achieves its best performance when working
directly with yearly data. For a GARCH(1,1) model a one week horizon seems to be
a good choice. The results for AR(p) models do not seem to depend much on the cal-
ibration horizon. For the heavy-tailed distributions the optimal calibration horizon for
p = 1% is one month. However, this choice gives very unsatisfactory results for p = 5%.
Moreover—as will be discussed in Section 7.2—for appropriate models the backtesting
results on a 5% level should indicate a slight overestimation of the risk. The results in
Table 4 show the opposite behaviour for heavy-tailed distributions applied to monthly
data.

Comparing the four models with each other, and considering the shortcomings of heavy-
tailed distributions, GARCH(1,1) models applied to weekly data provide the best forecasts,
measured by their suitability to predict one-year 1% expected shortfall (and considering the
corresponding 5% prediction). Also a random walk calibrated on yearly data seems to give
reasonable forecasts for these German stock data.

7.2.  Further investigations for a simulated random walk

The results of the backtesting showed that random walk models with a constant trend and
normal innovations are a good choice for estimating 1% expected shortfall for a one-year
period. In order to get a better understanding of these backtesting results, we repeat the same
analysis for a time series where the distribution of the log-returns is known. We analyse the
properties of a simulated random walk with normal innovations. We proceed as follows.
We simulate one-period log-returns

fv(j) lld N(ﬁ(j) ~(j)) J — 1’ _._’5’ = h,2h, ...,nh, (71)

where i) = 13" i D and 50 = Ly ,(r(’) - ,u(f))2 are mean and standard devi-
ation estlmated for the one-period (h-day) log-returns r, ) of the stock indices SMI (=1,
DAX (j = 2), FTSE (j = 3), S&P (j = 4) and NIKKEI (j = 5).

We proceed as described in Section 3 to get estimates for the risk measures. The backtest-
ing in done as explained in Section 7.1. Since the results vary from simulation to simulation,
we repeat the whole procedure several times. The results are displayed in Table 5, together
with a recapitulation of the corresponding results for stock index data (see Table 2). Note
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that now for these simulated processes (7.1) it is known that the correct model (random
walk with normal innovations) is fitted.

We observe that calibration horizons 2 < 65 days outperform the results for 27 = 261 days
by far. A second observation, which we are going to discuss in more detail, is the fact that ex-
pected shortfall and value-at-risk tend to be underestimated. In particular, this clearly holds
for a level of 5%. This is caused by the statistical properties of the backtesting measures. To

make this clear, we examine the frequency of exceedances vired When evaluating this mea-
sure, the portion of returns below —VaR” is calculated. Let Q be an estimator of a quantile
of log-returns. Since the cumulative distribution function ®(¢g) of a normal random variable
Q is convex for g < 0, unbiasedness of Q (i.e. E[Q] = ¢) leads to E[®(Q)] > ®(qg). This
means that the probability of a log-return being below —VaR” tends to being overestimated.
As an example, we consider the situation where the mean of a standard normal distribution
is overestimated by 0.5 in the first case and underestimated by 0.5 in the second case. On
average these two scenarios lead to an overestimation of the number of values which lie
below the real value-at-risk of 1(®(®~1(5%)+0.5) + ®(P~'(5%) — 0.5)) — 5% ~ 2.11%
for the 5% VaR, and 1(®(®~'(1%) + 0.5) + ®(®~'(1%) — 0.5)) — 1% ~ 0.81% for
the 1% VaR. The uncertainty in the estimated standard deviation has a similar effect. This
even enlarges the above differences. Since ES” can be written as % fo” VaR’ dgq, this fact
also holds for expected shortfall. This explains the indications for an underestimation of
expected shortfall and value-at-risk in Table 5.

The backtesting results in Section 7.1.2 have shown that random walks with normal
innovations and a constant drift give quite good results for the data sets under investigation.
To be critical, we can ask ourselves whether replacing normal innovations by heavier tailed
ones, e.g. Student-z, with v = 4, would lead to even better results. The backtesting results
answer in the negative to this question. With normal innovations, for most of the 20 cases
(four data sets, & = 1, 5,22, 65, 261), VaR>” is clearly underestimated (V45% > 5%,
while VaR!” is overestimated for three of the four types of data, see Tables 1—4. This over-
and underestimation is approximately of the same order as for the simulated time series in
Table 5. Replacing normal log-returns by heavier tailed ones would even worsen the slight
overestimation for the 1% level. This is due to the fact that replacing a normal distribution
by a Student-# distribution with the same mean and the same 5% quantile increases the size
of the estimated 1% quantile, which is the opposite effect to the one we would like to have.
This suggests that working with normal innovations in the random walk model (as done in
our study) should be preferred to assuming Student-¢ distributed innovations.

7.3.  Variance analysis

7.3.1. Description. 'To learn more about the statistical properties of the models in use, we
analyse the variance of forecasted yearly log-returns. This analysis consists of the following
steps:

— For each data set, each model and each intermediate time horizon the model parameters
for h-day (one-period) log-returns are estimated.
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— Based on these estimations, the one-year (k-period) variance (and the standard deviation
as its square root) is calculated.

— To get some information about the precision of these standard deviations, 1000 periods of
16 years (for foreign exchange rates) and 1000 periods of 11 years (for stock indices and
10-year government bonds) are simulated. These simulations are based on the parameters
estimated in the first step. For each of the 1000 simulations the yearly standard deviation is
estimated. Finally, based on these 1000 values, the 95% confidence intervals for standard
deviation are calculated.

For the exact proceeding within these three steps for random walk, AR(p) and GARCH(1,1)
processes, we refer to Kaufmann and Patie [27]. Note that only the confidence intervals
are determined via simulation, whereas the point estimate for standard deviation is the
theoretical one calculated from the parameters estimated in Step 1.

7.3.2. Results. The yearly standard deviations 5*, and the 95% confidence intervals are es-
timated for random walk, AR(p) and GARCH(1,1) models, calibrated on foreign exchange
rates, stock indices and 10-year government bonds for different horizons. In figures 1-3,
these values (point estimates and confidence intervals) for calibration horizons varying from
one day to one year are plotted.

As before, for GARCH(1,1) models only horizons up to one week are used, since for
longer horizons stationarity conditions are violated for some of the estimated parameters.
We observe that also for calibration horizons of one day and one week, estimated variances
for GARCH(1,1) models vary significantly. Some of the 95% confidence intervals are
huge.

For AR(p) models, variances tend to be underestimated. The confidence intervals are
very asymmetric around the point estimates the simulations are based on. For several data
sets the confidence interval for the standard deviation even does not contain the value ¥,
which is the true value of the standard deviation belonging to the parameters underlying
the simulations. This means that the proceeding in AR(p) models provides unsatisfactory
results for estimating the standard deviation of such processes.

Only for random walk models we observe a satisfying behaviour. For most data sets
these variance estimates are fairly stable. As one would expect, the confidence intervals are
increasing with increasing calibration horizon (i.e. using fewer data).

This variance investigation confirms the conclusion of Section 7.1.2, where a random
walk model with a calibration horizon of at most three months was proposed. Considering
the stylised fact that daily (log) returns in a portfolio show dependencies which are not
present in longer horizon returns, using an intermediate horizon between one week and one
month seems to be most appropriate for modelling one-year returns.

7.4.  Confidence intervals for risk estimates in random walk models

In random walk models with normal innovations, confidence intervals for one-year expected
shortfall can be calculated based on /i-day observations. The explicit formula for these
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confidence intervals (and also for the ones for value-at-risk) can be found in Kaufmann and
Patie [27].

7.4.1. Confidence intervals for the Swiss Market Index. Assuming a random walk model,
we calculate 95% confidence intervals for VaR!% and ES!% of the Swiss market index SMI.
The estimations are performed using 11 years of data (January 1, 1990 to December 31,
2000). This gives one-year forecasts for December 31, 2001. The percentage losses, using
daily, weekly, monthly, quarterly and yearly data, are shown graphically in figure 4. The
full and the dotted lines represent 95% confidence intervals for 1% expected shortfall and
1% value-at-risk, respectively. The dots visualize the corresponding point estimates. To
elucidate what this percentage loss means for the absolute value of SMI, we transform these
one-year point estimates and confidence intervals into predictions for December 31, 2001,
see figure 5 (value of the SMI at the end of 2000: 8135.2; at the end of 2001: 6417.8). For
example for 7 = 22 days (1 month), the point estimate for the 1% value-at-risk gives a
value of 0.288. This means that with a probability of 1%, the SMI will lose 28.8% of its
value or more during the year 2001. Transformed to the value at the end of the year 2001,
this gives a point estimate of 5795. Hence with probability 1%, the SMI will be below
5795 at the end of this one-year period. The 95% confidence interval around the percentual
loss goes from 0.191 to 0.388, which corresponds to a 95% probability that the true 1%
value-at-risk lies between these bounds (which corresponds to the interval [5017, 6584]
for the SMI at the end of 2001). Values for expected shortfall can be read off in a similar
way.

The most evident observation in figures 4 and 5 is the fact that the confidence intervals
get larger as the intermediate time horizon 4 increases (i.e. as the number of values used for
the prediction decreases). Furthermore, the point estimate for # = 1 year seems to differ
from the ones for shorter intermediate horizons. This suggests that shorter horizons should
be preferred. To figure out whether this clear result is just a coincidence, or whether there is
a clear trend as 4 increases, we evaluate the point estimates for all intermediate horizons &
between one day and one year, and plot them in figure 6. This plot does not confirm such a
trend. But it does confirm the increase in variation as 4 increases. This suggests once more
that a relatively small 4 (2 < 3 months) should be chosen for estimating one-year asset
risks.

7.4.2. Confidence intervals for a simulated random walk. Like for the SMI data, 95% con-
fidence intervals of VaR!'” and ES'% can also be calculated for a simulated random walk.
First, from SMI log-returns (11 years of data), mean and variance are estimated. Based
on these values, a random walk (with normal innovations) of length 11 years is simulated.
Finally, one-year value-at-risk and expected shortfall and the corresponding confidence in-
tervals are estimated based on daily, weekly, monthly, quarterly and yearly data. These risk
estimates are shown graphically in figure 7. The full and the dotted lines represent 95% confi-
dence intervals for 1% expected shortfall and 1% value-at-risk, respectively. The dots visual-
ize the corresponding point estimates. The slight overestimation compared to the true values
(ESI% = 27.35%, full horizontal line; VaR ! % = 23.09%, dotted horizontal line) stems from
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the fact that the average of the simulated daily log-returns is slightly smaller than the mean es-
timated from SMI data. At first glance, the estimates for simulated data seem to vary less than
for the SMI (figure 4). To analyse this further, we evaluate the point estimates for all calibra-
tion horizons /& from one day to one year. Figure 8 shows that for simulated random walk data
these estimates do in fact not behave significantly more stable than for SMI data. (For com-
parison: 10% in figure 8 corresponds to 813.52 units in figure 6.) Like before, the variation of
the point estimates around the true value increases as the intermediate horizon % is increased.
This confirms again that for a reliable prediction of one-year risks, 4 should not be chosen too
large.

8. Conclusion

This paper is concerned with the estimation of measures of market risk over a long term
horizons of one year, with emphasis on the expected shortfall. We present and test dynamical
models like random walk, GARCH(1,1) and AR(p) processes. We also propose a static
approach based on heavy-tailed distributions. An important motivation for choosing these
models is the existence of time aggregation rules. Since the main difficulty on measuring
long term risks is the lack of such low frequency (e.g. one year) data, we calibrate the models
on higher frequency data and then apply scaling rules to get risk estimates at a one-year
horizon. We compare the models by applying backtesting methods. The outcome of these
investigations can be summarised as follows:

— As opposed to short term horizons, for a one-year period a good estimate of the trend of
(log-)returns is critical when measuring risks.

— In general, the best frequencies for calibration are the intermediate ones, like one month.
The statistical restrictions, like the sample size for estimating the models parameters and
the confidence interval of the risk estimates, play an important role in this choice. A
reason why using relatively high frequency data (daily data for example) is not perfect
is the fact that scaling rules are based on certain assumptions which are not fulfilled by
such data.

— The random walk model performs better on average than other models. It provides satis-
factory results across all classes of data and for both confidence levels investigated (1%,
5%). However, like all the other models under investigation, the risk estimates for single
stocks are not as good as those for foreign exchange rates, stock indices, and 10-year
bonds.

Based on these results, we recommend to use a random walk model with a constant trend
calibrated on a time horizon of about one month, and to apply the square-root-of-time rule
for estimating the one-year 1% expected shortfall.
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Appendix A: Tables

Table 1. Backtesting results for the levels p = 1% and p = 5%, using foreign exchange rate data. Measures for
one-year value-at-risk and expected shortfall are evaluated (The values in Tables 1-5 are percentages).

ES! ESS

VaR! VaR?

Model Freqdays ~ VES  yfS  yES  yfrea yES o yES VES yired
Optimal 0 0 0 1 0 0 0 5
Random walk 1 1.4 1.1 1.7 0.4 1.0 0.8 —-1.3 8.6
5 1.1 0.8 1.4 0.5 1.1 1.0 —-1.3 8.7

22 1.0 0.7 1.3 0.5 12 1.2 —1.2 8.1

65 0.9 0.5 1.4 0.5 1.1 1.1 —1.1 7.1

261 0.8 —04 —1.1 1.6 1.7 0.1 -33 9.4

GARCH(1,1) 1 N/A  NA 3.9 0.0 1.9 3.7 0.0 73
5 22 1.9 2.6 0.3 15 2.0 —1.1 10.1

AR(p) 1 2.3 —07 -39 6.6 39 —11 —6.8 19.5
5 2.4 —09 —40 5.9 39 09 —6.9 19.1

22 2.3 -08 38 5.9 3.8 —0.8 —6.8 18.8

65 2.1 —07 34 5.8 36 —08 —6.4 183
261 5.2 -19 -86 10.7 69 23 —114 23.4
Heavy-tailed 1 5.1 —-1.2 —8.9 15.2 9.4 -3.1 —15.8 41.4
distribution 5 3.7 02 -7.1 9.3 7.8 -1.8 138 35.8
22 0.8 1.6 0.1 1.4 4.8 0.1 —9.4 19.8

Table 2. Backtesting results for the levels p = 1% and p = 5%, using stock index data. Measures for one-year
value-at-risk and expected shortfall are evaluated.

ES! ES®

VaR! VaR®
Model Freqdays ~ VES  vfS vES  yfrea  yESyES vES i

Optimal 0 0 0 1 0 0 0 5
Random walk 1 0.8 0.3 1.3 0.8 35 0.0 =7.0 8.3
5 1.2 0.5 1.9 0.7 3.2 0.0 —6.4 8.1
22 0.7 0.2 1.1 0.8 37 -02 -7.1 8.3
65 13 —12 —-13 1.0 47 08 -85 8.6
261 105 —-60 —150 25 110 —40 —18.0 9.2
GARCH(1,1) 1 0.6 0.2 —1.1 1.3 54  -03 -105 8.8
5 3.7 2.6 4.9 0.5 3.1 1.6 —4.6 7.6
AR(p) 1 63 32 -9.3 33 85 -35 —135 106
5 64 =32 9.6 34 85 =34 -137 110
22 7.1 -38  —104 3.2 88 32 144 112
65 8.8 —41 —134 3.8 99 =33 -166 123
261 137 —-64 -210 124 147 -68 -226 209
Heavy-tailed 1 3.0 4.1 1.9 2.0 2.5 1.5 35 3.6
distribution 5 2.4 1.8 2.9 0.8 4.5 2.4 6.7 2.3

22 1.7 -0.5 29 0.5 8.4 3.0 13.8 0.9
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Table 3. Backtesting results for the levels p = 1% and p = 5%, using 10-year government bond data. Measures
for one-year value-at-risk and expected shortfall are evaluated.

ES! ES®

VaR! VaR®
Model Freqdays  VES  VES VES yfreda  yES  yES VES yfred

Optimal 0 0 0 1 0 0 0 5
Random walk 1 1.0 0.3 1.8 0.6 1.9 0.5 -33 73
5 1.8 0.5 3.2 0.4 L6 0.8 24 7.1
22 24 —04 4.4 0.2 1.2 1.3 -1.1 6.7
65 3.6 L1 6.1 0.1 1.0 L6 0.5 5.6
261 41 —47 3.4 0.9 52 -28 -1 6.0
GARCH(1,1) 1 6.1 —18 10.4 0.0 4.8 4.4 5.2 4.4
5 107 118 9.5 0.1 23 2.6 2.0 5.1
AR(p) 1 59 -24 93 34 78 -21  -135 124
5 58 —26 9.0 3.0 76 —-19  -132 119
22 57 28 -85 2.8 74 -19 -—128 119
65 69 -36 —102 3.4 82 —23 —142 136
261 131 -49 212 135 150 59 -241 238
Heavy-tailed 1 114  -22  -205 350 94 31 —158 414
distribution 5 84 12 -156 252 78 —18 —138 358
22 76  —14 137 117 4.8 0.1 -94 198

Table 4. Backtesting results for the levels p = 1% and p = 5% for stocks of the DAX. Measures for one-year
value-at-risk and expected shortfall are evaluated.

ES! ES3

VaR! VaR®
Model Freqdays VB  VFS VES yieqg  yES  yES VES  yfe

Optimal 0 0 0 1 0 0 0 5
Random walk 1 103 -52 -154 33 68 —42  —94 8.3
5 96 —47 -146 33 65 —40  -9.1 8.3
22 83 —41 -—125 29 58 =37 =79 7.7
65 90 —-45 -136 30 61 —40  —82 75
261 48  -26 =70 21 33 -25 -4l 6.0
GARCH(1,1) 1 61 —26  —95 23 42 —22 -6l 75
5 26 -14  -38 1.4 13 -02  -24 6.5
AR(p) 1 88 —38 —139 44 68 —33 -102 112
5 86 —38 —133 40 63 30 -96 108
22 77 -36 —118 34 53 —25 82 9.9
65 73 —33  —112 35 52 —24  -81 100
261 98 43 -153 32 58 —28 -89 8.9
Heavy-tailed 1 6.1 13 -108 52 2.8 20 =35 101
distribution 5 6.2 -0.3 —12.1 4.7 2.6 0.5 —4.7 8.9

22 1.7 2.6 0.8 1.1 72 5.7 8.6 3.0
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Table 5. Backtesting results for a random walk model for the levels p = 1% and p = 5%, using real stock
indices and simulated random walk data, respectively. Measures for one-year value-at-risk and expected shortfall
are evaluated.

ES! ES3
VaR! VaR?
Data Freqdays ~ VES  VFS vES  yfrea  yES  yES VES  yfred
Optimal 0 0 0 1 0 0 0 5
Stock indices 1 0.8 0.3 13 08 35 00  -70 8.3
5 1.2 0.5 19 07 32 00  —64 8.1
22 0.7 0.2 L1 08 37 02 71 8.3
65 13 -12 -13 1.0 47  -08 -85 8.6
261 105 —60 —150 25 110  —40 180 9.2
Simulation 1 1 13 09 —-17 29 56 —L1  —100 127
5 1.4 04  —24 30 60 -13 -107 131
22 21 -03 -39 32 69 -18 —119 140
65 24 —02  —45 39 71 =20 -123 150
261 96 —44 -148 63 127  -38 -216 182
Simulation 2 1 0.9 1.2 06 12 44 04 -85 9.4
5 1.8 1.9 1.7 L1 4.1 06  -76 9.1
22 0.4 0.7 0.1 1.2 4.6 0.1 -9.0 9.2
65 25 -1l -38 L9 66 —09 —123 111
261 120 -52 -188 71 149 -53 246 165
Simulation 3 1 0.7 1.2 02 15 36 —01 =70 105
5 0.8 08  —08 18 41  -04  -78 108
22 0.6 1.0 03 1.3 35 02  —69 1038
65 27 23 30 07 2.5 06  —44 102

261 7.1 —4.0 —10.2 43 8.4 2.7 —14.0 13.8
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Appendix B: Graphs

DEM/CHF: standard deviations

GBP/CHF: standard deviations
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Figure 1. Foreign exchange rates: estimates for standard deviations (including confidence intervals constructed

via simulation), using random walk models (full lines), AR(p) models (dotted lines) and GARCH(1,1) models
(dashed lines).
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Figure 2. Stock indices: estimates for standard deviations (including confidence intervals constructed via sim-
ulation), using random walk models (full lines), AR(p) models (dotted lines) and GARCH(1,1) models (dashed
lines).
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Figure 4. Point estimates and 95% confidence intervals for one-year 1% expected shortfall and 1% value-at-risk
for the SMI (percentage loss), based on different calibration horizons . Underlying model: random walk with
normal innovations.
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Figure 5. Point estimates and 95% confidence intervals for one-year 1% expected shortfall and 1% value-at-risk
for the SMI, transformed in such a way that the values at the end of the year 2001 can be read off. The estimates
are based on different calibration horizons /. Underlying model: random walk with normal innovations.
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Figure 6. Point estimates for one-year 1% expected shortfall for the SMI, transformed in such a way that the
values at the end of the year 2001 can be read off. The estimates are based on calibration horizons / from one day
to one year. Underlying model: random walk with normal innovations.
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Figure 7. Point estimates and 95% confidence intervals for one-year 1% expected shortfall and 1% value-at-risk
(percentage loss) for a simulated random walk, based on five different calibration horizons /. Underlying model:
random walk with normal innovations. The true values (horizontal lines) are 27.35% for expected shortfall and

23.09% for value-at-risk.
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Figure 8. Point estimates for one-year 1% expected shortfall (percentage loss) for a simulated random walk,
based on calibration horizons from one day to one year. Underlying model: random walk with normal innovations.
The true value (horizontal line) is 27.35%.
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