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Abstract Among the pathogenic mechanisms underlying

central nervous system (CNS) diseases, oxidative stress is

almost invariably described. For this reason, numerous

attempts have been made to decrease reactive oxygen

species (ROS) with the administration of antioxidants as

potential therapies for CNS disorders. However, such

treatments have always failed in clinical trials. Targeting

specific sources of reactive oxygen species in the CNS (e.g.

NOX enzymes) represents an alternative promising option.

Indeed, NOX enzymes are major generators of ROS, which

regulate progression of CNS disorders as diverse as

amyotrophic lateral sclerosis, schizophrenia, Alzheimer

disease, Parkinson disease, and stroke. On the other hand,

in autoimmune demyelinating diseases, ROS generated by

NOX enzymes are protective, presumably by dampening

the specific immune response. In this review, we discuss

the possibility of developing therapeutics targeting

NADPH oxidase (NOX) enzymes for the treatment of

different CNS pathologies. Specific compounds able to

modulate the activation of NOX enzymes, and the conse-

quent production of ROS, could fill the need for disease-

modifying drugs for many incurable CNS pathologies.
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Introduction: NOX NADPH oxidases

and their emerging role in CNS diseases

Central nervous system (CNS) diseases are heterogeneous

and have numerous etiologies. However, CNS patholo-

gies as diverse as progressive neurodegenerative disea-

ses, neuropsychopathological disorders, and stroke share

many pathogenic mechanisms, such as inflammation,

microglia activation, impaired neurotransmission, gluta-

mate-mediated excitotoxicity, mitochondrial dysfunction,

apoptosis, and increase of oxidative stress [78, 120].

Among these features of CNS diseases, NOX enzymes

are emerging as an important source of oxidants in the

CNS and key regulators of neurological pathologies

[112, 136, 142].

The NOX family consists of seven members (NOX1,

NOX2, NOX3, NOX4, NOX5, DUOX1, and DUOX2),

each with a specific tissue distribution. The isoforms present

in the CNS are mostly NOX1, NOX2, and NOX4. Despite

their similar core structures, NOX isoforms have different

mechanisms of activation. NOX1, NOX2, and NOX3

require association with cytosolic components [p47phox,

p67phox, NOXO1 (NOX organizer type 1), NOXA1 (NOX

activator type 1)], NOX4 is constitutively active, and NOX5

and DUOXes are activated by intracellular Ca2? elevation

and direct phosphorylation [8, 42, 84].

NOX enzymes function to transfer electrons across

membranes, which then react with oxygen generating the

superoxide anion O2
-. Superoxide dismutates very rapidly
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to generate hydrogen peroxide and other reactive oxygen

species (ROS).

In physiological conditions, ROS generated by NOX

enzymes work as defense mechanisms against pathogens

and signaling molecules. NOX enzymes are increasingly

recognized as key regulators of pathological situations

where oxidative stress is involved and leads to tissue oxi-

dative damage, such as pulmonary fibrosis, diabetic

nephropathy, and vascular and CNS pathologies [81]. The

NOX2 isoform (previously known as gp91phox or the

phagocyte oxidase) is responsible for the respiratory oxi-

dative burst in neutrophils. However, NOX2 is also

expressed in the CNS, where it controls key neuronal func-

tions and neuroinflammatory processes. NOX2 is strongly

upregulated in different CNS disorders where it generates

large amounts of ROS. NOX2 activation is thought to reg-

ulate microglia activation, a hallmark of inflammatory

gliosis observed in neuroinflammatory degenerative disor-

ders [17, 85]. As a major source of ROS, NOX2 can induce

direct neuronal damage [128] and maintain microglial cells

in an activated stage where they produce neurotoxic mole-

cules like peroxynitrite and other inflammatory molecules

[94]. A protective role of NOX2 deficiency has been dem-

onstrated in animal models of Parkinson disease (PD),

Alzheimer disease (AD), amyotrophic lateral sclerosis

(ALS), and stroke (reviewed in [142]). The fact that

decreased NOX2-generated ROS is protective in diverse

CNS diseases implies that it must regulate a key aspect of the

pathological CNS. NOX2 in the microglia is not the only

target to be pursued. In fact, NOX2 inhibition also prevents

development of psychotic disorders without the microglia-

mediated neuroinflammatory components by controlling

key neuronal aspects such as neurotransmitter release and

GABAergic interneurons function [13]. Although NOX2

deletion leads to decreased signs of oxidative stress, the

exact role of NOX enzymes in CNS physiology and

pathology is still very incomplete. Recent studies have

involved NOX2 in the pathways related to NMDA receptor

activation, opening new perspectives of research [20, 143].

Another striking aspect of the complexity of the role of

NOX2 is the fact that NOX2 plays an anti-inflammatory

role in autoimmune-mediated diseases including autoim-

mune neuroinflammation. Indeed, an insufficient ROS

production by systemic antigen presenting cells, such as

mononuclear phagocytes, will favor autoimmune neuroin-

flammation. Genetic studies identified a polymorphism in

the Ncf1 gene coding for p47phox, a regulatory cytosolic

factor of NOX-dependent oxidant production, which is

associated with susceptibility in rheumatoid arthritis mod-

els and other autoimmune disorders [116], including

experimental allergic encephalomyelitis, an animal model

of multiple sclerosis (MS) [62], and experimental allergic

neuritis, a model of Guillain Barré syndrome [58]. The link

between Ncf1 and disease susceptibility was further con-

firmed in humans because circulating leukocytes of

patients affected by MS [110] and other autoimmune

neuropathies [109] have a lower capacity for ROS gener-

ation. These unexpected findings appear to be due to down-

regulation of T cells by NOX2-dependent ROS generation

in response to autoantigen presentation [63].

To summarize, there are two possible therapeutic

options using NOX enzymes as pharmacological targets

(Fig. 1): (1) in CNS diseases like stroke, PD, AD, ALS,

with a strong glutamate excitotoxicity component, the

inhibition of NOX enzymes is expected to be beneficial,

while (2) when the neuroinflammatory process is mediated

by peripheral immune cells, activation of NOX2 in antigen

presenting cells of the immune system is predicted to bring

a therapeutic effect.

Although it has been known for a long time that mito-

chondria are an important source of ROS in CNS disease

[113, 2], the role of NOX enzymes in CNS pathologies is

rapidly emerging. However, because of the presence of at

least three NOX isoforms in the CNS and the absence of

studies using specific NOX inhibitors, we focus here on

disease models where proof-of-principle studies using

knock-out or mutant mice are available. We discuss current

therapies and the potential for NOX-based therapeutics

either decreasing NOX activity or, on the contrary,

enhancing low NOX activity in CNS autoimmune disor-

ders. Finally, we discuss past and emerging small

molecules targeting NOX enzymes and their possible

advantages and risks in CNS-based pathologies.

Beneficial effect of NOX inhibition: potential CNS

indications

Amyotrophic lateral sclerosis (ALS)

ALS is a neurodegenerative disease of the motoneurons

that leads to complete paralysis and death. Its prevalence is

around 2 per 100,000. Several therapeutic approaches have

been proposed for the treatment of this disease with vary-

ing efficacy. Today, there are no treatments that can arrest,

or even substantially delay, the progression of ALS. The

only drug approved to treat ALS patients is RiluzoleTM,

which is thought to inhibit the presynaptic release of

glutamate. However, its therapeutic benefit is modest as in

randomized controlled trials, it prolonged survival by

approximately 4 months [15, 79], a statistical benefit which

is subjectively not perceived by patients, family members,

or physicians [50]. ALS has a strong inflammatory com-

ponent with, for instance, increased expression of COX-2,

but the benefit of COX-2 inhibitors, such as rofecoxib

and celecoxib for the treatment of ALS, remains uncertain.
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A protective effect of numerous compounds has been

described in animal models of ALS (anti-inflammatory

drugs, anti-glutamate agents, neurotrophic factors, antiox-

idant, anti-apoptotic, gene inductors, autophagy inducers),

but none of them significantly prolonged survival or

improved quality of life when translated to ALS patients.

Signs of oxidative stress are observed in ALS rodent

models and in ALS patients, such as 8-oxodeoxyguanosine

(8-oxodG), urinary 15-F(2t)-isoprostane, protein carbon-

ylation, and markers of lipid peroxidation [5, 7, 104, 106].

The most studied form of ALS is a familial ALS (FALS)

in which the antioxidant enzyme SOD1 is mutated

(SOD1G93A). However, surprisingly, the increase of oxi-

dative stress is not due to the lack of function of SOD1, but

rather to aggregation of mutant protein [124], leading to a

toxic gain of function of the mutated SOD1 protein, which

in turn has been proposed to activate NOX enzymes [54].

NOX2 and subunits are strongly upregulated in both ALS

mice and patients colocalizing with microglial markers

[164]. Arguments in favor of a beneficial effect of NOX

inhibition comes from experiments where transgenic mice

expressing human SOD1G93A were bred with mice defi-

cient for NOX1 or NOX2, which showed lifespan increases

of 33 and 97 days, respectively [97]. Another study using a

similar approach has shown that NOX2-deficiency in

SOD1G93A overexpressing mice decreased the production

of microglial-derived ROS, delayed neurodegeneration and

prolonged survival, although more modestly than the other

study (13 days) [164]. Because of absence of treatment and

the inexorable development of ALS, there is a real need for

testing new targets for the pharmacological approach of

ALS. In spite of important differences in the protective

potential of NOX inhibition in ALS mice, these pre-

liminary proof-of-principle experiments converge at

identifying NOX enzymes as primary target for a potential

treatment of ALS.

Alzheimer disease (AD)

Alzheimer disease (AD) represents the most common sin-

gle cause of age-associated dementia worldwide. Although

AD etiology is unclear, neurodegeneration in AD patient

brain is characterized by protein misfolding and accumu-

lation of Ab (derived from amyloid precursor protein APP)

and tau (a microtubule-associated protein) in plaques and

intraneuronal neurofibrillary tangles, respectively. Forma-

tion of these abnormal protein aggregates leads to severe

neuronal death and synaptic loss, associated with microg-

lial and astrocytic activation. Excessive production of

inflammatory mediators and ROS by activated glial cells

and damaged neurons contribute to reduced neuronal sur-

vival and disease progression.

Due to the decreased levels of neurotransmitters, and

especially of acetylcholine, in AD patient brain, the main

therapy currently used for AD consists in the administra-

tion of acetylcholinesterase inhibitors, such as tacrine,

donepezil, rivastigmine, and galantamine [103]. Another

drug also commonly used for AD treatment is memantine

Fig. 1 Schematic overview of

possible therapeutic indications

for NOX targeting compounds.

a In diseases characterized by

neurodegeneration and

neuroinflammation such as

Alzheimer, Parkinson,

Amyotrophic lateral sclerosis,

and stroke, excessive NOX2

activation in injured neurons

and activated microglia cells

leads to production of ROS and

oxidative damage. b In

neurological autoimmune

diseases, such as multiple

sclerosis and Guillain Barré

syndrome, NOX2 activation

inhibits the excessive T cell

response and contributes to

remyelination and neuronal

survival
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[103], which acts as a non-competitive antagonist of the

NMDA receptor, thereby reducing excitotoxicity due to the

excessive glutamate release associated with neurodegen-

eration [132]. Although these treatments can reduce AD

symptoms and improve cognitive functions, they do not

contribute to the resolution of disease or arrest its pro-

gression [103]. Current approaches to develop better

therapies include inhibition of Ab aggregation and/or

production, as well as inhibition of Ab/tau-dependent

neurotoxic effects [24]. Indeed, preventing the protein

misfolding or its direct consequences would represent a

more efficacious way to reduce or even reverse the pro-

gression of the disease.

The involvement of NOX activation in the pathological

mechanisms of AD has been described in several studies

based on in vitro experiments with cultures of microglia,

astrocytes, and neurons (reviewed in [142]). Moreover,

disease progression was prevented in a mouse model of AD

(overexpressing the Swedish mutation of APP, leading to

Ab fragment accumulations) after breeding with NOX2-

deficient mice. Deletion of NOX2 gene reduced the patho-

logic effects of Ab amyloid fragments, rather than the

spontaneous accumulation of plaques in the mouse brain

[119]. There is also evidence that NOX enzymes are

expressed and activated in AD patients as compared to

healthy controls: translocation of NOX2-associated sub-

units (p47phox, p67phox) to the membrane [140], as well

as increased NOX2 activation in the frontal and temporal

cortex of AD patients with mild cognitive impairment [3].

Interestingly, in this recent study, only the expression of

NOX2 regulatory cytosolic subunits (p47phox, p67phox,

and p40phox) were increased in AD patients, while the

expression of membrane-associated proteins (p22phox and

NOX2) remained stable [3]. In addition, increased levels of

NOX1 and NOX3 mRNA were found in early stage AD

patients [33], suggesting that other isoforms might contrib-

ute to this pathology. Nevertheless, in spite of increasingly

recognised importance of NOX in AD, free radicals of spe-

cific mitochondrial origin and uncoupling of endothelial

nitric oxide synthase are likely to be important mediators of

the general oxidant status observed in AD [102].

Parkinson disease (PD)

Among neurodegenerative diseases, Parkinson disease is

the disorder for which the best options for symptomatic

treatment exist, at least for the initial phases. Neurode-

generation occurs in the substantia nigra, leading to loss

of dopaminergic neurons, which is associated with motor

dysfunctions. Typical Parkinson-related symptoms include

shaking, rigidity, or slowness, and they can be diag-

nosed early in the course of the disease [135]. Treatment

consists of the administration of levodopa, a precursor of

dopamine, to compensate for the dopamine reduction.

Although levodopa alleviates early movement dysfunc-

tions, it does not provide a real cure to prevent the

progressive degeneration of dopaminergic neurons. Simi-

larly, other available treatments include dopamine receptor

agonists, or monoamine oxidase (MAO-B) and catechol-

O-methyl transferase (COMT) inhibitors, which reduce the

dopamine metabolism and increase its availability. These

drugs are often used alone at the first appearance of

symptoms, while, at later stage, they are used in combi-

nation with levodopa, which remains more efficacious, but

is associated with more undesirable side effects, such as

dyskinesia (Table 1). Both genetic and environmental

factors have been implicated in the etiology of Parkinson

[135]. However, misfolding and deposition of toxic

a-synuclein aggregates seem to be an initiating pathogenic

event of the disease, whereas the progressive degeneration

is due to glial activation [53]. Oxidative damage is thought

to contribute to these mechanisms, and mitochondrial

dysfunction has been proposed to be a major source of

ROS [55]. Yet, there is experimental evidence supporting

a role for NOX enzymes. Most of the data derive from

in vitro studies, indicating a major involvement of

NOX2 in microglia-dependent dopaminergic neurotoxicity

(reviewed in [142]). In addition, a direct expression of

NOX enzymes in dopaminergic neurons might play a role,

while microglia serve to amplify the neurotoxic stimuli

[17]. In line with these findings, decreased death of

dopaminergic neurons in NOX2-deficient mice as com-

pared to wild-type (WT) was detected following LPS-

injections in the substantia nigra [129] and systemic

administration of MPTP [170] or the herbicide paraquat

[127]. A recent study identified a possible mechanism by

which NOX2 could be involved in paraquat toxicity. In its

native form, paraquat is a divalent cation and is not a

substrate of dopaminergic transporters. It therefore

requires reduction into a monovalent cation by microglial

NOX2 in order to be a substrate for dopamine transporters

leading to its accumulation in dopaminergic neurons

[130]. Whether oxidative modification of a-synuclein or

other Parkinson causative agents increase their toxicity to

dopamine neurons remains unknown. Two recent studies

show evidence of a role of neuronal NOX1 in Parkinson

disease [28, 31]. At this stage, the role of different NOX

isoforms is not clear, but one could speculate that a cross-

talk exists between neuronal NOX (probably NOX1) and

microglial NOX2, which would act by amplifying the

neuronal damage and regulating a neuroinflammatory

response. In order to evaluate the exact effect of different

isoforms, backcross of NOX-deficient animals with

genetic models of PD should be performed [35].
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Schizophrenia

Schizophrenia is a severe psychiatric disorder character-

ized by three main symptoms: positive, such as

hallucinations and delusions, negative, such as loss of

motivation and blunted emotions, and cognitive impair-

ment mainly due to deficits in working memory and

attention [22]. Although symptoms of schizophrenia usu-

ally appear in the late second or third decade of life, it is

considered to be a neurodevelopmental mental disorder.

Both genetic and environmental factors contribute to the

development of schizophrenia, but a complete picture of

pathogenic events is still not clear. Alterations in glutamate

and dopamine neurotransmission seem to be the main

cause of the symptoms, but it is not known how these

abnormalities develop [87]. Treatments for schizophrenia

are limited and, in general, consist of drugs that act mainly

on positive symptoms. The introduction of chlorpromazine

in 1954 as a first compound for the treatment of schizo-

phrenia opened the era of psychopharmacology. Similar

drugs were developed in the 1950s and 1960s (typical

antipsychotics), finally giving the possibility of controlling

symptoms in schizophrenic patients and limiting behav-

ioral abnormalities. Although these molecules are known to

have different pharmacological actions [146], their anti-

psychotic effect is thought to be due to the inhibition of the

D2 dopamine receptor. However, severe side effects are

associated with these treatments, such as a strong sedative

action or extra-pyramidal motor control disabilities, lead-

ing to a syndrome per se. The subsequent development of

other antipsychotic therapies led to the discovery of dif-

ferent compounds (atypical antipsychotics), but with

similar mechanisms of action. These drugs prevent positive

symptoms, and, even if attenuated, they cause important

side effects, especially related to metabolic syndromes and

extrapyramidal symptoms [71]. Due to severe side effects,

the treatment with antipsychotics (typical or atypical) is

often associated with low compliance of the patient and

non-adherence to the therapy. In addition, patients develop

drug resistance. For these reasons, there is a real need for

new treatments involving novel targets with increased

efficacy and better tolerability. New therapies should also

aim at targeting negative symptoms and cognitive deficits,

and reducing the functional and social impairment, which

prevent schizophrenic patients from living a normal life

[71].

The role of NOX enzymes in the pathogenesis of

schizophrenia has been shown in two different experi-

mental animal models. By inducing schizophrenia-like

symptoms in mice with subchronic administration of

subanesthetic doses of ketamine, Behrens and colleagues

first demonstrated that NOX2-dependent ROS production

induces a loss of parvalbumin in interneurons [11, 12].

Parvalbumin is a Ca2? binding protein, which normally

regulates activity of GABAergic interneurons, thereby

modulating the glutamatergic transmission. Decrease in

parvalbumin expression has been detected in the brain of

schizophrenic patients, suggesting an alteration in the

control of excitatory glutamatergic neurotransmission,

possibly related to schizophrenia symptoms [86]. By ana-

lyzing the acute effects of ketamine on mouse behavior and

neurotransmission, it has been found that an increased

production of ROS by NOX2 can be determinant to ini-

tially trigger the increase in glutamate and dopamine

release [52, 143]. In contrast, the repetitive ketamine

exposure leads to adaptive alteration of the post-synaptic

NMDA receptor [143], possibly as a consequence of par-

valbumin decrease [76]. The beneficial effect of NOX2

inhibition is not limited to the psychosis induced by keta-

mine, as similar observations were made in a model of

social isolation in the rat. In rats grown in social isolation

for 7 weeks after weaning, NOX2 is up-regulated con-

comitantly with behavioral alterations, and signs of

oxidative stress and loss of parvalbumin. Treatment with

apocynin, a non-specific NOX inhibitor, was able to pre-

vent all these effects [136]. Since the social isolation of

young rats after weaning induces a prolonged stress during

the development of the CNS [83], these findings show in

two unrelated models using two different species that

NOX2-dependent generation of ROS can play a role in the

pathogenesis of schizophrenia. However, at this stage,

although signs of oxidative stress are known in schizo-

phrenic patients, NOX2 expression pattern in post mortem

specimens or even increased NOX2 activity in peripheral

leukocytes has so far not been documented. NOX inhibi-

tion in animal models of psychosis does not only

completely prevent behavioral changes but also blunts

signs of oxidative stress as well as the histopathological

and neurochemical alterations observed in these models.

Development of CNS-targeted NOX inhibitors therefore

represents an extremely promising alternative approach to

existing therapies currently used in the treatment of psy-

chotic disorders.

Stroke

Stroke is a leading cause of death and permanent disability

worldwide. The majority of strokes are ischemic, due to the

occlusion of a vessel in the brain. Intervention in these

cases is mainly based on enzymatic or mechanical removal

of the occlusion to restore blood flow. Even if beneficial,

this treatment can be performed in patients only 3–4 h after

the occurrence of stroke, because of the associated severe

risk of inducing a hemorrhage [99]. Since it is difficult to

rescue the infarcted area, possible therapies are designed to

reduce further development of tissue damage and cognitive

Pharmacological targeting of NOX in the CNS 2393
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impairment associated with the ischemic insult. Another

approach is to prevent the occurrence of stroke in subjects

at risk [134].

Considerable variation in the outcome of ischemic

stroke using transient middle cerebral artery occlusion

(tMCAO) in NOX-deficient animals was observed. In an

early study, Walder et al. [157] described that the infarct

volume was reduced by approximately 50 % in NOX2-

deficient mice after 2 h transient ischemia followed by

22 h reperfusion. These observations were further con-

firmed in different studies using similar ischemia–

reperfusion approaches ranging from 30 to 75 to 120 min

ischemia followed by 22–24 h reperfusion [27, 66, 70]. A

recent study repeated exactly the study by Walder et al.

[157] confirming the protective effect of NOX2 deficiency

[165]. For NOX1-deficient mice, the time of ischemia

appears to be critical for the switch between a protective or

a deleterious effect of NOX1 activity. NOX1 deficiency

decreased infarct size when 60 min ischemia was applied,

while no differences were observed with occlusion time

was 2 h or more [70]. In a model of 30 min ischemia

followed by 24 h reperfusion, NOX1-deficient mice

showed no difference in neurological score, total or sub-

cortical cerebral infarct volume, or edema volume as

compared to WT. However, cortical infarct volume was

approximately fourfold greater in brains of NOX1-KO

versus WT mice [66]. Moreover, a recent study using

60 min ischemia followed by 24 h reperfusion showed

impressive protection in NOX4-deficient mice, but no

difference in either NOX1- or NOX2-deficient mice. Sub-

stantial decrease of infarct size was also observed in

NOX4-deficient mice when no reperfusion was applied

24 h after ischemia, while no data are available for NOX1-

or NOX2-deficient mice for this model [77]. Such dis-

crepancies are unfortunately not rare in rodent models of

ischemia–reperfusion, as experimental details can affect

the lesion in either beneficial or detrimental way, because

tiny differences in the cerebral vasculature between mouse

strains and surgical technique can account for important

changes in infarct severity, such as body temperature

control, blood pressure and blood monitoring, anesthetic

used, and surgery time [36, 88]. In order to reconcile and

understand these divergent data, some approaches can be

proposed: (1) genotypic homogeneity of the strains could

be verified, (2) a single operator could perform blindly both

transient and permanent ischemia, (3) different times of

ischemia could be tested for different knock-outs, and (4)

permanent occlusion models could be used and neuronal

cell death followed up at different time points as a relevant

model of stroke. Although a direct neurotoxic role of ROS

is possible, the possible mechanism played by NOX in

stroke is still unclear, and a role in the BBB integrity and

cerebrovascular permeability is emerging [41].

Obstructive sleep apnea syndrome (OSAS)

Obstructive sleep apnea is a respiratory disturbance char-

acterized by recurrent occlusions of the upper airways and

reduction in oxygen availability during sleep followed by

sudden awakening and reoxygenation. The underlying

neuropathological events of obstructive sleep apnea are

still unclear, but it is known that intermittent hypoxia

episodes cause behavioral alterations and cognitive

impairments [9].

OSAS often affects obese patients, due to fat deposition

in the parapharyngeal space, in the tongue, and under the

mandible, reducing the upper airway caliber and predis-

posing them to breathing disorders during sleep [51].

The main remedy for OSAS consists of the application

of devices to induce a nocturnal continuous positive airway

pressure (CPAP), but this is poorly accepted by patients.

Surgery can also be considered in certain cases to defini-

tively remove the obstruction of upper airways. Otherwise,

weight loss in obese patients or avoidance of risk factors,

e.g., alcohol consumption, can be helpful to reduce the

occurrence of this respiratory disturbance [51].

The animal model of OSAS is called long-term inter-

mittent hypoxia (LTIH). It consists of the use of a particular

chamber with an oxygen/nitrogen delivery system which

automatically decreases the content of oxygen from 21 to

10 % at certain intervals for few seconds, inducing arterial

oxyhemoglobin saturation [169]. Excessive production of

ROS, neuronal death, and tissue damage are associated with

the cognitive dysfunctions in this model [161].

In animals submitted to LTIH, genetic depletion of

NOX2 (knock-out mice) or pharmacological (apocynin)

inhibition of NOX2 reduced hypersomnolence and pre-

vented oxidative damage in the wake-active regions of the

brain [169, 173]. A recent report similarly shows that cog-

nitive deficits induced by recurrent hypoxia events during

sleep are mediated by excessive NOX2 activity [112].

In patients affected by OSAS, markers of inflammation

(interleukin-6) and oxidative stress (8-isoprostane) can be

detected in exhaled breath condensate [23]. Interestingly,

neutrophils (which mainly express NOX2) of OSAS

patients also show an enhanced production of superoxide

[137]. The presence of these signs of oxidative stress has

been mainly associated with the cardiovascular conse-

quences of the disease. However, in light of the results

obtained from animal models, it is possible that increase of

NOX2 activity also contributes to the cognitive decline.

Increased mRNA expression of p22phox was detected in

peripheral blood mononuclear cells of 107 subjects affec-

ted by OSAS. In addition, in these patients, a significantly

higher frequency of the C242T polymorphism in CYBB,

the gene coding for p22phox, a NOX subunit necessary for

the function of 4 NOX isoforms (NOX1-4), was detected as
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compared to 69 healthy subjects [90]. Altogether, these

findings suggest a potential for a NOX2-based therapy to

treat the neurological consequences of sleep-associated

breathing disorders.

Beneficial effect of NOX enhancement: potential CNS

indications

Neurological autoimmune diseases

Multiple sclerosis (MS) is an inflammatory disease leading

to myelin damage, which progresses to physical and cogni-

tive disabilities. Disease onset usually occurs in young adults

and affects 3 times more females than males. MS prevalence

ranges between 2 and 150 per 100,000, but MS is much more

common in northern Europe. MS takes several forms, with

new symptoms occurring either in discrete attacks (relapsing

forms) or slowly accumulating over time (progressive

forms). There is no known cure for MS. Available treatments

attempt to return function after an attack, prevent new

attacks, and prevent disability. Administration of b-inter-

feron 1a (Rebif�) shows some beneficial effects in a subset

of patients, but, despite claims to the contrary, their ability to

modify disease course has not been clearly established [39].

Antibodies to a4-integrin (Natalizumab�) suppress the

extravasation of lymphocytes into the CNS, but may trigger

progressive multifocal leukoencephalopathy. Inhibition of

the sphingosine-1-phosphate receptor (Fingolimod�) results

in the sequestration of lymphocytes in lymph nodes. Use of

drugs which non-specifically suppress the immune system

(glucocorticoids and the antineoplastic agent mitoxantrone)

slows the progression of the disease but are associated with

harmful side effects.

Although autoimmunity is a primary trigger in MS

lesion formation, it is now widely accepted that immune-

mediated inflammation contributes to MS pathogenesis.

Thus, the role of inflammatory auto-reactive CD4-positive

T helper (Th) cells has been extensively proven in animal

models of MS [57, 168]. However, although oxidative

damage is a known feature of MS [153], ROS produced by

NOX2 have been shown to be anti-inflammatory in auto-

immune diseases. Indeed, low ROS generation by NOX2

appears to prevent autoimmune responses in the chronic

EAE model of MS [62]. NOX2-dependent ROS of antigen

presenting cells are a key regulator of T cell activation.

Interestingly, leukocyte ROS production correlates inver-

sely with disease severity in MS [110] and recurrent

Guillain Barré syndrome (GBS) [108, 109]. Recurrent GBS

is also mediated by autoimmunity and is caused by damage

to the myelin sheet of the peripheral nerves. Current

treatments of recurrent GBS consist of corticosteroids,

plasmapheresis, and intravenous immunoglobulins.

Due to the critical role played by NOX enzymes in CNS

pathological states, it is almost certain that other patholo-

gies where oxidative stress is known to regulate disease

progression will show beneficial effects of NOX inhibition

(e.g., epilepsy, HIV-mediated dementia, or Huntington

among others) or NOX enhancement in autoimmune dis-

eases, such as leukodystrophies or progressive multifocal

leukoencephalopathy.

Therapeutics targeting ROS and NOX enzymes

Antioxidants

In the case of schizophrenia, several clinical trials have

recently been made with Vitamin C, E, omega-3 fatty acids, or

N-acetyl cysteine, suggesting a certain efficacy of improving

the antioxidant defence as adjunctive to a primary antipsy-

chotic treatment [131]. Of particular note, parallel

administration of N-acetyl cysteine could also moderately

diminish negative symptoms, such as akathisia [16]. How-

ever, as for cardiovascular diseases, the use of antioxidant

therapies has led to contradictory and mostly disappointing

outcomes in clinical trials for CNS diseases [82], in spite of

promising results obtained in in vitro studies and in animal

models for AD [141], and other neuropathologies, such as

stroke [134] or ALS [10]. Failure of antioxidant treatments

should not necessarily preclude the search of therapies tar-

geting oxidative stress to treat neuropathologies because there

are numerous possible reasons for the apparent failure of

antioxidant therapies, including lack of specificity, potency,

and bioavailability of antioxidant drugs, poor trial design, or

lack of relevant biomarkers of oxidation. Such issues are

discussed in details elsewhere [19, 47]. Nevertheless, as of

today, the medical use of such an approach still awaits solid

evidence of therapeutic benefit. On the other hand, the con-

certed search and discovery of NOX inhibitors is only

emerging. Neuroprotective action of several compounds have

been described as acting on the NOX pathway, but they are

probably acting upstream of NOX and, therefore, are blocking

other pharmacological targets [29]. However, recently, sys-

tematic screenings of chemical libraries were performed and

have identified new chemical entities targeting NOX enzymes

[18, 46, 80]. Although peptidic and siRNAs have been

designed to target NOX enzymes, we will only describe small

molecules that are currently described as NOX inhibitors.

Natural compounds

Apocynin

Apocynin or acetovanillone (MW 166.174) is a natural

organic compound widely used as a NOX inhibitor in
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models involving NOX enzymes [144], and has been

shown to be beneficial in numerous models of CNS dis-

eases at different doses and types of administration

(summarized in Table 2). However, the use of this mole-

cule as a NOX inhibitor remains controversial as its mode

of action is thought to be mostly through oxidant scav-

enging activity, although formation of an apocynin dimer

(diapocynin) accounts for NOX2 inhibition through the

activity of a peroxidase, such as the myeloperoxidase of

leukocytes [145, 56]. Surprisingly, for such a compound

which seems to represent a panacea for a large panel of

diseases, few studies of its bioavailability in vivo are

available. One study showed that, following single intra-

peritoneal injection (5 mg/kg), apocynin was detected in

the brain, but in a glycosylated form, while no diapocynin

could be detected [159]. However, another study showed a

contrary result following chronic oral treatment (150 and

300 mg/kg/day for above 100 days): no glycosylation, but

conversion of apocynin into diapocynin was detected in the

brain and spinal cord [152]. In almost all studies described

in Table 2, the compound has been administered (in con-

centrations ranging from 0.4 to 300 mg/kg) as preventive

treatment ranging from more than 2 months before disease

onset in the case of ALS [54] to a few minutes before

ischemic stroke [27]. It is clear that a curative approach

would be more relevant, although the outcome of such

studies is sometimes disappointing, as for hemorrhagic

stroke [151]. In the case of ALS, chronic treatment with

apocynin in the drinking water led to extremely variable

results: a first study described an increase of survival

(113 days) in SODG93A mice, a real hope for a potential

treatment in patients with ALS [54]. However, this

impressive outcome could not be repeated. A study fol-

lowing exactly the same treatment protocol showed no

benefit at all [152], while another study using a similar

protocol showed a modest increase of survival (5 days)

[89] (see Table 2). Interestingly, direct administration of

diapocynin (150 mg/kg/day) after disease onset showed an

8-day increase in mean survival of SODG93A mice [152].

As diapocynin is considered the active form of apocynin

[56], the rationale for NOX inhibition as a treatment for

ALS remains valid.

Discrepancies have also been described in studies with

chronic administration of apocynin (over 4 months) in

transgenic models of AD (see Table 2) [34, 95]. Differ-

ences in the dose, mouse model, and the age of the mice at

the beginning of the treatment may account for these

contrasting results. Future comprehensive PK/PD studies

for apocynin would greatly help researchers in the choice

of a dose and mode of administration. Due to such dis-

crepancies, lack of clear mechanism of action, lack of

specificity, high metabolism, previous failure of antioxi-

dant drugs, low potency on NOX enzymes, and extensive

patenting status, apocynin has a low potential for devel-

opment by pharmaceutical companies [1]. Nevertheless,

apocynin shows several advantages, which could poten-

tially make it a therapeutic agent for CNS disorders: low

toxicity, oral bioavailability, high potency in neuropathol-

ogies, and impact on surrogate markers of oxidative stress

in phase I clinical studies following aerosol administration

[123, 144]. Therefore, future studies associating apocynin

bioavailability (PK/PD) with real therapeutic benefit in

controlled preclinical trials after disease onset would pro-

vide proof of concept for a possible clinical development as

therapeutics for intractable CNS diseases.

Celastrol

Celastrol (MW 450.6) is a natural compound extracted from

the medicinal plant Tripterygium wilfordii, which has

recently been shown to be a bone fide NOX inhibitor as it

blocks within minutes both the increase of superoxide and

hydrogen peroxide (the product of the reaction calatysed by

NOX enzymes) and the decrease of its substrate, i.e. oxygen

[68]. Although celastrol has only recently been identified as a

NOX inhibitor, its neuroprotective properties have been

established several years ago. Injection of celastrol (2 and

8 mg/kg/day) improved survival of SODG93A mice by 9.4

and 13 %, respectively [74], improved dopaminergic neuron

survival in the MPTP model of PD (3 mg/kg, i.p before and

after MPTP injection) and with a dose of 3 mg/kg twice a day

for 5 days significantly decreased the striatal lesion volume

induced by 3-nitropropionic acid, a neurotoxin used to model

Huntington disease in rats [30]. In a transgenic model of AD

(Tg PS1/APPsw), celastrol (1 mg/kg i.p. for 4 days) and

chronic treatment (32 days) with celastrol (2.5 mg/kg/day

s.c. in a matrix-driven delivery pellet system) reduced the

levels of both soluble and insoluble amyloid beta peptides,

microglial activation, and amyloid beta plaque deposition

[118]. Recently, intraperitoneal administration of celastrol

improved the cognitive decline following major surgery in

old mice and reduced b-amyloid accumulation and s phos-

phorylation in the brain [158]. However, celastrol is a

complex molecule with numerous targets [72], and its use as

therapeutic awaits further study about its tolerability and

possible efficacy for CNS pathologies.

Phytol

In contrast to previous examples, phytol (3,7,11,15-tetra-

methyl-2-hexadecene-1-ol, MW 296.53) is a compound

which enhances NOX activity. Phytol has impressive effects

in vivo as it completely blunts autoimmune inflammation. In

the case of autoimmune disorders, phytol (i.p., but mostly

s.c.) therapeutic effect was first described in arthritis-prone

Ncf1 (DA) rats, which have a decreased NOX2-dependent
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oxidative burst. This compound has been shown to act by

increasing the phagocyte oxidative burst in vivo [61]. In an

acute model of Guillain Barré, phytol treatment led to a

strong reduction in experimental allergic neuritis disease

severity and a lower number of IFN-c-secreting cells in late

disease stage [58]. The fact that phytol is an oil makes it an

unlikely candidate for development by the pharmaceutical

industry because of challenging SAR, pharmacokinetics, and

metabolism. Nevertheless, it represents a proof of concept for

therapies aiming at enhancing NOX activity.

Chemically synthesized molecules

Triazolopyrimidines

Several compounds developed by Vasopharm have been

described as NOX inhibitors (for review, see [69, 75, 162].

Recently, VAS2870l, a low-molecular-weight pharmacolog-

ical NADPH oxidase inhibitor was shown to inhibit NOX1,

NOX2, and NOX4, but this may be through an indirect mode

of action, at least for NOX2, because it does not block NOX2

activity in a semi-recombinant membrane assay [44]. When

2 mg VAS2870l solubilized in 10 % DMSO was injected

intrathecally 2 and 12 h after ischemia, brain infarct volumes

were reduced by 75 % compared to vehicle-treated mice

thereby improving neurological outcome and mice viability

[77]. However, this study failed to demonstrate efficacy of

apocynin (100 lg, i.v. 1 h before occlusion), thereby chal-

lenging other studies (Table 2). It was also the first report that

provides evidence for a potential use of NOX inhibitors in the

clinic for CNS diseases and suggests that investigation of

other compounds targeting NOX should be similarly per-

formed. Nevertheless, low solubility of this compound and

mode of administration (intrathecal) makes it an unlikely

candidate CNS drug for use in humans.

2-Acetylphenothiazine

Athough they have not yet been used in CNS disorders, it can

be expected that the compound 2-acetylphenothiazine

(ML171), which shows potent inhibitory activity (0.25 lM in

a cellular assay) on NOX1, but also NOX2, NOX3, and NOX4

in the low micromolar range [46], can be active in the CNS

because it belongs to the phenothiazine family of compounds,

which are known to cross the BBB and to act as antipsychotics,

but also act on other targets and are potent antioxidants [114].

3-Pyrazolopyridines

Recently, orally bioavailable small molecules developed

by Genkyotex show high potency against NOX1 and

NOX4 [43, 80] have shown high efficacy in animal models

[21, 138, 154]. However, at this stage, no information

about CNS permeability and efficacy in CNS disorders has

been documented.

4-Perhexiline

Perhexiline is primarily considered as a carnitine palmi-

toyltransferase inhibitor, and is used in patients to treat

angina pectoris [4]. Perhexiline has been known for a long

time to have NOX inhibitory activity [69], but a direct

action on the NOX2 isoform (IC50 = 13.2 lM in a semi-

recombinant assay) was recently demonstrated [44].

Because of oral bioavailability, perhexiline might be rec-

ommended as a NOX inhibitor to treat CNS diseases.

However, such an indication should, unfortunately, not be

recommended for this compound because in many cases it

induces drug-induced neuropathies [49, 133].

NOX inhibitors are currently developed by both academic

[18] and industrial laboratories, such as Shionogi or Mitsubi-

shi, for which only patents have been published (for review, see

[69, 75], but, unfortunately, BBB penetration or efficacy in

CNS indications has to our knowledge not been published.

Discussion and conclusion

Research and development of drugs for CNS disorders are

particularly difficult and characterized by several challenges:

(1) in the majority of the cases, the etiology of the disease is

unknown, (2) mimicking CNS disorders in animal models

offers a limited predictive value, (3) direct analysis of

human brain samples can in most cases only be performed

post mortem, (4) most CNS pathologies have a slow pro-

gression and can be diagnosed only when the disease is

already at an advanced stage of development, making dif-

ficult both the identification of pathogenic events and the

possible therapeutic intervention, (5) the absence or low

availability of validated biomarkers to study disease pro-

gression, and (6) the presence of the blood–brain barrier,

which limits access of compounds to the CNS, and requires

complex additional assays to measure the concentration of

drug that can effectively reach the target [117].

In this review, we have summarized the present knowl-

edge showing that NOX enzymes represent new therapeutic

targets with high potential for treatment of a large panel of

CNS disorders. However, today, most of our knowledge is

based on the protective effect of congenital absence of

NOX2 (stable knock-out mice) or pretreatment with the

antioxidant/NOX inhibitor apocynin. Therefore, alterations

or adaptive responses due to the lack of NOX2 activity

during the development of the brain cannot be excluded. As

for future directions, use of conditional knock-outs as well

as patient studies should be performed to measure NOX

expression and activation. It is still unclear, for example,
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whether increased activity of NOX2 in neurons or microglia

is responsible for diseases such as schizophrenia (with low

or no inflammation) or ALS (with a strong neuroinflam-

mation). In addition, the role of other NOX isoforms

especially NOX1 (Parkinson) and NOX4 (stroke) is only just

emerging. Nevertheless, it is striking how consistently a key

role of NOX activity is found in CNS pathologies and may

in the future represent either a therapeutic target or a bio-

marker of CNS disease progression. However, many more

studies are required to understand the exact impact of NOX

enzymes in the different human CNS pathologies.

What would be the advantages of developing

compounds to target NOX2?

If antioxidant treatments have shown no efficacy in clinical

trials, why should it be worthwhile developing compounds

to target NOX enzymes in the CNS? There are several

reasons to sustain such an effort:

1. Inhibition of ROS production at the source: antioxi-

dants act as scavengers and they are not able to prevent

the actual generation of ROS. In contrast, a molecule

designed to target NOX enzymes will be able to block

directly the source, with the possibility of having a

curative effect. Indeed, blocking NOX2-dependent

ROS production, for example in microglia, would also

allow for diminishing its activation and subsequent

production of neuroinflammatory mediators [17].

2. Specificity: antioxidant molecules do not have a

specific target and, as a consequence, their molecular

structure cannot be systematically improved. In con-

trast, developing NOX targeting molecules allow for

studying the effects of structural modifications on

potency and isoform selectivity. Structure–activity

relationships can be developed and molecules can be

improved to target the desired protein.

3. Modulation: decreasing ROS is not always the thera-

peutic solution. It has been demonstrated that in certain

pathological situations diminishing ROS can even be

deleterious, such as in autoimmune CNS diseases [63].

In those cases, targeting the NOX enzyme can allow

the design of compounds able to increase or restore

NOX activity.

How to measure NOX activity in vivo? Use

of oxidation biomarkers

Although NOX genetic deletion shows efficacy in pre-

clinical models, a key requirement for a successful

development of NOX targeted approach in humans would

be the in vivo demonstration that the targeted NOX iso-

forms are blocked. This can only be achieved by the

identification of specific biomarkers as molecular signa-

tures of excessive NOX activity. Such biomarkers would

provide extremely useful information for in vivo demon-

stration and for the organization of clinical trials. Increased

concentration of oxidized molecules in biological fluids as

biomarkers of neuropathologies is extensively documented.

As an example, increased markers of lipid peroxidation

(isoprostanes) and nucleic acid oxidation (8-oxodeoxygu-

anosine) were detected in ALS sporadic patients [106] and

PD patients [139]. However, the reliability of the correla-

tion between the presence of oxidized molecules and

disease has been questioned because of numerous unre-

solved experimental and technical flaws (for a detailed

discussion of these specific issues, see the excellent critical

review in [47]). The causes involved are the fact that

biomarkers of oxidative stress are often chemically unsta-

ble molecules, which require complicated and expensive

detection methods for reliable quantification, such as mass

spectrometry and radioimmunoassay, but also that the

source of these oxidized molecules remains unresolved.

However, levels of isoprostane, a marker of lipid per-

oxidation, and 8-hydroxy-2’-deoxyguanosine, a marker of

nucleic acid oxidation, were markedly decreased in urine

of patients with hereditary deficiency in NOX2 (CGD

patients) [155, 156]. NOX2 in CNS pathologies show a

positive relationship of isoprostanes with AD [126] and

oxidized nucleic acids in psychosis [136, 143] as well as

other CNS pathologies [112]. Such biomarkers could prove

invaluable for CNS pathologies, such as Alzheimer dis-

ease: currently the only way to tell whether a patient is

affected by AD in a conclusive manner is post mortem

histological analysis of amyloid plaques deposition.

Whether NOX enzymes are a main cause of the formation

of oxidized biomarkers in CNS disease awaits further

confirmation. This could be done by correlating the pres-

ence of isoprostanes and oxidized nucleic acids during the

progression of different neuropathological animal models

using available NOX knock-outs (i.e. NOX1, NOX2, and

NOX4). Validated oxidized biomarkers for NOX activity

would be extremely useful in drug development, such as to

assess the effect of a NOX inhibitor on disease progression,

help select drug candidates, define dose effects, and facil-

itate the selection of populations for clinical trials, and

therefore optimize chances of the successful development

of a drug, and drastically decrease development costs. It

would also help in comparing therapies (NOX inhibitors

versus antioxidant or drugs with another mode of action).

For which pathologies would it be useful to develop

NOX targeting drugs?

As mentioned above, the involvement of the NOX2

enzyme has emerged from experimental animal models of
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several incurable CNS diseases (Fig. 1). Because of the

absence of treatment, severity, and strong rational for NOX

involvement, ALS could be a primary clinical indication

for NOX inhibitors. Although ALS is quite rare, it is still

possible to recruit a sufficient number of patients to orga-

nize placebo versus treatment clinical trials, while for

recurrent Guillain Barré, for example, its incidence is so

low that only a few patients can be included, generating

data of poor statistical significance. In the case of thera-

peutic benefit, this would pave the way to other intractable

CNS pathologies, such as Huntington disease or other more

frequent neurodegenerative diseases, including AD and

PD. A large effort is being put into the identification of

novel therapeutic options for AD with promising targets

[24]. The therapeutic benefit of NOX inhibition requires

more proof of concept animal models. Similarly to AD, the

potential for NOX inhibitors for PD and stroke as well as

activators for MS are high, but therapeutic options are

available and new drugs are emerging, so more studies will

be necessary to demonstrate an added benefit compared to

existing drugs. However, the future of drug development

for neurodegenerative disease probably relies on complex

therapies with several drugs that target various pharma-

ceutical targets, such as other anti-inflammatory drugs,

glutamate excitotoxicity, and drugs targeting neurotrans-

mitters [92, 107].

Since the discovery of chlorpromazine in 1952, little

progress has been made for the therapy of schizophrenia.

Indeed, available drugs to treat schizophrenia are not

curative and cause considerable side effects. They all target

the same pathway (dopaminergic neurotransmission), and

they primarily decrease positive symptoms, thereby

inhibiting behaviors not well tolerated by the society

(Fig. 2a). Excessive dopaminergic release may not be the

primary event, but rather the result of alteration of GAB-

Aergic-glutamatergic neurotransmission [38]. However,

these findings have not provided new opportunities for

treatment. Generation of ROS by NOX2 is emerging as a

possible novel mechanism, which (1) can first elicit the

abnormal release of glutamate and dopamine and (2) pro-

mote neurochemical adaptive responses [11, 12, 136, 143].

NOX2 would represent an upstream target to this cascade

of events, leading to the manifestation of behavioral

alterations (Fig. 2b). If the complete protection seen with

NOX2 inhibition in animal models translates into schizo-

phrenic patients, the potential for the design of novel

treatment for schizophrenia is huge and would provide a

new paradigm in the fields of psychiatric diseases.

Possible side effects of NOX therapeutics

As most CNS diseases are generally chronic diseases,

intake of NOX-based therapeutics would possibly last for

years. Therefore, side effects represent a serious concern.

Although off-targets effects are difficult to predict and can

be determined by systemic assessment of toxicity, possible

on-target side effects may result in clinical manifestations

similar to what is known from animals and humans

carrying genetic mutations in NOX genes [63, 67, 115].

Safety concerns regarding NOX inhibition include (1)

NOX2 inhibition on microglial killing and development of

hyperinflammatory states, (2) inhibition of NOX3 could

lead to balance disorders as mice affected by mutations in

NOX3 genes and its regulatory subunits show impaired

otoconia formation and balance disorders, and (3) muta-

tions affecting DUOX2 function lead to impaired thyroid

hormone synthesis and congenital hypothyroidism. The

effect of enhancing NOX2 activity, although potentially

beneficial in autoimmune diseases, might result in phago-

cyte-mediated tissue damage. Therefore, to ensure proper

monitoring of those effects, preclinical toxicity studies

should include evaluation of balance disorders, measure-

ments of circulating thyroid hormones, and inflammatory

autoimmune manifestations.

Perspectives

Today, most treatments for CNS diseases are palliative or

symptomatic, rather than curative or disease-modifying,

and hence provide only slight relief instead of a cure. Also,

they are generally associated with numerous side effects.

With the increasing understanding of the biological basis of

CNS diseases, common pathological mediators have been

Fig. 2 Schematic representation of possible use of NOX2 inhibitors

in schizophrenia. a Available antipsychotic compounds inhibit

excessive dopaminergic transmission, but not curative and are

associated with considerable side effects. b From experimental data,

it emerges that NOX2 activation could be the primary source of

neurotransmission alterations, which lead to psychotic symptoms.

Therefore, blocking NOX2 activation could represent a novel

therapeutic approach
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identified [65]. These include glutamate, ROS, aggregated

misfolded proteins, and inflammation, and, now, NOX

enzymes are emerging as key upstream regulators of at

least some of the above-mentioned features. NOX enzymes

represent promising CNS therapeutic targets as (1) they are

major ROS generators in the CNS, (2) they regulate

microglia and/or astrocyte activation, and (3) they are key

modulators of T lymphocyte activation in autoimmune

diseases.

These remarkable features show that, although NOX

enzymes are not likely to be responsible for the etiology of

CNS diseases, they represent a novel and extremely

promising therapeutic area for CNS pathologies.
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