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Abstract A fundamental problem in artificial intelligence is that nobody really

knows what intelligence is. The problem is especially acute when we need to

consider artificial systems which are significantly different to humans. In this paper

we approach this problem in the following way: we take a number of well known

informal definitions of human intelligence that have been given by experts, and

extract their essential features. These are then mathematically formalised to produce

a general measure of intelligence for arbitrary machines. We believe that this

equation formally captures the concept of machine intelligence in the broadest

reasonable sense. We then show how this formal definition is related to the theory of

universal optimal learning agents. Finally, we survey the many other tests and

definitions of intelligence that have been proposed for machines.
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Introduction

‘‘Innumerable tests are available for measuring intelligence, yet no one is quite

certain of what intelligence is, or even just what it is that the available tests are

measuring.’’ R. L. Gregory (1998)

What is intelligence? It is a concept that we use in our daily lives that seems to

have a fairly concrete, though perhaps naive, meaning. We say that our friend who
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got an A in his calculus test is very intelligent, or perhaps our cat who has learnt to

go into hiding at the first mention of the word ‘‘vet’’. Although this intuitive notion

of intelligence presents us with no difficulties, if we attempt to dig deeper and define

it in precise terms we find the concept to be very difficult to nail down. Perhaps the

ability to learn quickly is central to intelligence? Or perhaps the total sum of one’s

knowledge is more important? Perhaps communication and the ability to use

language play a central role? What about ‘‘thinking’’ or the ability to perform

abstract reasoning? How about the ability to be creative and solve problems?

Intelligence involves a perplexing mixture of concepts, many of which are equally

difficult to define.

Psychologists have been grappling with these issues ever since humans first

became fascinated with the nature of the mind. Debates have raged back and forth

concerning the correct definition of intelligence and how best to measure the

intelligence of individuals. These debates have in many instances been very heated

as what is at stake is not merely a scientific definition, but a fundamental issue of

how we measure and value humans: Is one employee smarter than another? Are men

on average more intelligent than women? Are white people smarter than black

people? As a result intelligence tests, and their creators, have on occasion been the

subject of intense public scrutiny. Simply determining whether a test, perhaps quite

unintentionally, is partly a reflection of the race, gender, culture or social class of its

creator is a subtle, complex and often politically charged issue (Gould 1981;

Herrnstein and Murray 1996). Not surprisingly, many have concluded that it is wise

to stay well clear of this topic.

In reality the situation is not as bad as it is sometimes made out to be. Although

the details of the definition are debated, in broad terms a fair degree of consensus

about the scientific definition of intelligence and how to measure it has been

achieved (Gottfredson 1997; Sternberg and Berg 1986). Indeed it is widely

recognised that when standard intelligence tests are correctly applied and

interpreted, they all measure approximately the same thing (Gottfredson 1997).

Furthermore, what they measure is both stable over time in individuals and has

significant predictive power, in particular for future academic performance and

other mentally demanding pursuits. The issues that continue to draw debate are the

questions such as whether the tests test only a part or a particular type of

intelligence, or whether they are somehow biased towards a particular group or set

of mental skills. Great effort has gone into dealing with these issues, but they are

difficult problems with no easy solutions.

Somewhat disconnected from this exists a parallel debate over the nature of

intelligence in the context of machines. While the debate is less politically charged,

in some ways the central issues are even more difficult. Machines can have physical

forms, sensors, actuators, means of communication, information processing abilities

and environments that are totally unlike those that we experience. This makes the

concept of ‘‘machine intelligence’’ particularly difficult to get a handle on. In some

cases, a machine may display properties that we equate with human intelligence, in

such cases it might be reasonable to describe the machine as also being intelligent.

In other situations this view is far too limited and anthropocentric. Ideally we would

like to be able to measure the intelligence of a wide range of systems; humans, dogs,
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flies, robots or even disembodied systems such as chat-bots, expert systems,

classification systems and prediction algorithms (Johnson 1992; Albus 1991).

One response to this problem might be to develop specific kinds of tests for

specific kinds of entities; just as intelligence tests for children differ to intelligence

tests for adults. While this works well when testing humans of different ages, it

comes undone when we need to measure the intelligence of entities which are

profoundly different to each other in terms of their cognitive capacities, speed,

senses, environments in which they operate, and so on. To measure the intelligence

of such diverse systems in a meaningful way we must step back from the specifics of

particular systems and establish the underlying fundamentals of what it is that we

are really trying to measure.

The difficulty of developing an abstract and highly general notion of intelligence

is readily apparent. Consider, for example, the memory and numerical computation

tasks that appear in some intelligence tests and which were once regarded as

defining hallmarks of human intelligence. We now know that these tasks are

absolutely trivial for a machine and thus do not appear to test the machine’s

intelligence in any meaningful sense. Indeed even the mentally demanding task of

playing chess can be largely reduced to brute force search (Hsu et al. 1995). What

else may in time be possible with relatively simple algorithms running on powerful

machines is hard to say. What we can be sure of is that as technology advances, our

concept of intelligence will continue to evolve with it.

How then are we to develop a concept of intelligence that is applicable to all

kinds of systems? Any proposed definition must encompass the essence of human

intelligence, as well as other possibilities, in a consistent way. It should not be

limited to any particular set of senses, environments or goals, nor should it be

limited to any specific kind of hardware, such as silicon or biological neurons. It

should be based on principles which are fundamental and thus unlikely to alter over

time. Furthermore, the definition of intelligence should ideally be formally

expressed, objective, and practically realisable as an effective intelligence test.

In this paper we approach the problem of defining machine intelligence as

follows:

Section ‘‘Natural Intelligence‘‘ overviews well known theories, definitions and

tests of intelligence that have been developed by psychologists. Our objective in this

section is to gain an understanding of the essence of intelligence in the broadest

possible terms. In particular we are interested in commonly expressed ideas that

could be applied to arbitrary systems and contexts, not just humans.

Section ‘‘A Definition of Machine Intelligence’’ takes these key ideas and

formalises them. This leads to universal intelligence, our proposed formal definition

of machine intelligence. We then examine some of the properties of universal

intelligence, such as its ability to sensibly order simple learning algorithms and

connections to the theory of universal optimal learning agents.

Section ‘‘Definitions and Tests of Machine Intelligence‘‘ overviews other

definitions and tests of machine intelligence that have been proposed. Although

surveys of the Turing test and its many variants exist, for example, Saygin et al.

(2000), as far as we know this section is the first general survey of definitions and

tests of machine intelligence. Given how fundamental this is to the field of artificial
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intelligence, the absence of such a survey is quite remarkable. For any field to

mature as a science, questions of definition and measurement must be meticulously

investigated. We conclude our survey with a summary comparison of the various

proposed tests and definitions of machine intelligence.

Section ‘‘Discussion and Conclusions’’ ends the paper with discussion, responses

to criticisms, conclusions and directions for future research.

The genesis of this work lies in Hutter’s universal optimal learning agent, AIXI,

described in 2, 12, 60 and 300 pages in Hutter (2001b, a, 2007b, 2005), respectively.

In this work, an order relation for intelligent agents is presented, with respect to

which the provably optimal AIXI agent is maximal. The universal intelligence

measure presented here is a derivative of this order relation. A short description of

the universal intelligence measure appeared in Legg and Hutter (2005), from which

two articles followed in the popular scientific press (Graham-Rowe 2005; Fiévet

2005). An 8 page paper on universal intelligence appeared in Legg and Hutter

(2006b), followed by an updated poster presentation (Legg and Hutter 2006a). In the

current paper we explore universal intelligence in much greater detail, in particular

the way in which it relates to mainstream views on human intelligence and other

proposed definitions of machine intelligence.

Natural Intelligence

Human intelligence is an enormously rich topic with a complex intellectual, social

and political history. For an overview the interested reader might want to consult

‘‘Handbook of Intelligence’’ edited by R. J. Sternberg (2000). Our objective in this

section is simply to sketch a range of tests, theories and definitions of human and

animal intelligence. We are particularly interested in common themes and general

perspectives on intelligence that could be applicable to many kinds of systems, as

these will form the foundation of our definition of machine intelligence in the next

section.

Human Intelligence Tests

Contrary to popular public opinion, most psychologists believe that the usual tests

of intelligence, such as IQ tests, reliably measure something important in humans

(Neisser et al. 1996; Gottfredson 1997). In fact, standard intelligence tests are

among the most statistically stable and reliable of psychological tests. Furthermore,

it is well known that these scores are a good predictor of various things, such as

academic performance. The question then is not whether these tests are useful or

measure something meaningful, but rather whether what they measure is indeed

‘‘intelligence’’. Some experts believe that they do, while others think that they only

succeed in measuring certain aspects of, or types of, intelligence.

The first modern style intelligence test was developed by the French psychologist

Binet in 1905. Binet believed that intelligence was best studied by looking at

relatively complex mental tasks, unlike earlier tests developed by Francis Galton
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which focused on reaction times, auditory discrimination ability, physical coordi-

nation and so on. Binet’s test consisted of 30 short tasks related to everyday

problems such as; naming parts of the body, comparing lengths and weights,

counting coins, remembering digits and definitions of words. For each task category

there were a number of problems of increasing difficulty. The child’s results were

obtained by normalising their raw score against peers of the same age. Initially his

test was designed to measure the mental performance of children with learning

problems (Binet and Simon 1905). Later versions were also developed for normal

children (Binet 1911). It was found that Binet’s test results were a good predictor of

children’s academic performance.

Terman of Stanford University developed an English version of Binet’s test. As

the age norms for French children did not correspond well with American children,

he revised Binet’s test in various ways, in particular he increased the upper age

limit. This resulted in the now famous Stanford-Binet test (Terman and Merrill

1950). This test formed the basis of a number of other intelligence tests, such as the

Army Alpha and Army Beta tests which were used to classify recruits. Since its

development, the Stanford-Binet has been periodically revised, with updated

versions being widely used today.

Wechsler believed that the original Binet tests were too focused on verbal skills

and thus disadvantaged certain otherwise intelligent individuals, for example the

deaf or people who did not speak the test language as a first language. To address

this problem, he proposed that tests should contain a combination of both verbal and

nonverbal problems. He also believed that in addition to an overall IQ score, a

profile should be produced showing the performance of the individual in the various

areas tested. Borrowing significantly from the Stanford-Binet, the US army Alpha

test, and others, he developed a range of tests targeting specific age groups from

preschoolers up to adults (Wechsler 1958). Due in part to problems with revisions of

the Stanford-Binet test in the 1960s and 1970s, Wechsler’s tests became the

standard. They continue to be well respected and widely used.

Owing to a common lineage, modern versions of the Wechsler and the Stanford-

Binet have a similar basic structure (Kaufman 2000). Both test the individual in a

number of verbal and non-verbal ways. In the case of a Stanford-Binet the test is

broken up into five key areas: fluid reasoning, knowledge, quantitative reasoning,

visual-spatial processing, and working memory. In the case of the Wechsler adult

intelligence scale (WAIS-III), the verbal tests include areas such as such as

knowledge, basic arithmetic, comprehension, vocabulary, and short term memory.

Non-verbal tests include picture completion, spatial perception, problem solving,

symbol search and object assembly.

As part of an effort to make intelligence tests more culture neutral John Raven

developed the progressive matrices test (Raven 2000). In this test each problem

consists of a short sequence of basic shapes. For example, a circle in a box, then a

circle with a cross in the middle followed by a circle with a triangle inside. The test

subject then has to select from a second list the image that best continues the

pattern. Simple problems have simple patterns, while difficult problems have more

subtle and complex patterns. In each case however, the simplest pattern that can

explain the observed sequence is the one that correctly predicts its continuation.
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Thus, not only is the ability to recognise patterns tested, but also the ability to

evaluate the complexity of different explanations and then correctly apply the

philosophical principle of Occam’s razor. We will return to Occam’s razor and its

importance in intelligence testing in Subsection ‘‘A Formal Definition of Machine

Intelligence‘‘ when considering machine intelligence.

Today several different versions of the Raven test exist designed for different age

groups and ability levels. As the tests depend strongly on the ability to identify

abstract patterns, rather than knowledge, they are considered to be some of the most

‘‘g-loaded’’ intelligence tests available (see Subsection ‘‘Theories of Human

Intelligence’’). The Raven tests remain in common use today, particularly when it is

thought that culture or language bias could be an issue.

The intelligence quotient, or IQ, was originally introduced by Stern (1912). It

was computed by taking the age of a child as estimated by their performance in the

intelligence test, and then dividing this by their true biological age and multiplying

by 100. Thus a 10-year-old child whose mental performance was equal to that of a

normal 12-year-old, had an IQ of 120. As the concept of mental age has now been

discredited, and was never applicable to adults anyway, modern IQ scores are

simply normalised to a Gaussian distribution with a mean of 100. The standard

deviation used varies: in the US 15 is commonly used, while in Europe 25 is

common. For children the normalising Gaussian is based on peers of the same age.

Whatever normalising distribution is used, by definition an individual’s IQ is

always an indication of their cognitive performance relative to some larger group.

Clearly this would be problematic in the context of machines where the

performance of some machines could be many orders of magnitude greater than

others. Furthermore, the distribution of machine performance would be continually

changing due to advancing technology. Thus, for our purposes, an absolute measure

will be more meaningful than a traditional IQ type of measure.

For an overview of the history of intelligence testing and the structure of modern

tests, see Kaufman (2000).

Animal Intelligence Tests

Testing the intelligence of animals is of particular interest to us as it moves beyond

strictly human focused concepts of intelligence and testing methods. Difficult

problems in human intelligence testing, such as bias due to language differences or

physical handicap, become even more difficult if we try to compare animals with

different perceptual and cognitive capacities. Even within a single species

measurement is difficult as it is not always obvious how to conduct the tests, or

even what should be tested for. Furthermore, as humans devise the tests, there is a

persistent danger that the tests may be biased in terms of our sensory, motor, and

motivational systems (Macphail 1985). For example, it is known that rats can learn

some types of relationships much more easily through smell rather than other senses

(Slotnick and Katz 1974). Furthermore, while an IQ test for children might in some

sense be validated by its ability to predict future academic or other success, it is not

always clear how to validate an intelligence test for animals. If survival or the total
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number of offspring was a measure of success, then bacteria might the be most

intelligent life on earth!

As is often the case when we try to generalise concepts, abstraction is necessary.

When attempting to measure the intelligence of lower animals it is necessary to

focus on simple things like short and long term memory, the forming of

associations, the ability to generalise simple patterns and make predictions, simple

counting and basic communication. It is only with relatively intelligent social

animals, such as birds and apes, that more sophisticated properties such as

deception, imitation and the ability to recognise oneself become important. For

simpler animals, the focus is more on the animal’s essential information processing

capacity. For example, the work on understanding the capacity of ants to remember

patterns when retracing a path back to a source of food without the aid of

pheromones (Reznikova and Ryabko 1986).

One interesting difficulty when testing animal intelligence is that we are unable

to directly explain to the animal what its goal is. Instead, we have to guide the

animal towards a problem by carefully rewarding selected behaviours with

something like food. In general, when testing machine intelligence we face a

similar problem in that we cannot assume that a machine will have a sufficient level

of language comprehension to be able to understand commands. Thus a simple

solution is to use basic ‘‘rewards’’ to guide behaviour, as we do with animals.

Although this approach is extremely general, one difficulty is that solving the task,

and simply learning what the task is, become confounded and thus the results need

to be interpreted carefully (Zentall 1997). Due to our need for generality, we will

use this reward based approach for our formal measure of machine intelligence.

Specifically, we will adopt the reinforcement learning framework from artificial

intelligence (see Subsection ‘‘Basic Agent–Environment Framework’’).

For good overviews of animal intelligence research see Zentall (2000) or Herman

and Pack (1994).

Desirable Properties of an Intelligence Test

There are many properties that a good test of human intelligence should have. One

important property is that the test should be repeatable, in the sense that it

consistently returns about the same score for a given individual. For example, the

test subject should not be able to significantly improve their performance if tested

again a short time later. Statistical variability can also be a problem in short tests.

Longer tests help in this regard, however they are naturally more costly to

administer.

Another important reliability factor is the bias that might be introduced by the

individual administering the test. Purely written tests avoid this problem as there is

minimal interaction between the tested individual and the tester. However this lack

of interaction also has disadvantages as it may mean that other sources of bias, such

as cultural differences, language problems or even something as simple as poor

eyesight, might not be properly identified. Thus, even in a written test the individual
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being tested should first be examined by an expert in order to ensure that the test is

appropriate.

Cultural bias in particular is a difficult problem, and tests should be designed to

minimise this problem where possible, or at least detect potential bias problems

when they occur. One way to do this is to test each ability in multiple ways, for

example both verbally and visually. While language is an obvious potential source

of cultural bias, more subtle forms of bias are difficult to detect and remedy. For

example, different cultures emphasise different cognitive abilities, and thus it is

difficult, perhaps impossible, to compare intelligence scores in a way that is truly

objective. In part this is a question of what intelligence is. Indeed the problem of

how to weight performance in different areas is fundamental and we will need to

face it again in the context of our formal definition of machine intelligence.

When testing large numbers of individuals, for example when testing army

recruits, the cost of administering the test becomes important. In these cases less

accurate but more economical test procedures may be used, such as purely written

tests without any direct interaction between the individuals being tested and a

psychologist.

An intelligence test should be valid in the sense that it appears to be testing what

it claims it is testing for. One way to check this is to show that the test produces

results consistent with other manifestations of intelligence. A test should also have

predictive power, for example the ability to predict future academic performance.

This ensures that what is being measured is somehow meaningful, beyond just the

ability to answer the questions in the test.

Standard intelligence tests such as a modern Stanford-Binet are thoroughly tested

for years on the above criteria, and many others, before they are ready for wide

spread use. Many of these desirable properties, such as reliability, tester bias, cost

and validity, are also relevant to tests of machine intelligence. To some extent they

are also relevant to formal definitions of intelligence. We will return to these

desirable properties when analysing our definition of machine intelligence in

Subsection ‘‘Properties of Universal Intelligence‘‘, and later when comparing tests

of machine intelligence in Subsection ‘‘Comparison of Machine Intelligence Tests

and Definitions’’.

Static vs. Dynamic Tests

Stanford-Binet, Wechsler, Raven progressive matrices, and indeed most standard

intelligence tests, are all examples of ‘‘static tests’’. By this we mean that they test

an individual’s knowledge and ability to solve one-off problems. They do not

directly measure the ability to learn and adapt over time. If an individual was good

at learning and adapting then we might expect this to be reflected in their total

knowledge and thus picked up in a static test. However, it could be that an

individual has a great capacity to learn, but that this is not reflected in their

knowledge due to limited education. In which case, if we consider the capacity to

learn and adapt rather than the sum of knowledge to be a defining characteristic of
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intelligence, then to class an individual as unintelligent due to limited access to

education would be a mistake.

What is needed is a more direct test of an individual’s ability to learn and adapt: a

so called ‘‘dynamic test’’ (Sternberg and Grigorenko 2002; for related work see also

Johnson-Laird and Wason 1977). In a dynamic test the test subject interacts over a

period of time with the tester, who now becomes a kind of teacher. The tester’s task

is to present the individual with a series of problems. After each attempt at solving a

problem, the tester provides feedback to the individual who then has to adapt their

behaviour accordingly in order to solve the next problem.

Although dynamic tests could in theory be very powerful, they are not yet well

established due to a number of difficulties. One of the drawbacks is that they require

a much greater degree of interaction between the test subject and the tester. This

makes dynamic testing more costly to perform and increases the danger of tester

bias.

Dynamic testing is of particular interest to us because in a formal test for

machines it appears that we can overcome these problems by automating the role of

the tester.

Theories of Human Intelligence

Complementary to the experimental study of human intelligence, theories have been

developed that attempt to better characterise the fundamental nature of intelligence.

It is useful for us to briefly sketch this work as some of these issues have parallels

within the context of machine intelligence.

One central question is whether intelligence should be viewed as one ability, or

many. On one side of the debate are the theories that view intelligence as consisting

of many different components and that identifying these components is important to

understanding intelligence. Different theories propose different ways to do this. One

of the first was Thurstone’s ‘‘multiple-factors’’ theory which considers seven

‘‘primary mental abilities’’: verbal comprehension, word fluency, number facility,

spatial visualisation, associative memory, perceptual speed and reasoning (Thur-

stone 1938). Another approach is Sternberg’s ‘‘Triarchic Mind’’ which breaks

intelligence down into analytical intelligence, creative intelligence, and practical

intelligence (Sternberg 1985), however this model is now considered outdated, even

by Sternberg himself.

Taking the number of components to an extreme is Guilford’s ‘‘Structure of

Intellect’’ theory. Under this theory there are three fundamental dimensions:

contents, operations, and products. Together these give rise to 120 different

categories (Guilford 1967; in later work this increased to 150 categories). This

theory has been criticised due to the fact that measuring such precise combinations

of cognitive capacities in individuals seems to be infeasible and thus it is difficult to

experimentally study such a fine grained model of intelligence.

A recently popular approach is Gardner’s ‘‘multiple intelligences’’ where he

argues that the components of human intelligence are sufficiently separate that they

are actually different ‘‘intelligences’’(Gardner 1993). Based on the structure of the
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human brain he identifies these intelligences to be linguistic, musical, logical-

mathematical, spatial, bodily kinaesthetic, intra-personal and inter-personal intel-

ligence. Although Gardner’s theory of multiple intelligences has certainly captured

the imagination of the public, it remains to be seen to what degree it will have a

lasting impact in professional circles.

At the other end of the spectrum is the work of Spearman and those that have

followed in his footsteps. Here intelligence is seen as a very general mental ability

that underlies and contributes to all other mental abilities. As evidence they point to

the fact that an individual’s performance levels in reasoning, association, linguistic,

spatial thinking, pattern identification etc. are positively correlated. Spearman called

this positive statistical correlation between different mental abilities the ‘‘g-factor’’,

where g stands for ‘‘general intelligence’’(Spearman 1927). Because standard IQ

tests measure a range of key cognitive abilities, from a collection of scores on

different cognitive tasks we can estimate an individual’s g-factor. Some who

consider the generality of intelligence to be of primary importance take the g-factor

to be the very definition of intelligence (Gottfredson 2002).

A well known refinement to the g-factor theory due to Cattell is to distinguish

between, ‘‘fluid intelligence’’, which is a very general and flexible innate ability

to deal with problems and complexity, and ‘‘crystallized intelligence’’, which

measures the knowledge and abilities that an individual has acquired over time

(Cattell 1987). For example, while an adolescent may have a similar level of

fluid intelligence to that of an adult, their level of crystallized intelligence is

typically lower due to less life experience (Horn 1970). Although it is difficult to

determine to what extent these two influence each other, the distinction is an

important one because it captures two distinct notions of what the word

‘‘intelligence’’ means.

As the g-factor is simply the statistical correlation between difference kinds of

mental abilities, it is not fundamentally inconsistent with the view that intelligence

can have multiple aspects or dimensions. Thus a synthesis of the two perspectives is

possible by viewing intelligence as a hierarchy with the g-factor at its apex and

increasing levels of specialisation for the different aspects of intelligence forming

branches (Carroll 1993). For example, an individual might have a high g-factor,

which contributes to all of their cognitive abilities, but also have an especially well

developed musical sense. This hierarchical view of intelligence is now quite popular

(Neisser et al. 1996).

Ten Definitions of Human Intelligence

‘‘Viewed narrowly, there seem to be almost as many definitions of intelligence

as there were experts asked to define it.’’ R. J. Sternberg quoted in Gregory

(1998)

In this subsection and the next we will overview a range of definitions of

intelligence that have been given by psychologists. Many of these definitions are

well known. Although the definitions differ, there are reoccurring features; in some
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cases these are explicitly stated, while in others they are more implicit. We start by

considering ten definitions that take, in our view, a similar perspective:

‘‘It seems to us that in intelligence there is a fundamental faculty, the alteration

or the lack of which, is of the utmost importance for practical life. This faculty

is judgement, otherwise called good sense, practical sense, initiative, the

faculty of adapting oneself to circumstances.’’ A. Binet (Binet and Simon

1905)

‘‘The capacity to learn or to profit by experience.’’ W. F. Dearborn quoted in

Sternberg (2000)

‘‘Ability to adapt oneself adequately to relatively new situations in life.’’ R.

Pinter quoted in Sternberg (2000)

‘‘A person possesses intelligence insofar as he has learned, or can learn, to

adjust himself to his environment.’’ S. S. Colvin quoted in Sternberg (2000)

‘‘We shall use the term ‘intelligence’ to mean the ability of an organism to

solve new problems …’’ W. V. Bingham (1937)

‘‘A global concept that involves an individual’s ability to act purposefully,

think rationally, and deal effectively with the environment.’’ D. Wechsler

(1958)

‘‘Individuals differ from one another in their ability to understand complex

ideas, to adapt effectively to the environment, to learn from experience, to

engage in various forms of reasoning, to overcome obstacles by taking

thought.’’ American Psychological Association (Neisser et al. 1996)

‘‘… I prefer to refer to it as ‘successful intelligence.’ And the reason is that the

emphasis is on the use of your intelligence to achieve success in your life. So I

define it as your skill in achieving whatever it is you want to attain in your life

within your sociocultural context—meaning that people have different goals

for themselves, and for some it’s to get very good grades in school and to do

well on tests, and for others it might be to become a very good basketball

player or actress or musician.’’ R. J. Sternberg (2003)

‘‘Intelligence is part of the internal environment that shows through at the

interface between person and external environment as a function of cognitive

task demands.’’ R. E. Snow quoted in Slatter (2001)

‘‘… certain set of cognitive capacities that enable an individual to adapt and

thrive in any given environment they find themselves in, and those cognitive

capacities include things like memory and retrieval, and problem solving

and so forth. There’s a cluster of cognitive abilities that lead to successful

adaptation to a wide range of environments.’’ D. K. Simonton (2003)

Perhaps the most elementary common feature of these definitions is that

intelligence is seen as a property of an individual who is interacting with an external
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environment, problem or situation. Indeed, at least this much is common to

practically all proposed definitions of intelligence.

Another common feature is that an individual’s intelligence is related to their

ability to succeed or ‘‘profit’’. The notion of success or profit implies the existence

of some kind of objective or goal. What the goal is, is not specified, indeed

individuals’ goals may be varied. The important thing is that the individual is able to

carefully choose their actions in a way that leads to them accomplishing their goals.

The greater this capacity to succeed with respect to various goals, the greater the

individual’s intelligence.

The strong emphasis on learning, adaption and experience in these definitions

implies that the environment is not fully known to the individual and may contain

new situations that could not have been anticipated in advance. Thus intelligence is

not the ability to deal with a fully known environment, but rather the ability to deal

with some range of possibilities which cannot be wholly anticipated. What is

important then is that the individual is able to quickly learn and adapt so as to

perform as well as possible over a wide range of environments, situations, tasks and

problems. Collectively we will refer to these as ‘‘environments’’, similar to some of

the definitions above.

Bringing these key features together gives us what we believe to the essence of

intelligence in its most general form:

Intelligence measures an agent’s ability to achieve goals in a wide range of
environments.

We take this to be our informal working definition of intelligence. In the next

section we will use this definition as the starting point from which we will construct

a formal definition of machine intelligence. However before we proceed further, the

reader way wish to revise the 10 definitions above to ensure that the definition we

have adopted is indeed reasonable.

More Definitions of Human Intelligence

Of course many other definitions of intelligence have been proposed over the years.

Usually they are not entirely incompatible with our informal definition, but rather

stress different aspects of intelligence. In this subsection we will survey some of

these other definitions and compare them to the position we have taken. For an even

more extensive collection of definitions of intelligence, indeed the largest collection

that we are aware of, visit our online collection.

The following is an especially interesting definition as it was given as part of a

group statement signed by 52 experts in the field. As such it obviously represents a

fairly mainstream perspective:

‘‘Intelligence is a very general mental capability that, among other things,

involves the ability to reason, plan, solve problems, think abstractly,

comprehend complex ideas, learn quickly and learn from experience.’’

(Gottfredson 1997)
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Reasoning, planning, solving problems, abstract thinking, learning from expe-

rience and so on, these are all mental abilities that allow us to successfully achieve

goals. If we were missing any one of these capacities, we would clearly be less able

to successfully deal with such a wide range of environments. Thus, these capacities

are implicit in our definition also. The difference is that our definition does not

attempt to specify what capabilities might be needed, something which is clearly

very difficult and would depend on the particular tasks that the agent must deal with.

Our approach is to consider intelligence to be the effect of capacities such as those

listed above. It is not the result of having any specific set of capacities. Indeed,

intelligence could also be the effect of many other capacities, some of which

humans may not have. In summary, our definition is not in conflict with the above

definition, rather it is that our definition is more abstract and general.

‘‘… in its lowest terms intelligence is present where the individual animal, or

human being, is aware, however dimly, of the relevance of his behaviour to an

objective. Many definitions of what is indefinable have been attempted by

psychologists, of which the least unsatisfactory are 1. the capacity to meet

novel situations, or to learn to do so, by new adaptive responses and 2. the

ability to perform tests or tasks, involving the grasping of relationships, the

degree of intelligence being proportional to the complexity, or the abstract-

ness, or both, of the relationship.’’ J. Drever (Drever 1952)

This definition has many similarities to ours. Firstly, it emphasises the agent’s

ability to choose its actions so as to achieve an objective, or in our terminology, a

goal. It then goes on to stress the agent’s ability to deal with situations which have

not been encountered before. In our terminology, this is the ability to deal with a

wide range of environments. Finally, this definition highlights the agent’s ability to

perform tests or tasks, something which is entirely consistent with our performance

orientated perspective of intelligence.

‘‘Intelligence is not a single, unitary ability, but rather a composite of several

functions. The term denotes that combination of abilities required for survival

and advancement within a particular culture.’’ A. Anastasi (1992)

This definition does not specify exactly which capacities are important, only that

they should enable the individual to survive and advance with the culture. As such

this is a more abstract ‘‘success’’ orientated definition of intelligence, like ours.

Naturally, culture is a part of the agent’s environment.

‘‘The ability to carry on abstract thinking.’’ L. M. Terman quoted in Sternberg

(2000)

This is not really much of a definition as it simply shifts the problem of defining

intelligence to the problem of defining abstract thinking. The same is true of many

other definitions that refer to things such as imagination, creativity or consciousness.

The following definition has a similar problem:

‘‘The capacity for knowledge, and knowledge possessed.’’ V. A. C. Henmon

(Henmon 1921)
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What exactly constitutes ‘‘knowledge’’, as opposed to perhaps data or informa-

tion? For example, does a library contain a lot of knowledge, and if so, is it

intelligent? Or perhaps the internet? Modern concepts of the word knowledge stress

the fact that the information has to be in some sense properly contextualised so that

it has meaning. Defining this more precisely appears to be difficult however.

Because this definition of intelligence dates from 1921, perhaps it reflects pre-

information age thinking when computers with vast storage capacities did not exist.

Nonetheless, our definition of intelligence is not entirely inconsistent with the

above definition in that an individual may be required to know many things, or have

a significant capacity for knowledge, in order to perform well in some environ-

ments. However our definition is broader in that knowledge, or the capacity for

knowledge, is not by itself sufficient. We require that the knowledge can be used

effectively for some purpose. Indeed unless information can be effectively utilised

for a number of purposes, it seems reasonable to consider it to be merely ‘‘data’’,

rather than ‘‘knowledge’’.

‘‘The capacity to acquire capacity.’’ H. Woodrow quoted in Sternberg (2000)

The definition of Woodrow is typical of those which emphasise not the current

ability of the individual, but rather the individual’s ability to expand and develop

new abilities. This is a fundamental point of divergence for many views on

intelligence. Consider the following question: Is a young child as intelligent as an

adult? From one perspective, children are very intelligent because they can learn

and adapt to new situations quickly. On the other hand, the child is unable to do

many things due to a lack of knowledge and experience and thus will make mistakes

an adult would know to avoid. These need not just be physical acts, they could also

be more subtle things like errors in reasoning as their mind, while very malleable,

has not yet matured. In which case, perhaps their intelligence is currently low, but

will increase with time and experience?

Fundamentally, this difference in perspective is a question of time scale: must an

agent be able to tackle some task immediately, or perhaps after a short period of

time during which learning can take place, or perhaps it only matters that they can

eventually learn to deal with the problem? Being able to deal with a difficult

problem immediately is a matter of experience, rather than intelligence. While being

able to deal with it in the very long run might not require much intelligence at all,

for example, simply trying a vast number of possible solutions might eventually

produce the desired results. Intelligence then seems to be the ability to adapt and

learn as quickly as possible given the constraints imposed by the problem at hand. It

is this insight that we will use to neatly deal with temporal preference when defining

machine intelligence (see Measure of success in Subsection ‘‘Formal Agent–

Environment Framework‘‘).

‘‘Intelligence is a general factor that runs through all types of performance.’’

A. Jensen

At first this might not look like a definition of intelligence, but it makes an

important point: intelligence is not really the ability to do anything in particular,

rather it is a very general ability that affects many kinds of performance.
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Conversely, by measuring many different kinds of performance we can estimate an

individual’s intelligence. This is consistent with our definition’s emphasis on the

agent’s generality.

‘‘Intelligence is what is measured by intelligence tests.’’ E. Boring (1923)

Boring’s famous definition of intelligence takes this idea a step further. If

intelligence is not the ability to do anything in particular, but rather an abstract

ability that indirectly affects performance in many tasks, then perhaps it is most

concretely described as the ability to do the kind of abstract problems that appear in

intelligence tests? In which case, Boring’s definition is not as facetious as it first

appears.

This definition also highlights the fact that the concept of intelligence, and how it

is measured, are intimately related. In the context of this paper we refer to these as

definitions of intelligence, and tests of intelligence, respectively.

A Definition of Machine Intelligence

‘‘Indeed the guiding inspiration of cognitive science is that at a suitable level

of abstraction, a theory of natural intelligence should have the same basic form

as the theories that explain sophisticated computer systems.’’ J. Haugeland

(1981)

Having presented a very general informal definition of intelligence in Subsection

‘‘Ten Definitions of Human Intelligence’’, we will now proceed to formalise this

definition mathematically in a way that is appropriate for machines. We will then

study some of the properties of this definition in the remainder of this section.

Basic Agent–Environment Framework

Consider again our informal definition of intelligence:

Intelligence measures an agent’s ability to achieve goals in a wide range of
environments.

This definition contains three essential components: an agent, environments and

goals. Clearly, the agent and the environment must be able to interact with each

other, specifically, the agent needs to be able to send signals to the environment and

also receive signals being sent from the environment. Similarly, the environment

must be able to receive and send signals to the agent. In our terminology we will

adopt the agent’s perspective on these communications and refer to the signals sent

from the agent to the environment as actions, and the signals sent from the

environment to the agent as perceptions.

Our definition of an agent’s intelligence also requires there to be some kind of

goal for the agent to try to achieve. Perhaps an agent could be intelligent, in an

abstract sense, without having any objective to apply its intelligence to. Or perhaps
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the agent has no desire to exercise its intelligence in a way that effects its

environment. In either case, the agent’s intelligence would be unobservable and,

more importantly, of no practical consequence. Intelligence then, at least the

concrete kind that interests us, comes into effect when the agent has an objective

that it actively pursues by interacting with its environment. Here we will refer to this

objective as its goal.
The existence of a goal raises the problem of how the agent knows what the goal

is. One possibility would be for the goal to be known in advance and for this

knowledge to be built into the agent. The problem with this however is that it limits

each agent to just one goal. We need to allow agents that are more flexible,

specifically, we need to be able to inform the agent of what the goal is. For humans

this is easily done using language. In general however, the possession of a

sufficiently high level of language is too strong an assumption to make about the

agent. Indeed, even for something as intelligent as a dog or a cat, direct explanation

is not very effective.

Fortunately there is another possibility which is, in some sense, a blend of the

above two. We define an additional communication channel with the simplest

possible semantics: a signal that indicates how good the agent’s current situation is.

We will call this signal the reward. The agent’s goal is then simply to maximise the

amount of reward it receives. So in a sense its goal is fixed. This is not particularly

limiting however, as we have not said anything about what causes different levels of

reward to occur. In a complex setting the agent might be rewarded for winning a

game or solving a puzzle. If the agent is to succeed in its environment, that is,

receive a lot of reward, it must learn about the structure of the environment and in

particular what it needs to do in order to get reward. Thus from a broad perspective,

the goal is flexible. Not surprisingly, this is exactly the way in which we condition

an animal to achieve a goal: by selectively rewarding certain behaviours (see

Subsection ‘‘Animal Intelligence Tests‘‘). In a narrow sense the animal’s goal is

fixed, perhaps to get more treats to eat, but in a broader sense it is flexible as it may

require doing a trick or solving a puzzle of our choosing.

In our framework we will include the reward signal as a part of the perception

generated by the environment. The perceptions also contain a non-reward part,

which we will refer to as observations. This now gives us the complete system of

interacting agent and environment, as illustrated in Fig. 1. The goal, in the broad

flexible sense, is implicitly defined by the environment as this is what defines when

rewards are generated. Thus, in the framework as we have defined it, to test an agent

in any given way it is sufficient to fully define the environment.

This widely used and very flexible structure is in itself nothing new. In artificial

intelligence it is the framework used in reinforcement learning (Sutton and Barto

1998). By appropriately renaming things, it also describes the controller-plant

framework used in control theory (Bertsekas and Tsitsiklis 1996). The interesting

point for us is that this setup follows naturally from our informal definition of

intelligence and our desire to keep things as general as possible. The only difficulty

was how to deal with the notion of success, or profit. This required the existence of

some kind of an objective or goal. The most flexible and elegant way to bring this

into the framework was to use a simple reward signal.
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3.1 Example To make this model more concrete, consider the following ‘‘Two

Coins Game’’. In each cycle two 50¢ coins are tossed. Before the coins settle the

player must guess at the number of heads that will result: either 0, 1, or 2. If the

guess is correct the player gets to keep both coins and then two new coins are

produced and the game repeats. If the guess is incorrect the player does not receive

any coins, and the game is repeated.

In terms of the agent–environment model, the player is the agent and the system

that produces all the coins, tosses them and distributes the reward when appropriate,

is the environment. The agent’s actions are its guesses at the number of heads in

each iteration of the game: 0, 1 or 2. The observation is the state of the coins when

they settle, and the reward is either $0 or $1.

It is easy to see that for unbiased coins the most likely outcome is 1 head and thus

the optimal strategy for the agent is to always guess 1. However if the coins are

significantly biased it might be optimal to guess either 0 or 2 heads depending on the

bias. If this were the case, then after a number of iterations of the game an intelligent

agent would realise that the coins were probably biased and change its strategy

accordingly.

With a little imagination, seemingly any sort of game, challenge, problem or test

can be expressed in this simple framework without too much effort. It should also be

emphasised that this agent–environment framework says nothing about how the

agent or the environment actually work; it only describes their roles.

Formal Agent–Environment Framework

Having introduced the agent–environment framework, we will now formalise it,

along with the other components of our informal definition of intelligence. We

begin with agent–environment interaction.

Agent–Environment Interaction

The agent sends information to the environment by sending symbols from some

finite set, for example, A :¼ fleft; right; up; downg: We will call this set the

Fig. 1 The agent and the
environment interact by sending
action, observation and reward
signals to each other
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action space and denote it by A: Similarly, the environment sends signals to the

agent with symbols from a finite set called the perception space, which we will

denote P: The reward space, denoted by R; will always be a subset of the rational

unit interval ½0; 1� \Q: Every perception consists of two separate parts; an

observation and a reward. For example, we might have P :¼ fðcold; 0:0Þ;
ðwarm; 1:0Þ; ðhot; 0:3Þg where the first part describes what the agent observes

(cold, warm or hot) and the second part describes the reward (0.0, 1.0, or 0.3).

To denote symbols being sent we will use the lower case variable names a, o and

r for actions, observations and rewards respectively. We will also index these in the

order in which they occur, thus a1 is the agent’s first action, a2 is the second action

and so on. The agent and the environment will take turns at sending symbols,

starting with the environment. This produces a history of observations, rewards and

actions which we will denote by, o1r1a1o2r2a2o3r3a3o4 …. This turn taking

behaviour is not a serious restriction, nor is the fact that the first signal sent is a

perception.

The Agent

Formally, the agent is a function, denoted by p, which takes the current history as

input and chooses the next action as output. We do not want to restrict the agent in

any way, in particular we do not require that it is deterministic. A convenient way of

representing the agent then is as a probability measure over actions conditioned on

the complete interaction history. Thus, p(a3 | o1r1a1o2r2) is the probability of action

a3 in the third cycle, given that the current history is o1r1a1o2r2. A deterministic

agent is simply one that always assigns a probability of 1 to a single action for any

given history. As the history that the agent can use to select its action expands

indefinitely, the agent need not be Markovian. Indeed, how the agent produces its

distribution over actions for any given history is left open. In artificial intelligence

the agent will of course be a machine and so p will be a computable function. In

general however, p could be anything: an algorithm that generates the digits of
ffiffiffi

e
p

as outputs, an incomputable function, or even a human pushing buttons on a

keyboard.

The Environment

We define the environment, denoted by l, in a similar way. Specifically, for any

k 2 N the probability of ok rk, given the current interaction history o1 r1 a1 o2 r2 a2

… ok-1 rk-1 ak-1, is given by the probability measure l(ok rk | o1 r1 a1 o2 r2 a2 … ok-1

rk-1 ak-1). For the moment we will not place any further restrictions on the

environment.

3.2 Example To illustrate this formalism, consider again the Two Coins Game

introduced in Example 1. Let P :¼ f0; 1; 2g � f0; 1g be the perception space

representing the number of heads after tossing the two coins and the value of the
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received reward. Likewise let A :¼ f0; 1; 2g be the action space representing the

agent’s guess at the number of heads that will occur. Assuming two fair coins, we

can represent this environment by l:

lðokrkjo1. . .ak�1Þ :¼

1
4

if ok ¼ ak�1 2 f0; 2g ^ rk ¼ 1;
3
4

if ok 6¼ ak�1 2 f0; 2g ^ rk ¼ 0;
1
2

if ok ¼ ak�1 ¼ 1 ^ rk ¼ 1;
1
2

if ok 6¼ ak�1 ¼ 1 ^ rk ¼ 0;
0 otherwise:

8

>

>

>

>

<

>

>

>

>

:

An agent that performs well in this environment would be,

pðakjo1r1a1. . .okrkÞ :¼ 1 for ak ¼ 1;
0 otherwise:

�

That is, always guess that one head will be the result of the two coins being

tossed. A more complex agent might keep count of how many heads occur in

each cycle and then adapt its strategy if it seems that the coins are sufficiently

biased.

Measure of Success

Our next task is to formalise the idea of ‘‘profit’’ or ‘‘success’’ for an agent.

Informally, we know that the agent must try to maximise the amount of reward it

receives, however this could mean several different things. For example, one

agent might quickly find a way to get a reward of 0.9 in every cycle. After 100

cycles it will have received a total reward of about 90 with an average reward per

cycle of close to 0.9. A second agent might spend the first 80 cycles exploring

different actions and their consequences, during which time its average reward

might only be 0.2. Having done this exploration however, it might then know a

way to get a reward of 1.0 in every cycle. Thus after 100 cycles its total reward is

only 80 · 0.2 + 20 · 1.0 = 36, giving an average reward per cycle of just 0.36.

After 1,000 cycles however, the second agent will be performing much better than

the first.

Which agent is the better one? The answer depends on how we value reward in

the near future versus reward in the more distant future. In some situations we may

want our agent to perform well fairly quickly, in others we might only care that it

eventually reaches a level of performance that is as high as possible.

A standard way of formalising this is to scale the value of rewards so that they

decay geometrically into the future at a rate given by a discount parameter c [ (0,1).

For example, with c = 0.95 a reward of 0.7 that is 10 time steps into the future

would be given a value of 0.7 · (0.95)10 & 0.42. At 100 time steps into the future a

reward of 0.7 would have a value of just over 0.004. By increasing c towards 1 we

weight long term rewards more heavily, conversely by reducing it we weight them

less so. In other words, this parameter controls how short term greedy, or long term

farsighted, the agent should be.
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To work out the expected future value for a given agent and environment

interacting, we take the sum of these discounted rewards into the infinite future and

work out its expected value,

Vp
l ðcÞ :¼ 1

C
E
X

1

i¼1

ciri

 !

: ð1Þ

In the above, ri is the reward in cycle i of a given history, c is the discount rate, ci is

the discount applied to the ith reward into the future, the normalising constant is

C :¼
P

i=1
? ci, and the expected value is taken over all possible interaction

sequences between the agent p and the environment l.

Under geometric discounting an agent with c = 0.95 will not plan further than

about 20 cycles ahead. Thus we say that the agent has a constant effective

horizon of 1=ð1� cÞ: Since we are interested in universal intelligence, a limited

farsightedness is not acceptable because for every horizon there is a task that

needs a larger horizon to be solved. For instance, while a horizon of 5 is

sufficient for tic-tac-toe, it is insufficient for chess. Clearly, geometric

discounting has not solved the problem of how to weight near term rewards

versus long term rewards, it has simply expressed this weighting as a parameter.

What we require is a single definition of machine intelligence, not a range of

definitions that vary according to a free parameter.

A more promising candidate for universal discounting is the near-harmonic, or

quadratic discount, where we replace ci in Eq. 1 by 1/i2 and modifying C
accordingly. This has some interesting properties, in particular the agent needs to

look forward into the future in a way that is proportional to its current age. This is

appealing since it seems that humans of age k years usually do not plan their lives

for more than, perhaps, the next k years. More importantly, it allows us to avoid the

problem of having to choose a global time scale or effective horizon (Hutter 2005).

Although harmonic discounting has a number of attractive properties (Hutter

2006a), an even simpler and more general solution is possible. If we look at the

value function in Eq. 1, we see that discounting plays two roles. Firstly, it

normalises rewards received so that their sum is always finite. Secondly, it weights

the reward at different points in the future which in effect defines a temporal

preference. A direct way to solve both of these problems, without needing an

external parameter, is to simply require that the total reward returned by the

environment can never exceed 1. For such a reward summable environment l, it

follows that the expected value of the sum of rewards is also finite and thus

discounting is no longer required,

Vp
l :¼ E

X

1

i¼1

ri

 !

� 1: ð2Þ

One way of viewing this is that the rewards returned by the environment now

have the temporal preference already factored in. The cost is that this is an

additional condition that we place on the space of environments. Previously we

required that each reward signal was in a subset of ½0; 1� \Q; now we have the

additional constraint that the reward sum is always bounded (see Subsection
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‘‘Response to Common Criticisms‘‘ for further discussion about why this constraint

is reasonable).

Space of Environments

Intelligence is not simply the ability to perform well at a narrowly defined task; it is

much broader. An intelligent agent is able to adapt and learn to deal with many

different situations, kinds of problems and types of environments. In our informal

definition this was described as the agent’s general ability to perform well in a

‘‘wide range of environments.’’ This flexibility is a defining characteristic and one

of the most important differences between humans and many current AI systems:

while Gary Kasparov would still be a formidable player if we were to change the

rules of chess, IBM’s Deep Blue chess super computer would be rendered useless

without significant human intervention.

As our goal is to produce a definition of intelligence that is as broad and

encompassing as possible, the space of environments used in our definition should

be as large as possible. As the environment is a probability measure with a certain

structure, an obvious possibility would be to consider the space of all probability

measures of this form. Unfortunately, this extremely broad class of environments

causes serious problems. As the space of all probability measures is uncountably

infinite, some environments cannot be described in a finite way and so are

incomputable. This would make it impossible, by definition, to test an agent in such

an environment using a computer. Further, most environments would be infinitely

complex and have little structure for the agent to learn from.

The solution then, is to require the environmental probability measures to be

computable. Not only is this condition necessary if we are to have an effective

measure of intelligence, it is also not as restrictive as it might first appear. There are

still an infinite number of environments with no upper bound on their maximal

complexity. Also, it is only the measure that describes the environment that is

computable, and so the way in which the environment responds does not have to be

deterministic. For example, although a typical sequence of 1’s and 0’s generated at

random by flipping a coin is not computable, the probability measure that describes

this distribution is computable and thus it is included in our space of possible

environments. Indeed there is currently no evidence that the physical universe

cannot be simulated by a Turing machine in the above sense (for further discussion

of this point see Subsection ‘‘Response to Common Criticisms’’). This appears to be

the largest reasonable space of environments.

A Formal Definition of Machine Intelligence

In order to define an overall measure of performance, we need to find a way to

combine an agent’s performance in many different environments into a single

overall measure. As there are an infinite number of environments, we cannot simply
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take a uniform distribution over them. Mathematically, we must weight some

environments higher than others. But how?

Consider the agent’s perspective on this situation: there exists a probability

measure that describes the true environment, however this measure is not known to

the agent. The only information the agent has are some past observations of the

environment. From these, the agent can construct a list of probability measures that

are consistent with the observations. We call these potential explanations of the true

environment, hypotheses. As the number of observations increases, the set of

hypotheses shrinks and hopefully the remaining hypotheses become increasingly

accurate at modelling the true environment.

The problem is that in any given situation there will be a large number of

hypotheses that are consistent with the current set of observations. Thus, if the agent

is going to predict which hypotheses are the most likely to be correct, it must resort

to something other than just the observational information that it has. This is a

frequently occurring problem in inductive inference for which the most common

approach is to invoke the principle of Occam’s razor:

Given multiple hypotheses that are consistent with the data, the simplest
should be preferred.

This is generally considered the rational and intelligent thing to do (Wallace

2005), indeed IQ tests often implicitly test an individual’s ability to use Occam’s

razor, as pointed out in Subsection ‘‘Human Intelligence Tests‘‘.

3.3 Example Consider the following type of question which commonly

appears in intelligence tests. There is a sequence such as 2, 4, 6, 8, and the test

subject needs to predict the next number. Of course the pattern is immediately

clear: the numbers are increasing by 2 each time, or more mathematically, the

kth item is given by 2k. An intelligent person would easily identify this pattern

and predict the next digit to be 10. However, the polynomial 2k4 –20k3 + 70k2 –

98k + 48 is also consistent with the data, in which case the next number in the

sequence would be 58. Why then, even if we are aware of the larger

polynomial, do we consider the first answer to be the most likely one? It is

because we apply, perhaps unconsciously, the principle of Occam’s razor. The

fact that intelligence tests define this as the ‘‘correct’’ answer, shows us that

using Occam’s razor is considered the intelligent thing to do. Thus, although we

do not usually mention Occam’s razor when defining intelligence, the ability to

effectively use it is an important facet of intelligent behaviour.

In some cases we may even consider the correct use of Occam’s razor to be a

more important demonstration of intelligence than achieving a successful outcome.

Consider, for example, the following game:

3.4 Example A questioner lays twenty $10 notes out on a table before you and

then points to the first one and asks ‘‘Yes or No?’’. If you answer ‘‘Yes’’ he hands

you the money. If you answer ‘‘No’’ he takes it from the table and puts it in his

pocket. He then points to the next $10 note on the table and asks the same question.

Although you, as an intelligent agent, might experiment with answering both ‘‘Yes’’
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and ‘‘No’’ a few times, by the 13th round you would have decided that the best

choice seems to be ‘‘Yes’’ each time. However what you do not know is that if you

answer ‘‘Yes’’ in the 13th round then the questioner will pull out a gun and shoot

you! Thus, although answering ‘‘Yes’’ in the 13th round is the most intelligent

choice, given what you know, it is not the most successful one. An exceptionally

dim individual may have failed to notice the obvious relationship between answers

and getting the money, and thus might answer ‘‘No’’ in the 13th round, thereby

saving his life due to what could truly be called ‘‘dumb luck’’.

What is important then, is not that an intelligent agent succeeds in any given

situation, but rather that it takes actions that we would expect to be the most likely

ones to lead to success. Given adequate experience this might be clear, however

often experience is not sufficient and one must fall back on good prior assumptions

about the world, such as Occam’s razor. It is important then that we test the agents

in such a way that they are, at least on average, rewarded for correctly applying

Occam’s razor, even if in some cases this leads to failure.

There is another subtlety that needs to be pointed out. Often intelligence is

thought of as the ability to deal with complexity. Or in the words of the psychologist

Gottfredson, ‘‘… g is the ability to deal with cognitive complexity—in particular,

with complex information processing’’(Gottfredson 1997). It is tempting then to

equate the difficultly of an environment with its complexity. Unfortunately, things

are not so straightforward. Consider the following environment:

3.5 Example Imagine a very complex environment with a rich set of relationships

between the agent’s actions and observations. The measure that describes this will

have a high complexity. However, also imagine that the reward signal is always

maximal no matter what the agent does. Thus, although this is a very complex

environment in which the agent is unlikely to be able predict what it will observe

next, it is also an easy environment in the sense that all policies are optimal, even

very simple ones that do nothing at all. The environment contains a lot of structure

that is irrelevant to the goal that the agent is trying to achieve.

From this perspective, a problem is thought of as being difficult if the simplest

good solution to the problem is complex. Easy problems on the other hand are those

that have simple solutions. This is a very natural way to think about the difficulty of

problems, or in our terminology, environments.

Fortunately, this distinction does not affect our use of Occam’s razor. When

we talk about an hypothesis, what we mean is a potential model of the

environment from the agent’s perspective, not just a model that is sufficient with

respect to the agent’s goal. From the agent’s perspective, an incorrect hypothesis

that fails to model much of the environment may be optimal if the parts of the

environment that the hypothesis fails to model are not relevant to receiving

reward. However, when Occam’s razor is applied, we apply it with respect to the

complexity of the hypotheses, not the complexity of good solutions with respect

to an objective. Thus, to reward agents on average for correctly using Occam’s

razor, we must weight the environments according to their complexity, not their

difficulty.
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Our remaining problem now is to measure the complexity of environments. The

Kolmogorov complexity of a binary string x is defined as being the length of the

shortest program that computes x:

KðxÞ :¼ min
p
flðpÞ : UðpÞ ¼ xg;

where p is a binary string which we call a program, l(p) is the length of this string in

bits, and U is a prefix universal Turing machine U called the reference machine.

To gain an intuition for how this works, consider a binary string 0000…0 that

consists of a trillion 0’s. Although this string is very long, it clearly has a simple

structure and thus we would expect it to have a low complexity. Indeed this is the

case because we can write a very short program p that simply loops a trillion times

outputing a 0 each time. Similarity, other strings with simple patterns have a low

Kolmogorov complexity. On the other hand, if we consider a long irregular random

string 111010110000010 … then it is much more difficult to find a short program

that outputs this string. Indeed it is possible to prove that there are so many strings

of this form, relative to the number of short programs, that in general it is impossible

for long random strings to have short programs. In other words, they have high

Kolmogorov complexity.

An important property of K is that it is nearly independent of the choice of U: To

see why, consider what happens if we switch from U , in the above definition of K,

to some other universal Turing machine U0: Due to the universality property of U0;
there exists a program q that allows U0 to simulate U: Thus, if we give U0 both q and

p as inputs, it can simulate U running p and thereby compute UðpÞ: It follows then

that switching from U to U0 in our definition of K above incurs at most an additional

cost of l(q) bits in minimal program length. The constant l(q) is independent of

which string x we are measuring the complexity of, and for reasonable universal

Turing machines, this constant will be small. This invariance property makes K an

excellent universal complexity measure. For an extensive treatment of Kolmogorov

complexity see Li and Vitányi (1997) or Calude (2002).

In our current application we need to measure the complexity of the computable

measures that describe environments. It can be shown that this set can be

enumerated l1, l2, l3, … (see Theorem 4.3.1 in Li and Vitányi (1997)). Using a

simple encoding method we can express each index as a binary string, written hii. In

a sense this binary string is a description of an environment with respect to our

enumeration. This lets us define the complexity of an environment li to be

K(li) :¼ K(hii). Intuitively, if a short program can be used to describe the program

for an environment li, then this environment will have a low complexity.

This answers our problem of needing to be able to measure the complexity of

environments, but we are not done yet. In order to formalise Occam’s razor we need

to have a way to assign an a priori probability to environments in such a way that

complex environments are less likely, and simple environments more likely. If we

consider that each environment li is described by a minimal length program that is a

binary string, then the natural way to do this is to consider each additional bit of

program length to reduce the environment’s probability by one half, reflecting the

fact that each bit has two possible states. This gives us what is known as the
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algorithmic probability distribution over the space of environments, defined 2–K(l).

This distribution has powerful properties that essentially solve long-standing open

philosophical, statistical, and computational problems in the area of inductive

inference (Hutter 2007a). Futhermore, the distribution can be used to define powerful

universal learning agents that have provably optimal performance (Hutter 2005).

Bringing all these pieces together, we can now define our formal measure of

intelligence for arbitrary systems. Let E be the space of all computable reward

summable environmental measures with respect to the reference machine U , and let

K be the Kolmogorov complexity function. The expected performance of agent p
with respect to the universal distribution 2–K(l) over the space of all environments E
is given by,

� ðpÞ :¼
X

l2E

2�KðlÞVp
l :

We call this the universal intelligence of agent p.

Consider how this equation corresponds to our informal definition. We needed a

measure of an agent’s general ability to achieve goals in a wide range of environments.

Clearly present in the equation is the agent p, the environment l and, implicit in the

environment, a goal. The agent’s ‘‘ability to achieve’’ is represented by the value

function Vp
l. By a ‘‘wide range of environments’’ we have taken the space of all well

defined reward summable environments, where these environments have been

characterised as computable measures in the set E. Occam’s razor is given by the

term 2–K(l) which weights the agent’s performance in each environment inversely

proportional to its complexity. The definition is very general in terms of which sensors

or actuators the agent might have as all information exchanged between the agent and

the environment takes place over very general communication channels. Finally, the

formal definition places no limits on the internal workings of the agent. Thus, we can

apply the definition to any system that is able to receive and generate information with

view to achieving goals. The main drawback, however, is that the Kolmogorov

complexity function K is not computable and can only be approximated. This is an

important point that we will return to later.

Universal Intelligence of Various Agents

In order to gain some intuition for our definition of universal intelligence, in this

subsection we will consider a range of different agents and their relative degrees of

universal intelligence.

A Random Agent

The agent with the lowest intelligence, at least among those that are not actively

trying to perform badly, would be one that makes uniformly random actions. We

will call this prand: Although this is clearly a weak agent, we cannot simply

conclude that the value of Vprand

l will always be low as some environments will

generate high reward no matter what the agent does. Nevertheless, in general such
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an agent will not be very successful as it will fail to exploit any regularities in the

environment, no matter how simple they are. It follows then that the values of Vprand

l
will typically be low compared to other agents, and thus � ðprandÞ will be low.

Conversely, if � ðprandÞ is very low, then the equation for � implies that for simple

environments, and many complex environments, the value of Vprand

l must also be

relatively low. This kind of poor performance in general is what we would expect of

an unintelligent agent.

A Very Specialised Agent

From the equation for � ; we see that an agent could have very low universal

intelligence but still perform extremely well at a few very specific and complex

tasks. Consider, for example, IBM’s Deep Blue chess supercomputer, which we will

represent by pdblue: When lchess describes the game of chess, Vpdblue

lchess is very high.

However 2�KðlchessÞ is small, and for l 6¼ lchess the value function will be low as

pdblue only plays chess. Therefore, the value of � ðpdblueÞ will be very low.

Intuitively, this is because Deep Blue is too inflexible and narrow to have general

intelligence; a characteristic weakness of specialised artificial intelligence systems.

A General but Simple Agent

Imagine an agent that performs very basic learning by building up a table of

observation and action pairs and keeping statistics on the rewards that follow. Each

time an observation that has been seen before occurs, the agent takes the action with

highest estimated expected reward in the next cycle with 90% probability, or a

random action with 10% probability. We will call this agent pbasic: It is

immediately clear that many environments, both complex and very simple, will

have at least some structure that such an agent would take advantage of. Thus, for

almost all l we will have Vpbasic

l [ Vprand

l and so � ðpbasicÞ[ � ðprandÞ: Intuitively,

this is what we would expect as pbasic; while very simplistic, is surely more

intelligent than prand:
Similarly, as pdblue will fail to take advantage of even trivial regularities in some

of the most basic environments, � ðpbasicÞ[ � ðpdblueÞ: This is reasonable as our

aim is to measure a machine’s level of general intelligence. Thus an agent that can

take advantage of basic regularities in a wide range of environments should rate

more highly than a specialised machine that fails outside of a very limited domain.

A Simple Agent with More History

The first order structure of pbasic; while very general, will miss many simple

exploitable regularities. Consider the following environment lalt. Let

R ¼ ½0; 1� \Q; A ¼ fup; downg and O ¼ feg; where e is the empty string. In

cycle k the environment generates a reward of 2–k each time the agent’s action is
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different to its previous action. Otherwise the reward is 0. We can define this

environment formally,

laltðokrkjo1. . .ak�1Þ :¼
1 if ak�1 6¼ ak�2 ^ rk ¼ 2�k;
1 if ak�1 ¼ ak�2 ^ rk ¼ 0;
0 otherwise:

8

<

:

Clearly the optimal strategy for an agent is simply to alternate between the

actions up and down: Even though this is very simple, this strategy requires the

agent to correlate its current action with its previous action, something that pbasic

cannot do.

A natural extension of pbasic is to use a longer history of actions, observations

and rewards in its internal table. Let p2back be the agent that builds a table of

statistics for the expected reward conditioned on the last two actions, rewards and

observations. It is immediately clear that p2back will exploit the structure of the lalt

environment. Furthermore, by definition p2back is a generalisation of pbasic and thus

it will adapt to any regularity that pbasic can adapt to. It follows then that in general

Vp2back

l [ Vpbasic

l and so � ðp2backÞ[� ðpbasicÞ; as we would intuitively expect. In

the same way we can extend the history that the agent utilises back further and

produce even more powerful agents that are able to adapt to more lengthy temporal

structures and which will have still higher machine intelligence.

A Simple Forward Looking Agent

In some environments simply trying to maximise the next reward is not sufficient,

the agent must also take into account the rewards that are likely to follow further

into the future, that is, the agent must plan ahead. Consider the following

environment lslide: Let R ¼ ½0; 1� \Q; A ¼ frest; climbg and O ¼ feg: Intu-

itively, there is a slide such as you would see in a playground. The agent can rest at

the bottom of the slide, for which it receives a reward of 2–k–4. The alternative is to

climb the slide, which gives a reward of 0. Once at the top of the slide the agent

always slides back down no matter what action is taken; this gives a reward of 2–k.

This is illustrated in Fig. 2. The environment is completely deterministic.

Because climbing receives a reward of 0, while resting receives a reward of 2–k–4,

a very shortsighted agent that only tries to maximise the reward in the next cycle

Fig. 2 A simple game in which
the agent climbs a playground
slide and slides back down
again. A shortsighted agent will
always just rest at the bottom of
the slide
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will choose to stay at the bottom of the slide. Both pbasic and p2back have this

problem; though they also take random actions 10% probability and so will

occasionally climb the slide by chance. Clearly this is not optimal in terms of total

reward over time.

We can extend the p2back agent again by defining a new agent p2forward that with

90% probability chooses its next action to maximise not just the next reward, but

r̂kþ1 þ r̂kþ2; where r̂kþ1 and r̂kþ2 are the agent’s estimates of the next two rewards.

As the estimate of r̂kþ2 will potentially depend not only on ak, but also on ak+1, the

agent assumes that ak+1 is chosen to simply maximise the estimated reward r̂kþ2:
The p2back agent can see that by missing out on the resting reward of 2–k–4 for one

cycle and climbing, a greater reward of 2–k will be had when sliding back down the

slide in the following cycle.

By definition p2forward generalises p2back in a way that more closely reflects the value

function V and thus in general Vp2forward

l [ Vp2back

l : It then follows that

� ðp2forwardÞ[� ðp2backÞ as we would intuitively expect for this more powerful agent.

In a similar way agents of increasing complexity and adaptability can be defined

which will have still greater intelligence. However with more complex agents it is

usually difficult to theoretically establish whether one agent has more or less

universal intelligence than another. Nevertheless, in the simple examples above we

saw that the more flexible and powerful an agent was, the higher its universal

intelligence.

A Very Intelligent Agent

A very smart agent would perform well in simple environments, and reasonably

well compared to most other agents in more complex environments. From the

equation for universal intelligence this would clearly produce a very high value for

� : Conversely, if � was very high then the equation for � implies that the agent

must perform well in most simple environments and reasonably well in many

complex ones also.

A Super Intelligent Agent

Consider what would be required to maximise the value of � . By definition, a

‘‘perfect’’ agent would always pick the action which had greatest expected future

reward. To do this, for every environment l [ E the agent must take into account

how likely it is that it is facing l given the interaction history so far, and the prior

probability of l, that is, 2–K(l). It would then consider all possible future interactions

that might occur, and how likely they are, and from this select the action in the

current cycle that maximises the expected future reward.

This perfect theoretical agent is known as AIXI. It has been precisely defined

and studied at length in Hutter (2005) (see Hutter 2005 for a shorter exposition).

The connection between universal intelligence and AIXI is not coincidental:

� was originally derived from the so called ‘‘intelligence order relation’’ (see
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Definition 5.14 in Hutter (2005)), which in turn was constructed to reflect the

equations for AIXI. As such we can define the upper bound on universal intelligence

to be,

�� :¼ max
p
� ðpÞ ¼ � pAIXI

� �

:

AIXI is not computable due to the incomputability of K, and even if K were

computable, accurately computing the expectations to maximise future expected

rewards would be practically infeasible. Nevertheless, AIXI is interesting from a

theoretical perspective as it defines, in an elegant way, what might be considered to

be the perfect theoretical artificial intelligence. Indeed many strong optimality

properties have been proven for AIXI. For example, it has been proven that AIXI

converges to optimal performance in any environment where this is at all possible

for a general agent (see Theorem 5.34 of Hutter (2005)). This optimality result

includes ergodic Markov decision processes, prediction problems, classification

problems, bandit problems and many others (Legg and Hutter 2004a, b). These

mathematical results prove that agents with very high universal intelligence are

extremely powerful and general.

A Human

For extremely simple environments, a human should be able to identify their simple

structure and exploit this to maximise reward. However, for more complex

environments it is hard to know how well a human would perform. Much of the

human brain is set up to process information from the human sense organs, and thus

is quite specialised. Perhaps the amount of universal machine intelligence that a

human has is not that high compared to some machine learning algorithms? It is

difficult to know without experimental results.

Properties of Universal Intelligence

What we have presented is a definition of machine intelligence, it is not a practical

test of machine intelligence, indeed the value of � is not computable due to the use

of Kolmogorov complexity. The difference between the definition of something and

practical tests is important to keep in mind. In some cases tests are based on a

definition or theory of intelligence. In other cases, as we will see in the next section,

what is presented is some where between a fully encompassing definition, and a

realistically practical test. Thus the distinction between tests and definitions is not

always clear.

Here our goal has simply been to define the concept of machine intelligence in

the most general, powerful and elegant way. In future research we will explore

ways to approximate this ideal with a practical test. Naturally the process of

estimation will introduce weaknesses and flaws that the original definition did not

have. For example, while the definition considers the general performance of an
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agent over all computable environments with bounded reward sum, in practice a

test could only ever estimate this by testing the agent on a finite sample of

environments.

A similar situation arises when defining randomness for sequences. In

essence, we consider an infinite sequence to be Martin-Löf random when it has

no significant regularity. This lack of regularity is equivalent to saying that the

sequence cannot be compressed in any significant way, and thus we can

characterise randomness using Kolmogorov complexity. Naturally, we cannot

test a sequence for every possible regularity, which is equivalent to saying that

we cannot compute its Kolmogorov complexity. We can however test sequences

for randomness by checking them for a large number of statistical regularities,

indeed this is what is done in practice. Of course, just because a sequence

passes all our tests does not mean that it must be random. There could always

be some deeper structure to the sequence that our tests were not able to detect.

All we can say is that the sequence seems random with respect to our ability to

detect patterns.

Some might argue that the definition of something should not just capture the

concept, it should also be practical. For example, the definition of intelligence

should be such that intelligence can be easily measured. The above example,

however, illustrates why this approach is sometimes flawed: if we were to

define randomness with respect to a particular set of tests, then one could

specifically construct a sequence that followed a regular pattern in such a way

that it passed all of our randomness tests. This would completely undermine our

definition of randomness. A better approach is to define the concept in the

strongest and cleanest way possible, and then to accept that our ability to test

for this ideal has limitations. In other words, our task is to find better and more

effective tests, not to redefine what it is that we are testing for. This is the

attitude we have taken here, though in this paper our focus is almost entirely on

the first part, that is, establishing a strong theoretical definition of machine

intelligence.

Although some of the criteria by which we judge practical tests of intelligence

are not relevant to a pure definition of intelligence, many of the desirable properties

are similar. Thus to understand the strengths and weaknesses of our definition,

consider again the desirable properties for a test of intelligence from Subsection

‘‘Desirable Properties of an Intelligence Test’’.

Valid

The most important property of any proposed formal definition of intelligence is that

it does indeed describe something that can reasonably be called ‘‘intelligence’’.

Essentially, this is the core argument of this report so far: we have taken a

mainstream informal definition and step by step formalised it. Thus, so long as our

informal definition is reasonable, and our formalisation argument holds, the result

can reasonably be described as a formal definition of intelligence.
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Meaningful

As we saw in the previous section, universal intelligence orders the power and

adaptability of simple agents in a natural way. Furthermore, a high value of �
implies that the agent performs well in most simple and moderately complex

environments. Such an agent would be an impressively powerful and flexible piece

of technology, with many potential uses. Clearly then, universal intelligence is

inherently meaningful, independent of whether or not one considers it to be a

measure of intelligence.

Informative

� ðpÞ is a real value that is independent of the performance of other possible

agents. Thus we can make direct comparisons between different agents on a

single scale. This property is important if we want to use this measure to study

new algorithms.

Wide range

As we saw in the previous section, universal intelligence is able to order the

intelligence of even the most basic agents such as prand; pbasic; p2back and p2forward:
At the other extreme we have the theoretical super intelligent agent AIXI which has

maximal � value. Thus, universal intelligence spans trivial learning algorithms right

up to super intelligent agents. This seems to be the widest range possible for a

measure of machine intelligence.

General

As the agent’s performance on all well defined environments is factored into its �
value, a broader performance metric is difficult to imagine. Indeed, a well defined

measure of intelligence that is broader than universal intelligence would seem to

contradict the Church–Turing thesis as it would imply that we could effectively

measure an agent’s performance for some well defined problem that was outside of

the space of computable measures.

Unbiased

In a standard intelligence test, an individual’s performance is judged on specific

kinds of problems, and then these scores are combined to produce an overall result.

Thus a test’s outcome is a product of which types of problems it uses and how each

score is weighted to produce the end result. Unfortunately, how we do this is a

product of many things, including our culture, values and the theoretical perspective

Universal Intelligence 421

123



on intelligence that we have taken. For example, while one intelligence test could

contain many logical puzzle problems, another might be more linguistic in

emphasis, while another stresses visual reasoning. Modern intelligence tests like the

Stanford-Binet try to minimise this problem by covering the most important areas of

human reasoning both verbally and non-verbally. This helps but it is still very

anthropocentric as we are still only testing those abilities that we think are important

for human intelligence.

For an intelligence measure for arbitrary machines we have to base the test

on something more general and principled: Universal Turing computation. As

all proposed models of computation have thus far been equivalent in their

expressive power, the concept of computation appears to be a fundamental

theoretical property rather than the product of any specific culture. Thus, by

weighting different environments depending on their Kolmogorov complexity,

and considering the space of all computable environments, we have avoided

having to define intelligence with respect to any particular culture, species etc.

Unfortunately, we have not entirely removed the problem. The environmental

distribution 2–K(l) that we have used is invariant, up to a multiplicative constant, to

changes in the reference machine U: Although this affords us some protection, the

relative intelligence of agents can change if we change our reference machine. One

approach to this problem is to limit the complexity of the reference machine, for

example by limiting its state-symbol complexity. We expect that for highly

intelligent machines that can deal with a wide range of environments of varying

complexity, the effect of changing from one simple reference machine to another

will be minor. For simple agents, such as those considered in Subsection ‘‘Universal

Intelligence of Various Agents‘‘, the ordering of their machine intelligence was also

not particularly sensitive to natural choices of reference machine. Recently attempts

have been made to make algorithmic probability completely unique and objective

by identifying which universal Turing machines are, in some sense, the most simple

(Müller 2006). Unfortunately however, an elegant solution to this problem has not

yet been found.

Fundamental

Universal intelligence is based on computation, information and complexity. These

are fundamental concepts that seem unlikely to change in the future with changes in

technology. Indeed, if they were to change, the implications would drastically affect

the entire field of computer science, not just this work.

Formal

Universal intelligence is expressed as a mathematical equation and thus there is

little space for ambiguity in the definition.
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Objective

Universal intelligence does not depend on any subjective criteria.

Universal

Universal intelligence is in no way anthropocentric.

Practical

In its current form the definition cannot be directly turned into a test of intelligence

as the Kolmogorov complexity function is not computable. Thus in its pure form we

can only use it to analyse the nature of intelligence and to theoretically examine the

intelligence of mathematically defined learning algorithms.

In order to use universal intelligence more generally we will need to construct a

workable test that approximates an agent’s � value. The equation for � suggests

how we might approach this problem. Essentially, an agent’s universal intelligence

is a weighted sum of its performance over the space of all environments. Thus, we

could randomly generate programs that describe environmental probability

measures and then test the agent’s performance against each of these environments.

After sampling sufficiently many environments the agent’s approximate universal

intelligence would be computed by weighting its score in each environment

according to the complexity of the environment as given by the length of its

program. Another possibility might to be try to approximate the sum by

enumerating environmental programs from short to long, as the short ones will

contribute by far the greatest to the sum. However in this case we will need to be

able to reset the state of the agent so that it cannot cheat by learning our

environmental enumeration method. In any case, various practical challenges will

need to be addressed before universal intelligence can be used to construct an

effective intelligence test. As this would be a significant project in its own right, in

this paper we focus on the theoretical issues surrounding the universal intelligence.

Definitions and Tests of Machine Intelligence

In this section we will survey both definitions and tests of machine intelligence. We

begin with a sample of informal definitions of machine intelligence. A compre-

hensive survey of informal definitions is practically impossible as they often appear

buried deep in articles or books. Nevertheless we have attempted to collect as many

as possible and present a sample of some of the more common perspectives that

have been taken.

We then survey formal definitions and tests of machine intelligence. As we will

see, it is not always clear whether a proposal is a test, a formal definition, or

something in between. In some cases the authors claim it is one or the other, and in
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some cases both. More accurately there is a spectrum of possibilities and thus we

will not attempt to artificially divide them into either tests or formal definitions.

To the best of our knowledge, this subsection is the only general survey of tests

and definitions of machine intelligence. This is remarkable given that the definition

and measurement of intelligence in machines are two of the most fundamental

questions in artificial intelligence. Currently most text books say very little about

intelligence, other than mentioning the Turing test. We hope that our short survey

will help to raise awareness of the many other proposals.

Informal Definitions of Machine Intelligence

The following sample of informal definitions of machine intelligence capture a

range of perspectives. For a more comprehensive list of definitions, visit our full

collection online. We begin with five definitions that have clear connections to our

informal definition:

‘‘… the mental ability to sustain successful life.’’ K. Warwick quoted in

Asohan (2003)

‘‘… doing well at a broad range of tasks is an empirical definition of

‘intelligence’ ’’ H. Masum (Masum et al. 2002)

‘‘Intelligence is the computational part of the ability to achieve goals in the

world. Varying kinds and degrees of intelligence occur in people, many

animals and some machines.’’ J. McCarthy (2004)

‘‘Any system … that generates adaptive behaviour to meet goals in a range of

environments can be said to be intelligent.’’ D. Fogel (1995)

‘‘… the ability of a system to act appropriately in an uncertain environment,

where appropriate action is that which increases the probability of success, and

success is the achievement of behavioral subgoals that support the system’s

ultimate goal.’’ J. S. Albus (1991)

The position taken by Albus is especially similar to ours. Although the quote

above does not explicitly mention the need to be able to perform well in a wide

range of environments, at a later point in the same paper he mentions the need to be

able to succeed in a ‘‘large variety of circumstances’’.

‘‘Intelligent systems are expected to work, and work well, in many different

environments. Their property of intelligence allows them to maximize the

probability of success even if full knowledge of the situation is not available.

Functioning of intelligent systems cannot be considered separately from the

environment and the concrete situation including the goal.’’ R. R. Gudwin

(2000)

While this definition is consistent with the position we have taken, when trying

to actually test the intelligence of an agent Gudwin does not believe that a ‘‘black

box’’ behaviour based approach is sufficient, rather his approach is to look at the
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‘‘… architectural details of structures, organizations, processes and algorithms used

in the construction of the intelligent systems,’’ (Gudwin 2000). Our perspective is

simply to not care whether an agent looks intelligent on the inside. If it is able to

perform well in a wide range of environments, that is all that matters. For more

discussion on this point see our response to Block’s and Searle’s arguments in

Subsection ‘‘Response to Common Criticisms‘‘.

‘‘We define two perspectives on artificial system intelligence: (1) native

intelligence, expressed in the specified complexity inherent in the information

content of the system, and (2) performance intelligence, expressed in the

successful (i.e., goal-achieving) performance of the system in a complicated

environment.’’ J. A. Horst (2002)

Here we see two distinct notions of intelligence, a performance based one and an

information content one. This is similar to the distinction between fluid intelligence

and crystallized intelligence made by the psychologist Cattell (see Subsection

‘‘Theories of Human Intelligence’’). The performance notion of intelligence is

similar to our definition with the expectation that performance is measured in a

complex environment rather than across a wide range of environments. This

perspective appears in some other definitions also,

‘‘… the ability to solve hard problems.’’ M. Minsky (1985)

‘‘Achieving complex goals in complex environments’’ B. Goertzel (2006)

Interestingly, Goertzel claims that an AI system he is developing should be able

to, with sufficient resources, perform arbitrarily well with respect to the intelligence

order relation, that is, the relation on which universal intelligence was originally

based (Looks et al. 2004). Presumably then he does not consider his definition to be

significantly incompatible with ours.

Some definitions emphasise not just the ability to perform well, but also the need

for efficiency:

‘‘[An intelligent agent does what] is appropriate for its circumstances and its

goal, it is flexible to changing environments and changing goals, it learns from

experience, and it makes appropriate choices given perceptual limitations and

finite computation.’’ D. Poole (Poole et al. 1998)

‘‘… in any real situation behavior appropriate to the ends of the system and

adaptive to the demands of the environment can occur, within some limits of

speed and complexity.’’ Newell and Simon (1976)

‘‘Intelligence is the ability to use optimally limited resources – including time

– to achieve goals.’’ Kurzweil (2000)

‘‘Intelligence is the ability for an information processing agent to adapt to its

environment with insufficient knowledge and resources.’’ Wang (1995)

We consider the addition of resource limitations to the definition of intelligence

to be either superfluous, or wrong. In the first case, if limited computational

resources are a fundamental and unavoidable part of reality, which certainly seems
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to be the case, then their addition to the definition of intelligence is unnecessary.

Perhaps the first three definitions above fall into this category.

On the other hand, if limited resources are not a fundamental restriction, for

example a new model of computation was discovered that was vastly more

powerful than the current model, then it would be odd to claim that the

unbelievably powerful machines that would then result were not intelligent.

Normally we do not judge the intelligence of something relative to the resources

it uses. For example, if a rat had human level learning and problem solving

abilities, we would not think of the rat as being more intelligent than a human

due to the fact that its brain was much smaller.

While we do not consider efficiency to be a part of the definition of intelligence,

this is not to say that considering the efficiency of agents is unimportant. Indeed, a

key goal of artificial intelligence is to find algorithms which have the greatest

efficiency of intelligence, that is, which achieve the most intelligence per unit of

computational resources consumed.

It should also be pointed out that although universal intelligence does not test the

efficiency of an agent in terms of the computational resources that it uses, it does

however test how quickly the agent learns from past data. In a sense, an agent which

learns very quickly could be thought of as being very ‘‘data efficient’’.

Formal Definitions and Tests of Machine Intelligence

Turing Test and Derivatives

The classic approach to determining whether a machine is intelligent is the so called

Turing test (Turing 1950) which has been extensively debated over the last 50 years

(Saygin et al. 2000). Turing realised how difficult it would be to directly define

intelligence and thus attempted to side step the issue by setting up his now famous

imitation game: if human judges can not effectively discriminate between a

computer and a human through teletyped conversation then we must conclude that

the computer is intelligent.

Though simple and clever, the test has attracted much criticism. Block and Searle

argue that passing the test is not sufficient to establish intelligence (Block 1981;

Searle 1980; Eisner 1991). Essentially they both argue that a machine could appear

to be intelligent without having any ‘‘real intelligence’’, perhaps by using a very

large table of answers to questions. While such a machine might be impossible in

practice due to the vast size of the table required, it is not logically impossible. In

which case an unintelligent machine could, at least in theory, consistently pass the

Turing test. Some consider this to bring the validity of the test into question. In

response to these challenges, even more demanding versions of the Turing test have

been proposed such as the total Turing test (Harnad 1989), the truly total Turing test

(Schweizer 1998) and the inverted Turing test (Watt 1996). Dowe argues that the

Turing test should be extended by ensuring that the agent has a compressed

representation of the domain area, thus ruling out look-up table counter arguments

(Dowe and Hajek 1998). Of course these attacks on the Turing test can be applied to

426 S. Legg, M. Hutter

123



any test of intelligence that considers only a system’s external behaviour, that is,

most intelligence tests.

A more common criticism is that passing the Turing test is not necessary to

establish intelligence. Usually this argument is based on the fact that the test

requires the machine to have a highly detailed model of human knowledge and

patterns of thought, making it a test of humanness rather than intelligence (French

1990; Ford and Hayes 1998). Indeed even small things like pretending to be unable
to perform complex arithmetic quickly and faking human typing errors become

important, something which clearly goes against the purpose of the test.

The Turing test has other problems as well. Current AI systems are a long way

from being able to pass an unrestricted Turing test. From a practical point of view

this means that the full Turing test is unable to offer much guidance to our work.

Indeed, even though the Turing test is the most famous test of machine intelligence,

almost no current research in artificial intelligence is specifically directed toward

being able to pass it. Unfortunately, simply restricting the domain of conversation in

the Turing test to make the test easier, as is done in the Loebner competition

(Loebner 1990), is not sufficient. With restricted conversation possibilities the most

successful Loebner entrants are even more focused on faking human fallibility,

rather than anything resembling intelligence (Hutchens 1996). Finally, the Turing

test returns different results depending on who the human judges are. Its

unreliability has in some cases lead to clearly unintelligent machines being

classified as human, and at least one instance of a human actually failing a Turing

test. When queried about the latter, one of the judges explained that ‘‘no human

being would have that amount of knowledge about Shakespeare’’(Shieber 1994).

Compression Tests

Mahoney has proposed a particularly simple solution to the binary pass or fail

problem with the Turing test: replace the Turing test with a text compression test

(Mahoney 1999). In essence this is somewhat similar to a ‘‘Cloze test’’ where an

individual’s comprehension and knowledge in a domain is estimated by having

them guess missing words from a passage of text.

While simple text compression can be performed with symbol frequencies, the

resulting compression is relatively poor. By using more complex models that

capture higher level features such as aspects of grammar, the best compressors are

able to compress text to about 1.5 bits per character for English. However humans,

which can also make use of general world knowledge, the logical structure of the

argument etc., are able to reduce this down to about 1 bit per character. Thus the

compression statistic provides an easily computed measure of how complete a

machine’s models of language, reasoning and domain knowledge are, relative to a

human.

To see the connection to the Turing test, consider a compression test based on a

very large corpus of dialogue. If a compressor could perform extremely well on

such a test, this is mathematically equivalent to being able to determine which

sentences are probable at a give point in a dialogue, and which are not (for the
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equivalence of compression and prediction see Bell et al. 1990). Thus, as failing a

Turing test occurs when a machine (or person!) generates a sentence which would

be improbable for a human, extremely good performance on dialogue compression

implies the ability to pass a Turing test.

A recent development in this area is the Hutter Prize (Hutter 2006b). In this test

the corpus is a 100 MB extract from Wikipedia. The idea is that this should

represent a reasonable sample of world knowledge and thus any compressor that can

perform very well on this test must have have a good model of not just English, but

also world knowledge in general.

One criticism of compression tests is that it is not clear whether a powerful

compressor would easily translate into a general purpose artificial intelligence.

Also, while a young child has a significant amount of elementary knowledge

about how to interact with the world, this knowledge would be of little use when

trying to compress an encyclopedia full of abstract ‘‘adult knowledge’’ about the

world.

Linguistic Complexity

A more linguistic approach is taken by the HAL project at the company Artificial

Intelligence NV (Treister-Goren et al. 2001). They propose to measure a system’s

level of conversational ability by using techniques developed to measure the

linguistic ability of children. These methods examine things such as vocabulary

size, length of utterances, response types, syntactic complexity and so on. This

would allow systems to be ‘‘… assigned an age or a maturity level beside their

binary Turing test assessment of ‘intelligent’ or ‘not intelligent’ ’’(Treister-Goren

et al. 2000). As they consider communication to be the basis of intelligence, and the

Turing test to be a valid test of machine intelligence, in their view the best way to

develop intelligence is to retrace the way in which human linguistic development

occurs. Although they do not explicitly refer to their linguistic measure as a test of

intelligence, because it measures progress towards what they consider to be a valid

intelligence test, it acts as one.

Multiple Cognitive Abilities

A broader developmental approach is being taken by IBM’s Joshua Blue project

(Alvarado et al. 2002). In this project they measure the performance of their system

by considering a broad range of linguistic, social, association and learning tests.

Their goal is to first pass what they call a ‘‘toddler Turing test’’, that is, to develop

an AI system that can pass as a young child in a similar set up to the Turing test.

Another company pursuing a similar developmental approach based on

measuring system performance through a broad range of cognitive tests is the

a2i2 project at Adaptive AI (Voss 2005). Rather than toddler level intelligence, their

current goal to is work toward a level of cognitive performance similar to that of a

small mammal. The idea being that even a small mammal has many of the key
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cognitive abilities required for human level intelligence working together in an

integrated way.

Competitive Games

The Turing ratio method of Masum et al. has more emphasis on tasks and games

rather than cognitive tests. Similar to our own definition, they propose that ‘‘…
doing well at a broad range of tasks is an empirical definition of ‘intelligence’’’

(Masum et al. 2002). To quantify this they seek to identify tasks that measure

important abilities, admit a series of strategies that are qualitatively different, and

are reproducible and relevant over an extended period of time. They suggest a

system of measuring performance through pairwise comparisons between AI

systems that is similar to that used to rate players in the international chess rating

system. The key difficulty however, which the authors acknowledge is an open

challenge, is to work out what these tasks should be, and to quantify just how broad,

important and relevant each is. In our view these are some of the most central

problems that must be solved when attempting to construct an intelligence test. Thus

we consider this approach to be incomplete in its current state.

Collection of Psychometric Tests

An approach called Psychometric AI tries to address the problem of what to test for

in a pragmatic way. In the view of Bringsjord and Schimanski, ‘‘Some agent is

intelligent if and only if it excels at all established, validated tests of [human]

intelligence.’’(Bringsjord and Schimanski 2003) They later broaden this to also

include ‘‘tests of artistic and literary creativity, mechanical ability, and so on.’’ With

this as their goal, their research is focused on building robots that can perform well

on standard psychometric tests designed for humans, such as the Wechsler adult

intelligence scale and Raven progressive matrices (see Subsection ‘‘Human

Intelligence Tests‘‘).

As effective as these tests are for humans, we believe that they are unlikely to be

adequate for measuring machine intelligence. For a start they are highly

anthropocentric. Another problem is that they embody basic assumptions about

the test subject that are likely to be violated by computers. For example, consider

the fundamental assumption that the test subject is not simply a collection of

specialised algorithms designed only for answering common IQ test questions.

While this is obviously true of a human, or even an ape, it may not be true of a

computer. The computer could be nothing more than a collection of specific

algorithms designed to identify patterns in shapes, predict number sequences, write

poems on a given subject or solve verbal analogy problems—all things that AI

researchers have worked on. Such a machine might be able to obtain a respectable

IQ score (Sanghi and Dowe 2003), even though outside of these specific test

problems it would be next to useless. If we try to correct for these limitations by

expanding beyond standard tests, as Bringsjord and Schimanski seem to suggest,
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this once again opens up the difficulty of exactly what, and what not, to test for.

Thus we consider Psychometric AI, at least as it is currently formulated, to only

partially address this central question.

C-Test

One perspective among psychologists who support the g-factor view of intelligence,

is that intelligence is ‘‘the ability to deal with complexity’’(Gottfredson 1997). Thus,

in a test of intelligence, the most difficult questions are the ones that are the most

complex because these will, by definition, require the most intelligence to solve. It

follows then that if we could formally define and measure the complexity of test

problems using complexity theory we could construct a formal test of intelligence.

The possibility of doing this was perhaps first suggested by Chaitin (1982). While

this path requires numerous difficulties to be dealt with, we believe that it is the

most natural and offers many advantages: it is formally motivated, precisely defined

and potentially could be used to measure the performance of both computers and

biological systems on the same scale without the problem of bias towards any

particular species or culture.

Essentially this is the approach that we have taken. Universal intelligence is

based our the universally optimal AIXI agent for active environments, which in turn

is based on Kolmogorov complexity and Solomonoff’s universal model of sequence

prediction. A relative of universal intelligence is the C-test of Hernández-Orallo

which was also inspired by Solomonoff induction and Kolmogorov complexity

(Hernández-Orallo 2000b; Hernández-Orallo and Minaya-Collado 1998). If we

gloss over some technicalities, the essential relationships look like this:

Universal agent Universal test

Passive environment Solomonoff induction C-test

Active environment AIXI Universal intelligence

The C-test consists of a number of sequence prediction and abduction problems

similar to those that appear in many standard IQ tests. The test has been successfully

applied to humans with intuitively reasonable results (Hernández-Orallo and

Minaya-Collado 1998; Hernández-Orallo 2000a). Similar to standard IQ tests, the

C-test always ensures that each question has an unambiguous answer in the sense

that there is always one hypothesis that is consistent with the observed pattern that

has significantly lower complexity than the alternatives. Other than making the test

easier to score, it has the added advantage of reducing the test’s sensitivity to

changes in the reference machine.

The key difference to sequence problems that appear in standard intelligence

tests is that the questions are based on a formally expressed measure of complexity.

To overcome the problem of Kolmogorov complexity not being computable, the

C-test instead uses Levin’s Kt complexity (Levin 1973). In order to retain the
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invariance property of Kolmogorov complexity, Levin complexity requires the

additional assumption that the universal Turing machines are able to simulate each

other in linear time. As far as we know, this is the only formal definition of

intelligence that has so far produced a usable test of intelligence.

To illustrate the C-test, below are some example problems taken from

(Hernández-Orallo and Minaya-Collado 1998). Beside each question is its

complexity, naturally more complex patterns are also more difficult:

Sequence prediction test

Complexity Sequence Answer

9 a, d, g, j, _ , … m

12 a, a, z, c, y, e, x, _ , … g

14 c, a, b, d, b, c, c, e, c, d, _ , … d

Sequence abduction test

Complexity Sequence Answer

8 a, _ , a, z, a, y, a, … a

10 a, x, _ , v, w, t, u, … y

13 a, y, w, _ , w, u, w, u, s, … y

Our main criticism of the C-test is that it is a static test limited to passive

environments. As we have argued earlier, we believe that a better approach is to use

dynamic intelligence tests where the agent must interact with an environment in

order to solve problems. As AIXI is a generalisation of Solomonoff induction from

passive to active environments, universal intelligence could be viewed as

generalising the C-test from passive to active environments.

Smith’s Test

Another complexity based formal definition of intelligence that appeared recently in

an unpublished report is due to W. D. Smith (2006). His approach has a number of

connections to our work, indeed Smith states that his work is largely a ‘‘…
rediscovery of recent work by Marcus Hutter’’. Perhaps this is over stating the

similarities because while there are some connections, there are also many

important differences.

The basic structure of Smith’s definition is that an agent faces a series of

problems that are generated by an algorithm. In each iteration the agent must try

to produce the correct response to the problem that it has been given. The

problem generator then responds with a score of how good the agent’s answer was.

If the agent so desires it can submit another answer to the same problem. At

some point the agent requests to the problem generator to move onto the next

problem and the score that the agent received for its last answer to the current
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problem is then added to its cumulative score. Each interaction cycle counts as one

time step and the agent’s intelligence is then its total cumulative score considered as

a function of time. In order to keep things feasible, the problems must all be in the

complexity class P, that is, decision problems which can be sloved by a

deterministic Turing machine in polynomial time.

We have three main criticisms of Smith’s definition. Firstly, while for practical

reasons it might make sense to restrict problems to be in P, we do not see why this

practical restriction should be a part of the very definition of intelligence. If some

breakthrough meant that agents could solve difficult problems in not just P but

sometimes in NP as well, then surely these new agents would be more intelligent?

We had similar objections to informal definitions of machine intelligence that

included efficiency requirements in Subsection ‘‘Informal Definitions of Machine

Intelligence’’.

Our second criticism is that the way intelligence is measured is essentially static,

that is, the environments are passive. As we have argued before, we believe that

dynamic testing in active environments is a better measure of a system’s

intelligence. To put this argument yet another way: succeeding in the real world

requires you to be more than an insightful spectator!

The final criticism is that while the definition is somewhat formally defined, still

it leaves open the important question of what exactly the tests should be. Smith

suggests that researchers should dream up tests and then contribute them to some

common pool of tests. As such, this is not a fully specified definition.

Comparison of Machine Intelligence Tests and Definitions

In order to compare the machine intelligence tests and definitions in the previous

Subsection, we return again to the desirable properties of a test of intelligence.

Each property is briefly defined followed by a summary comparison in Table 1.

Although we have attempted to be as fair as possible, some of the scores we give on

this table will be debatable. Nevertheless, we hope that it provides a rough overview

of the relative strengths and weaknesses of the proposals.

Valid

A test/measure of intelligence should be just that, it should capture intelligence and

not some related quantity or only a part of intelligence.

Informative

The result should be a scalar value, or perhaps a vector, depending on our view of

intelligence. We would like an absolute measure of intelligence so that comparisons

across many agents can easily be made.
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Wide Range

A test/definition should cover very low levels of intelligence right up to super

human intelligence.

General

Ideally we would like to have a very general test/definition that could be applied to

everything from a fly to a machine learning algorithm.

Dynamic

A test/definition should directly take into account the ability to learn and adapt over

time as this is an important aspect of intelligence.

Unbiased

A test/definition should not be biased towards any particular culture, species, etc.

Fundamental

We do not want a test/definition that needs to be changed from time to time due to

changing technology and knowledge.

Formal

The test/definition should be specified with the highest degree of precision possible,

allowing no room for misinterpretation. Ideally, it should be described using formal

mathematics.

Objective

The test/definition should not appeal to subjective assessments such as the opinions

of human judges.

Fully Defined

Has the test/definition been fully defined, or are parts still unspecified?
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Universal

Is the test/definition universal, or is it anthropocentric?

Practical

A test should be able to be performed quickly and automatically, while from a

definition it should be possible to create an efficient test.

Test vs. Def

Finally we note whether the proposal is more of a test, more of a definition, or

something in between.

Discussion and Conclusions

Constructing a Test of Universal Intelligence

The central challenge for future work on universal intelligence is to convert the

theoretical definition of machine intelligence presented in this paper into a workable

test. The basic structure of such a test is already apparent from the equation for � :
The test would work by evaluating the performance of an agent on a large sample of

simulated environments, and then combining the agent’s performance in each

environment into an overall intelligence value. This would be done by weighting the

agent’s performance in each environment according to the environment’s

complexity.

The key theoretical challenge that will need to be deal with is to find a suitable

replacement for the incomputable Kolmogorov complexity function. One solution

could be to use Levin’s Kt complexity (Levin 1973), another might be to use

Schmidhuber’s Speed prior (Schmidhuber 2002). Both of these consider the

complexity of an algorithm to be determined by both its minimal description length

and running time. This forces the complexity measures to be computable. Taking

computation time into account also makes reasonable intuitive sense because we

would not usually consider a very short algorithm that takes an enormous amount of

time to run to be a particularly simple one. The fact that such an approach can be

made to work is evidenced by the C-test.

Response to Common Criticisms

What we have attempted to do is very ambitious and so, not surprisingly, the

reactions we get can be interesting. Having presented the essence of this work as

posters at several conferences, and also as a 30 minute talk, we now have some idea
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of what the typical responses are. Most people start out skeptical but end up

generally enthusiastic, even if they still have a few reservations. This positive

feedback has helped motivate us to continue this direction of research. In this

subsection, however, we will attempted to cover some of the more common

criticisms.

It’s Obviously False, There’s Nothing in Your Definition, Just a Few Equations

Perhaps the most common criticism is also the most vacuous one: it’s obviously

wrong! These people seem to believe that defining intelligence with an equation is

clearly impossible, and thus there must be very large and obvious flaws in our work.

Not surprisingly these people are also the least likely to want to spend 10 minutes

having the material explained to them. Unfortunately, none of these people have

been able to communicate why the work is so obviously flawed in any concrete

way—despite in one instance having one of the authors chasing the poor fellow out

of the conference centre and down the street begging for an explanation. If anyone

would like to properly explain their position to us in the future, we promise not to

chase you down the street.

It’s Obviously Correct, Indeed Everybody already Knows this Stuff

Curiously, the second most common criticism is the exact opposite: the work is

obviously right, and indeed it is already well known. Digging deeper, the heart of

this criticism comes from the perception that we have not done much more than just

describe reinforcement learning. If you already accept that the reinforcement

learning framework is the most general and flexible way to describe artificial

intelligence, and not everybody does, then by mixing in Occam’s razor and a dash of

complexity theory, the equation for universal intelligence follows in a fairly

straightforward way. While this is true, the way in which we have brought these

things together has never been done before, although it does have some connection

to other work, as discussed in Subsection ‘‘Formal Definitions and Tests of Machine

Intelligence’’. Furthermore, simply coming up with an equation is not enough, one

must argue that what the equation describes is in fact ‘‘intelligence’’ in a sense that

is reasonable for machines.

We have addressed this question in three main ways: firstly, in Section ‘‘Natural

Intelligence’’ we developed an informal definition of intelligence based on expert

definitions which was then piece by piece formalised leading to the equation for �
in Section ‘‘A Formal Definition of Machine Intelligence’’. This chain of argument

strongly ties our equation for intelligence with existing informal definitions and

ideas on the nature of intelligence. Secondly, in Subsections ‘‘Universal Intelligence

of Various Agents‘‘ and ‘‘Properties of Universal Intelligence’’ we showed that the

equation has properties that are consistent with a definition of intelligence. Finally,

in Subsection ‘‘Universal Intelligence of Various Agents’’ it was shown that

universal intelligence is strongly connected to the theory of universally optimal
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learning agents, in particular AIXI. From this it follows that machines with very

high universal intelligence have a wide range of powerful optimality properties.

Clearly then, what we have done goes far beyond merely restating elementary

reinforcement learning theory.

Assuming that the Environment is Computable is too Strong

It is certainly possible that the physical universe is not computable, in the sense that

the probability distribution over future events cannot, even in theory, be simulated

to an arbitrary precision by a computable process. Some people take this position on

various philosophical grounds, such as the need for freewill. However, in standard

physics there is no law of the universe that is not computable in the above sense.

Nor is there any experimental evidence showing that such a physical law must exist.

This includes quantum theory and chaotic systems, both of which can be extremely

difficult to compute for some physical systems, but are not fundamentally

incomputable theories. In the case of quantum computers, they can compute with

lower time complexity than classical Turing machines, however they are unable to

compute anything that a classical Turing machine cannot, when given enough time.

Thus, as there is no hard evidence of incomputable processes in the universe, our

assumption that the agent’s environment has a computable distribution is certainly

not unreasonable.

If a physical process was ever discovered that was not Turing computable, then

this would likely result in a new extended model of computation. Just as we have

based universal intelligence on the Turing model of computation, it might be

possible to construct a new definition of universal intelligence based on this new

model in a natural way.

Finally, even if the universe was not computable, and we did not update our

formal definition of intelligence to take this into account, the fact that everything in

physics so far is computable means that a computable approximation to our universe

would still be extremely accurate over a huge range of situations. In which case, an

agent that could deal with a wide range of computable environments would most

likely still function well within such a universe.

Assuming that Environments Return Bounded Sum Rewards is Unrealistic

If an environment l is an artificial game, like chess, then it seems fairly natural

for l to meet any requirements in its definition, such as having a bounded reward

sum. However if we think of the environment l as being the universe in which the

agent lives, then it seems unreasonable to expect that it should be required to respect

such a bound.

Strictly speaking, reward is an interpretation of the state of the environment.

In this case the environment is the universe, and clearly the universe does not

have any notion of reward for particular agents. In humans this interpretation is

internal, for example, the pain that is experienced when you touch something
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hot. In which case, maybe it should really be a part of the agent rather than the

environment? If we gave the agent complete control over rewards then our

framework would become meaningless: the perfect agent could simply give

itself constant maximum reward. Perhaps the analogous situation for humans

would be taking drugs.

A more accurate framework would consist of an agent, an environment and a

separate goal system that interpreted the state of the environment and rewarded the

agent appropriately. In such a set up the bounded rewards restriction would be a part

of the goal system and thus the above philosophical problem would not occur.

However, for our current purposes, it is sufficient just to fold this goal mechanism

into the environment and add an easily implemented constraint to how the

environment may generate rewards. One simple way to bound an environment’s

total rewards would be to use geometric or harmonic discounting.

How Do You Respond to Block’s ‘‘Blockhead’’ Argument?

The approach we have taken is unabashedly functional. Theoretically, we desired to

have a formal, simple and very general definition. This is easier to do if we abstract

over the internal workings of the agent and define intelligence only in terms of

external communications. Practically, what matters is how well something works.

By definition, if an agent has a high value of � ; then it must work well over a wide

range of environments.

Block attacks this perspective by describing a machine that appears to be

intelligent as it is able to pass the Turing test, but is in fact no more than just a big

look-up table of questions and answers (Block 1981) (for a related argument see

(Gunderson 1971)). Although such a look-up table based machine would be

unfeasibly large, the fact that a finite machine could in theory consistently pass the

Turing test, seemingly without any real intelligence, is worrisome. Our formal

measure of machine intelligence could be challenged in the same way, as could any

test of intelligence that relies only on an agent’s external behaviour.

Our response to this is very simple: if an agent has a very high value of � then it

is, by definition, able to successfully operate in a wide range of environments. We

simply do not care whether the agent is efficient, due to some very clever algorithm,

or absurdly inefficient, for example by using an unfeasibly gigantic look-up table of

precomputed answers. The important point for us is that the machine has an

amazing ability to solve a huge range of problems in a wide variety of

environments.

How Do You Respond to Searle’s ‘‘Chinese Room’’ Argument?

Searle’s Chinese room argument attacks our functional position in a similar way

by arguing that a system may appear to be intelligent without really

understanding anything (Searle 1980). From our perspective, whether or not

an agent understands what it is doing is only important to the extent that it
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affects the measurable performance of the agent. If the performance is identical,

as Searle seems to suggest, then whether or not the room with Searle inside

understands the meaning of what is going on is of no practical concern; indeed

it is not even clear to us how to define ‘‘understanding’’ if its presence has no

measurable effects. So long as the system as a whole has the powerful

properties required for universal machine intelligence, then we have the kind of

extremely general and powerful machine that we desire. On the other hand, if

‘‘understanding’’ does have a measurable impact on an agent’s performance in

some well defined situations, then it is of interest to us. In which case, because

� measures performance in all well defined situations, it follows that � is in

part a measure of how much understanding an agent has.

But You Don’t Deal with Consciousness (or Creativity, Imagination, Freewill,
Emotion, Love, Soul, etc.)

We apply the same argument to consciousness, emotions, freewill, creativity, the

soul and other such things. Our goal is to build powerful and flexible machines and

thus these somewhat vague properties are only relevant to our goal to the extent to

which they have some measurable effect on performance in some well defined

environment. If no such measurable effect exists, then they are not relevant to our

objective. Of course this is not the same as saying that these things do not exist. The

question is whether they are relevant or not. We would consider creativity,

appropriately defined, to have a significant impact on an agent’s ability to adapt to

challenging environments. Perhaps the same is also true of emotions, freewill and

other qualities.

Universal Intelligence is Impossible due to the No-Free-Lunch Theorem

Some, such as Edmonds (2006), argue that universal intelligence is impossible due

to Wolpert’s so called ‘‘No Free Lunch’’ theorem (Wolpert and Macready 1997).

However this theorem, or any of the standard variants on it, cannot be applied to

universal intelligence for the simple reason that we have not taken a uniform

distribution over the space of environments.

It is conceivable that there might exist some more general kind of ‘‘No Free

Lunch’’ theorem for agents that limits their maximal intelligence according to our

definition. Clearly any such result would have to apply only to computable agents

given that the incomputable AIXI agent faces no such limit. If such a result were

true, it would suggest that our definition of intelligence is perhaps too broad in its

scope. Currently we know of no such result.

Interestingly, if it could be shown that an upper limit on � existed for feasible

machines and that humans performed above this limit, then this would prove that

humans have some incomputable element to their operation, perhaps consciousness,

which is of real practical significance to their performance.

Universal Intelligence 439

123



Conclusion

‘‘… we need a definition of intelligence that is applicable to machines as well

as humans or even dogs. Further, it would be helpful to have a relative

measure of intelligence, that would enable us to judge one program more or

less intelligent than another, rather than identify some absolute criterion. Then

it will be possible to assess whether progress is being made …’’ W. L. Johnson

(1992)

Given the obvious significance of formal definitions of intelligence for research,

and calls for more direct measures of machine intelligence to replace the

problematic Turing test and other imitation based tests, little work has been done

in this area. In this paper we have attempted to tackle this problem by taking an

informal definition of intelligence modelled on expert definitions of human

intelligence, and then generalise and formalise it. We believe that the resulting

mathematical definition captures the concept of machine intelligence in a very

powerful and yet elegant way. Furthermore, by considering alternative, more

tractable measures of complexity, practical tests that estimate universal intelligence

should be possible. Developing such tests will be the next major task in this

direction of research.

The fact that we have stated our definition of machine intelligence in precise

mathematical terms, rather than the more usual vaguely worded descriptions, means

that there is no reason why criticisms of our approach should not be equally clear and

precise. At the very least we hope that this in itself will help raise the debate over the

definition and nature of machine intelligence to a new level of scientific rigour.
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