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ment is described which measures
the complex shear viscosity of
liquids in the kHz frequency range.
The instrument is driven electro-
magnetically and operates in
resonant mode. The measurement
of the primary data, from which
the rheological properties of the
fluid sample are inferred, does not
include any deflection amplitude
measuring step and is purely
digital. Models allowing the
interpretation of the probe primary
data in terms of fluid complex

theoretically predicted mechanical
behaviour of the probe is compared
with the measured one and the
rheometric ability of the device is
discussed.

Keywords Rheometry - Linear
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Introduction

In this work, we explore the application of oscillating
probes as a measuring device for the rheological prop-
erties of fluid films. Our goal is to develop an essentially
simple and reliable instrument capable of measuring the
complex viscosity of fluids in the kHz frequency range,
which is usually inaccessible to classical rheometers. At
such frequencies, the instrument own contribution to the
dynamical behaviour of the system instrument+ fluid
begins to be very important, and this contribution is
usually difficult to model for conventional instruments
involving macroscopically moving parts. Hence, the
method used here is precisely based on the simplicity of
the sensing device and the consequent predictability of
its dynamical behaviour at resonance.

The instrument described in this work is not the first
attempt to investigate the rheological properties of fluids
at frequencies which are unreachable for instruments
with macroscopically moving parts. A review of high

frequency measuring methods is given for instance in
Stokich et al. (1994) where an instrument working in
torsional free decay is also described. Among these, one
can mention the pioneering work of Mason (1947) who
derived a relationship between the dynamic behaviour of
an oscillator in the vicinity of its resonance frequency and
the sample rheological properties which has been used in
many works published since then. The multiple lump
resonator (MLR), first suggested by Birnboim and Elyash
(1966) and developed by Schrag and Johnson (1971), the
magnetostrictive instrument of Glover et al. (1968), the
torsion pendulum described by Blom and Mellema (1984)
or the recent piezoelectrically-driven, non-resonant in-
strument proposed by Kirschenmann and Pechhold
(2002) can also be mentioned in this non-exhaustive list.

An essential difference between these instruments
and the one presented in this work is the fact that no
amplitude or resonance bandwidths are measured here.
The method relies entirely on the digital measurement of
the phase shift between a periodic driving force and the
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damped harmonic deflection of a monolithic structure in
the vicinity of its resonant frequency. The fact that no
amplitude measurements are performed eliminates the
accuracy loss linked with an analogical deflection am-
plitude measuring step, and helps reduce the cost of the
instrument. Operation in the vicinity of the resonant
frequency allows sufficiently large deflection amplitudes
and thus fluid strains to be reached with a relatively
robust structure at minimal driving force, thus allowing
the resonator to be driven electromagnetically instead
of, for instance, piezoelectrically. Further, the measure-
ment method makes use of one single electromagnetic
driving and sensing device, in the sense that one coil/
magnet combination plays the roles of both actuator
and sensor, in a successive manner. This efficiently
eliminates disturbing cross-talk between sensor and ac-
tuator, although the measurement is not anymore a
strictly stationary one, since driving periods are inter-
rupted by sensing ones. The effects of the successive
driving and sensing method (further referred to as
pseudo-stationary) are briefly outlined below; a more
detailed discussion can be found in Romoscanu (2003).
Truly stationary measurements are also made for com-
parison, with the help of a function generator and a laser
interferometer. A further feature of the device presented
here is the calibration-free, modelled approach, which is
made possible by the simple geometry. This contrasts
with a feature shared by many commercially available
devices, which is a calibration-based conversion of the
measured damping into the fluid viscosity. The main
disadvantage of a calibrated approach is that identifi-
cation of the steady shear or low-frequency reference
viscosity with the viscosity of the fluid at the essentially
higher instrument frequency is not justified for fluids
with relaxation times of a similar order of magnitude
than the reciprocal instrument frequency. As shown for
instance by Hadjistamov (1996), the range of Newtonian
PDMS melts is strongly limited when the measuring
frequency is in the kHz range or higher.

In the present work, we derive the mechanical be-
haviour of the system directly from the equations of
motion and constitutive equations of both resonator
and fluid. Basically, this allows the integration of arbi-
trary fluid constitutive equations provided that a solu-
tion is found to the equation of motion of the fluid with
the respective fluid constitutive equation. We limit our-
selves to linear constitutive equations. Sample inertia is
taken into account for measurements on low viscous
fluids are not necessarily performed at low Reynolds
number.

Measurement principle

From a mechanical point of view, the viscosity of a fluid
quantifies the amount of energy which is dissipated per
unit time when the fluid experiences shearing. When
brought into contact with an oscillator in such a way
that the oscillator deformation induces a shear flow, the
fluid viscosity effectively acts as an additional damping
source for the oscillator. The dynamical behaviour of
such a damped oscillator can thus be used to quantify
the viscosity, with a precision which is directly linked to
the degree and quantitative knowledge of other sources
of damping, such as intrinsic material damping. When
the dynamical behaviour is quantified with two inde-
pendent quantities, viscosity and elasticity, i.e. the
complex viscosity #* can in principle be measured. The
sensitivity of the probe and the accordance between
theory and measurements determine whether the oscil-
lator can be used as a reliable rheometric device or not.

Practically, the dynamical behaviour of the system
consisting of the resonating oscillator and damping fluid
is quantified with two values: the damping df, which
quantifies the slope of the curve which represents the
phase shift between driving force and measured deflec-
tion vs driving frequency, at the resonant frequency, as
well as the resonant frequency f,., itself.
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The phase shift ¢(f) in the vicinity of f,., for a typical
resonator is plotted in Fig. 1 for increasing damping. ¢
(f) corresponds to the argument of the system transfer
function

Gr(f) = (1)

> | T

which is the complex ratio between F, the complex
amplitude of the harmonic force F(r) = Fe'® exerted on
the oscillator and X, the complex amplitude of the har-
monic deflection function X () = Xe'. For an ideally
elastic resonator with no damping, the transition of ¢(f)
from 0 to = has the shape of a step function located in
f=fres- Under the effect of the damping this slope is re-
duced from infinity to finite values. We quantify this slope
with the frequency difference df corresponding to a phase
shift difference of 2Aa centred in ¢ =mn/2. Aa, f,., and df,
also plotted in Fig. 1, are mathematically defined with

@ (fres) = Arg(Gr * (fres)) = 7/2, (2)
@(fres £ df /2) = Arg(Gr * (fres £ df /2)) = 1/2 £ Aa.
(3)

For Ao < w/4, df is a sufficiently precise measure of
the slope of ¢(f) around f,,, i.e.

Io(f)| . 2Ax
of Nr=p, 4 @

In the present arrangement, f,.., and df are obtained
with the algorithm outlined in Fig. 2. A full description
of the electronic circuit is given in Sayir et al. (1995).
Basically, a periodic square tension signal is produced by
a voltage controlled power amplified function generator
(VCO). This signal is simultaneously fed to a coil which
electromagnetically drives the resonator as well as to a
phase shifter (PS), which alternatively shifts the signal
by a fixed angle n/2+Aa. After a given number np of
driving cycles (between 3 and 12 in the present ar-
rangement), the electromagnetic actuator turns into a
sensor, for the remaining (15-np) cycles. During this
sensing period, the phase difference between the sensed
deflection signal and the w/2+Aa PS-shifted driving

Signal Generator fres (Ax=0)
> (veo) df (Aa=22.5°)
Resonator +Fluid PS
(G:(u))) (90°tAx)
v v
XOR-Gate

Fig. 2 Phase-locked loop algorithm for the amplitude-free measure-
ment of the system damping

signal is measured with the help of an XOR-gate. The
gate is linked to a Pl-regulator which transforms the
XOR-gate signal into a tension increment, which is used
to correct the frequency of the VCO function generator.
This results in a phase-locked loop, for the driving
frequency is continuously adjusted until sensed and
PS-shifted signals are in phase, and the PI correcting
tension vanishes. Finally, the difference df and the
average of the driving frequencies corresponding to both
phase shifts /2 £ Ao are computed. Their average over a
given period of time, usually set to 1 s, is recorded with a
PC via an RS232 connection. The resonant frequency
itself is the average of these frequencies, and corresponds
to the frequency which the phase locked loop reaches
with Aa set to 0 Hz.

The measured values f,., and df are a measure of the
elastic and viscous characters of the oscillator and fluid
system. Provided the probe characteristics and fluid
density are known, these two independent values can be
linked to two independent fluid properties, like the real
and imaginary part of the complex viscosity n* =n"—in".

It is important to note that with the above described
measuring method, the sensitivity for the measurement
of viscosity is intrinsically better than the sensitivity for
the measurement of elasticity. One reason is the rela-
tively low contribution of the fluid elasticity to the total
stiffness of a system partially composed of a monolithic
highly elastic resonator. In contrast, the relative contri-
bution of the fluid to the total damping is essentially
higher. Elasticity is also measured from an f,,, shift, and
not from the absolute f,., value, unlike df which is an
absolute measure of the system total damping. Finally,
with the algorithm described above, f,., is located from
the theoretical symmetry of the ¢(f) curve in the vicinity

fres» In absence of any amplitude measurement.

In the following section, we obtain expressions for f,.,
and df as functions of #” and n”. As will be shown, the
accuracy of the phase-shift based detection system al-
lows viscosity as well as elasticity measurements to be
made, provided some conditions are fulfilled.

System modelling

The determination of the mechanical properties of the
fluid sample from the primary data f,.; and df requires
knowledge of the complex transfer function G7*(f) of
the coupled oscillator and fluid system, following
Eqgs. (2) and (3) above. We describe hereafter the reso-
nator geometry, compute the stress resulting from
shearing the fluid sample and outline two possible ways
to derive the system transfer function G7*(f).

Geometry

In the present geometry, a fluid film is confined between
a fixed plate and a resonating structure whose
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deformation induces a plane shear flow in the fluid. The
fixed and oscillating plates are parallel at all times,
the moving one oscillating nearly exactly in its plane.
The thickness d of the fluid sample can be adjusted and
is an important parameter for the dynamical behaviour
of the system. The confined fluid geometry has two ad-
vantages over other possible geometries like torsionally
oscillating rods or tubes, where the fluid is a semi-infinite
medium. First, the two boundary conditions which are
imposed to the velocity field induce an increased sensi-
tivity, especially in the high viscosity range, as shown
below. Second, the effect of confinement on the rheo-
logical properties of the sample can be investigated. A
sketch of the oscillator geometry illustrating the
parameters used in the models proposed below is shown
in Fig. 3a, together with the parallel spring setup which
allows the adjustment of the gap width d. A picture of
the assembled instrument, together with the mirrors
used to verify the parallelism of the plates as well as the
quantity of confined fluid is shown in Fig. 3b.

Flow

We derive here the shear force exerted by the shear fluid
on the oscillating plate. The equation of motion in x-
direction is (Bird et al. 1987)

Ov, 0Ty
x_ T 5
P 5 B (5)
We shall limit ourselves here to the consideration of
linear flows. The general constitutive equation for the
linear viscoelastic fluid is (Tanner 2000)

Ty = —/_ G(t — )avvé); )

so that the differential equation for the velocity field in
the gap v.(y,f) reads

o / !
T o
Since the fluid is linear, we expect the velocity field to
oscillate harmonically in time and have a y-dependent

amplitude and phase lag once all transients have died
out. Substitution of

——dr’ (6)

v (y, 1)
0?2

G(t—1) dr’ (7)

o(y,1) = V(y)e (8)
in Eq. (7) yields
,OZU)V m} (¢ l)dl

—l(USdS (9)

with s=¢—¢". With the following definition of the com-
plex viscosity #* (Tanner 2000),

oo
77* _ n/ _ l-nu — G(S)eiiwsds (10)

0
we need to solve
pio - PV(y)
V(y) = 11
V) =75 (1)
This is the same equation as the one which arises in the
particular Newtonian case. The BC for the y-dependent

complex velocity amplitude V(y) of the fluid confined
between the oscillating and fixed plates are

V(0) = ioX, (12)
V(d) = 0. (13)
The solution of Eq. (11) with these BC reads
- _ Sinh (%
V(y) =ioX M (14)
Sinh (4 \/_)

where J is given by
2n*

0= . 15
op (15)

|0] is of the same order of magnitude as the pene-
tration depth of the shear wave in a semi-infinite medi-
um (Landau and Lifshitz 1994). 6 and the gap Reynolds
number Re are linked with

d 2

The complex amplitude of the harmonic shear stress
exerted by the fluid on the plate is given by

_ OV () — _)}\/MCoth (\/ iRe>

y=0

(16)

T =1 B (17)

Equation (17) shows the positive influence of the finite
sample thickness d on the probe sensitivity in the higher
Viscosity range. While in the high Re limit (d> > or
semi-infinite sample geometry) the hyperbolic cotangent
tends to 1 and thus |7,.| ~ |1 |'/2, at low Re the hyper-

bolic cotangent scales with m*\l/z Le. |‘c}x| ~ |n*|.

Resonator

The monolithic resonator used in this work consists of
two supporting walls and one translating plate, whose
upper side is in contact with the fluid, which is in turn
bounded by another fixed plate in distance d as well as
its own surface tension. The resonator is made of tita-
nium using an electro erosion method; resonator di-
mensions are given in Table I. A coil/magnet
combination exerts an oscillating force on the upper



466

Fig. 3a Parallel plate probe
geometry: (1) 6.0 mm micro-
metric screw for the adjustment
of d; (2) parallel springs; (3)
upper, fixed polished glass
plate; (4) lower, oscillating
polished glass plate; (5) driving
coil; (6) magnet; (7) thin,
compliant part of the lateral
walls; (8) thick, rigid part of the
lateral walls. b Parallel plate
probe: assembled instrument
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Table 1 Resonator parameters

Parameter Description Value for discrete Value for
model continuous model

E/Pa Resonator tensile complex modulus 101.2x10° + 7x107i

Presonaror/kg M ™ Resonator density 4500

my/g Mass of rigid oscillating plate 7.92

mg/kg Mass of upper and lower lateral wall parts 1.50

m/g Mass of central lateral wall part 0.132

[;/mm Length of upper and lower lateral wall parts 4.2 3.2

l5/mm Length of central lateral wall part 24.0-/;/mm

[3/mm Distance between top of lateral wall and fluid 8.0 -

h;/mm Thickness of upper and lower lateral wall parts 0.83

hy/mm Thickness of central lateral wall part 2.0

¢;/mm Half distance between lateral walls 10.6 -

c,/mm Resonator depth 10.0

AS/mm? Surface in contact with fluid 150.0

pﬂufd/kg-m’3 Fluid density 1000

plate in the x direction in such a way that the plate
oscillates laterally with minimal vertical motion. Keep-
ing the vertical deflection minimal is essential in order to
minimize additional acoustic damping of the system. If
we define o as the lateral deflection angle of the struc-
ture, the ratio of vertical to lateral deflection amplitudes
is of O(«/2). With typical o values of O(1073), the ratio of
vertical to horizontal deflection is of O(107%) i.e. acoustic
loss is quantitatively negligible.

The resonator can be modelled either as a discrete
oscillator or as a continuously deformable structure.
Both approaches imply an idealization to some extent of
the actual structure. The discrete approach is based on
the assumption that the total compliance is mainly
concentrated in a limited number of points, and conse-
quently the remaining parts of the structure describe
rigid body motions. While this approach is mathemati-
cally more convenient, it will lose in validity the larger
the deformable segments are, and will only predict one
fundamental frequency, which corresponds to the only
possible deformation allowed by point-like springs. On
the other hand, the continuous approach is able to
predict higher fundamental frequencies, but is practi-
cally much less convenient to use, especially since the
resonator + fluid system model has to be finally inverted
in order to compute the viscosity from measured dy-
namical behaviour. In the following we outline the dis-
crete and continuous models of the resonator and
confront the theoretical dynamical behaviours around
the first fundamental frequency given by both models
before comparing them with measured values.

Discrete model

In a discrete approach, deformation occurs mainly the in
four thinner parts of both lateral walls with height /;.
The concentration of the deformation in these four
flexion springs is based on the fact that in a linear

approach flexion compliance scales linearly with the in-
verse of the flexion moment 7., which is linked to ¢, the
width, and /4, the thickness of the considered cross sec-
tion by

7ch3

]Z_?. (18)

Since the thickness of the springs is about one-third
of the thickness of the lateral walls, the springs are ca. 30
times more compliant than the thicker central part of the
lateral walls.

Since the system is statically over-determined, we
separate virtually the structure in three parts, namely the
two lateral walls including the springs, and the upper
plate. We represent each of these elastic junctions as well
as the points where the resonator is fixed to the ground
by one lateral force F; in the x direction, one normal
force N;in the y direction as well as a flexion moment M;
in the z direction, where i refers to the i compliant
junction out of four. In order to include the ‘“‘spring
length” /; explicitly in our model, we first derive an ex-
pression for the flexion moment M in the z direction in
the form of a proportionality constant k between mo-
ment and lateral deflection & in y=2[,+1+I/; ie.
M=xé. The solution of the above geometry under a
constant deflection ¢ of the upper plate the x direction
yields a proportionality constant

3EIZ<2ZI + 12)
K = .
(42 + 611 + 382)

(19)

With this formalism, we have 13 unknown values,
namely two forces and one moment in each of the 4
junctions, plus the lateral deflection amplitude of the
upper plate X. The 13 equations of this linear system
(three for each rigid part of the resonator, plus four
which link the spring moments with the deflection X)
are:
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— Upper plate (Newton’s law in the x respectively y
directions, and total moment in the z direction):

transfer function, Eq. (31). The values of df and f,., as
functions of the fluid complex viscosity #* are found by

AST, — Fi — B> + F—_ m, 02X (20) SOIZ}iln% Egs. (2) and (3) above, with Newton’s or secant
method.
N +Ny—m,g=0 (21) .
(R +Fz)5+AST:W + Ny —eiN>+ My + M, =0
(22)
Gi() = o mamy (1] + 12)2+412(m2 + myg) + 4L (my + my) — (Iimy + L(may + 217!1))2
’ 2(1y + 1) (ma + my)
3 i 8k
) — AS\/in*pCoth )+ 1
» (mp\/a S+/in*pCot (d = 4—2(11 1) (31)

— Left-hand lateral wall (Newton’s law in x resp. y
directions, and total moment in z direction):

m212+m1(212+11)> 25

F—Fy=— X 23
L ( 2L+ 1) @ 23)
N4—N1—(m2—|—m1)g:0 (24)

(11 + 12)m2m1 +4]2(m2 +m1) —|—4]1(ﬂ12 —|—m1)
4(my +my) (11 + 1)
m212+m1(2lz+ll))>
[ l) — F
+ (( 2+ 1) ( 2(m> + 1) 1
<m212+m1(212+11)
2(my +my)

w0’ X

>E1—M1+M4=0

(25)

— Right-hand lateral wall (analogy equations, New-
ton’s law in y-direction):

h=F (26)

Fs=Fy (27)

N3—N2—(m2+m1)g:0 (28)
— Springs:

M1=M2:M3:M4:KX/ (29)

In Eq. (25) we have neglected the contribution of the
normal forces N, to the moment in z-direction basing on
the small deflection. The parameters /; denote the rota-
tion inertial moments along the z-axis of the flexible and
rigid parts respectively to their centre of gravity. They
are defined with Eq. (30) (Sayir 1994) where m;, h; and /;
are respectively the mass, the thickness and the height of
the /™™ segment. Substitution of the solution for X of the
above equation system in Eq. (1) yields the system’s

Continuous model

We suppose that the lateral walls of the resonator exert
flexural oscillations under the dynamic loading the of
the driving magnet and sheared fluid. In the present
structure, each wall consists of three parts with same
width but different length and cross section. For sim-
plification reasons, we consider the case where the
lower and uppermost parts have same length and
thickness /; and 4;.

Assuming a linear elastic material behaviour, small
deformations as well as “‘thin” walls, defined by
h
7 << 1 (32)
where /1 is the wave length of the flexural oscillation and
h the structure thickness, the differential equation which
governs flexural oscillations reads

0%u o*u
pA 7 + EI o
where u is the transversal deflection in x-direction, y the
coordinate along the deformable wall, 4 the local cross
section of the structure, p its density and /7. the flexural
inertial moment, Eq. (18). Assuming a harmonic de-
flection u(y, ) = u(y)e', Eq. (33) becomes the ODE

0 (33)

O*u(x)

4

kKu(y) + By =0 (34)
with

2
4 0 pA
=T (35)
The general solution of Eq. (34) reads

u(x) = cre”™™ + c2e™™ + c3 cos(kx) + ¢4 sin(kx). (36)

The deflection function of each lateral wall consists of
three such functions defined over [0,/;], [/;, I;+ /5] and
[{;+ L5, 2[;+ L], which in the following are referred to as
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segments 1, 2 and 3 respectively. For simplicity reasons,
we admit that both walls have identical deflections, i.e.
have a total of 12 resulting integration constants which
are found from the kinematic, geometric and dynamic
boundary/transition conditions. For these we use the
relations at Egs. (37) and (38) which link derivatives of
the deflection function u(y) and the bending moment
M g(y) resp. transversal force Q(y),

82
M) =75, (37)
O*M, Fu
o) - -2 _ T (39)
where
g =EL (39)

quantifies the structure local rigidity. Indexed rigidity
factors ¢; used hereafter refer to the values of each of the
segments 1 to 3.

Equating the deflections, slopes, bending moments
and transversal forces yields in y=0

8141(())
u1(0) = =0 40
) =25 (40)
In y=1/; we get
ui(h) = ua(lh), (41)
8u1(ll) 8u2(ll)
= , 42
o o (42)
321/!1([]) 82u2<11)
q1 8_)/2 =q2 5y2 ; (43)
83141(11) 83u2(11)
= 44
Iny=[;+ I
w(h + 1) = us(l + 1), (45)
Our(ly + 1) Ous(ly + 1)
= 46
- ), (46)
5'2142(11 + 12) 32143(11 + 12)
= 4
p) 8y q1 82 ) (47)
831/!2([1 + 12) 831,{3(11 + 12)
= . 48
q2 8_)/3 q1 8_)/3 ( )
In y=2[;+ [, we have
8143(2[1 =+ 12) _ 07 (49)

Ay

as well as dynamic equilibrium between transversal forces
in the walls, driving force F and fluid force ASt,,, i.e.

FPus (21, + 1 ~ _
_2LB(8)/13_'_2)+F_ ASt,, = w2m1u3(2l| + 1)

(50)

with X = u3(2/y + ) in the definition of 7, (Eq. 17). X
is obtained by solving the linear equation system at
Egs. (40), (41), (42), (43), (44), (45), (46), (47), (48), (49)
and (50) and substituting the integration constants
which correspond to the upper part in Eq. (36) with
y=2[;+[,. The solution is not explicitly given here for
space reasons but is easily found, the system being linear
and relatively sparse. The probe transfer function is
obtained with Eq. (1). f,., and df are then obtained as a
function of the fluid rheological properties by solving
Egs. (2) and (3) with the secant method.

Theoretical results and comparison of both models

The models outlined above do not include any freely
adjustable parameters. However, the idealizations which
had to be made allow some freedom on geometrical
parameters like the lateral wall segments length, which
can to some extent be adjusted to fit measured values.
Since both models are based on different assumptions,
the fine adjusting of these geometrical parameters may
lead to values which may differ slightly between both
models.

We first note that the models are in good accordance
with each other in the first fundamental frequency re-
gion, up to a horizontal shifting factor on the frequency
axis. Indeed, the discrete model yields for identical res-
onator parameters a resonant frequency which is about
60 Hz higher than the one predicted by the continuous
model based on flexural oscillations. This can be quali-
tatively explained by the fact that the assumed rigidity of
the central part in the discrete model is practically
identical to an infinite elasticity modulus for this seg-
ment, which logically shifts the fundamental frequency
towards higher values. Although the fundamental fre-
quency depends on numerous parameters, we choose to
horizontally shift the Arg(G7*) vs. f curve predicted by
the discrete model by modifying only the length /; of the
compliant lateral wall part, as well as /, according to
l;+1,=1,,, since the sum is measurable with a smaller
margin of error. As mentioned above, /; is not a freely
adaptable parameter, and a difference between the val-
ues used in both models is acceptable only as long as it
does not exceed the uncertainty induced by the geometry
idealization, like the lack of consideration of the cur-
vature radii at the cross sections transitions. The system
parameters used in each model as well as their numerical
value for the present experimental set-up are listed in
Table 1. These are identical for both models, with the
exception of the lateral walls segment lengths /; and /,
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which are fitted to the measured fundamental frequency
within the limits mentioned above. In the present case,
the difference of 0.9 mm which brings both fundamental
frequencies to correspond is still essentially smaller than
the sum of both curvature radii at the cross sections
transitions, which is 3.0 mm. The imaginary part of the
probe material elastic given in Table 1 accounts for the
resonator intrinsic damping. This value is obtained form
the df value of the unloaded probe, which equals
0.17 Hz with Ax=22.5° and T=23 °C.

Figure 4 shows the Arg(G7*) vs. f curve which is
computed with both models when the resonator is in
contact with three Newtonian fluids of 0.1, 1 and 10 Pas
confined in a 100-um gap. Figure 5 shows the df value
predicted by both models in the vicinity of the funda-
mental frequency vs the Newtonian viscosity y for dif-
ferent gap widths and Ax=22.5°. The accordance
between both models is good, with a systematically

Fig. 4 Comparison of ¢

= Arg(G7*) obtained with
discrete (dotted line) and
continuous models (continuous
line) for d=100 um and

(1) n=0.1 Pas, (2) y=0.1 Pas

higher damping value predicted by the discrete model.
This can be qualitatively explained by the larger value
for /; used in the discrete model, which makes the res-
onator more compliant, and hence increases its sensi-
tivity.

Experiment

Experimental setup The experimental setup consists of one reso-
nator and one control unit linked to a PC. The control unit in-
corporates a function generator, a power amplifier, a phase shifter
as well as a XOR-gate, as described in Fig. 2.

As stated above, a noticeable feature of the measuring algo-
rithm is the use of one single electromagnetic device for driving and
sensing of the resonator. As a consequence, the actual deflection
measurement is strictly speaking made in free damped decay, for
driving and sensing take place successively. Therefore stationary
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Table 2 Newtonian samples T
Sample Composition

Supplier Product name #o/mPas (23°C) p/kg.m~> (23°C)

properties
N1 n-Tetradecane 99+ %  Aldrich Chemie 1.81 739
N2 Linear PDMS Haake E7 4.07 827
N3 High oleic sunflower oil Nestlé 74.2 876
N4 Linear PDMS Wacker AK10 9.8 968
NS Polyethylene-glycol BASF Pluriol E200 61.0 1120
N6 Polyethylene-glycol BASF Pluriol E300 76.1 1125
N7 Polyethylene-glycol BASF Pluriol E400 94.2 1128
N8 Linear PDMS Dow Corning 200 101.2 965
N9 Linear saturated alcanes Aldrich Chemie paraffine oil 155 890
N10 PIB/PB copolymer Infineum C9945 252 855
NI1 Linear PDMS Wacker AK100 98.1 972
N12 Linear PDMS Rhodia Silicones 47V300 292.1 970
N13 Linear PDMS Dow Corning 200 344.2 970
N14 Linear PDMS Rhodia Silicones 47V500 472 972
N15 Linear PDMS Tracomme 670 K 664 974
Table 3 Viscoelastic samples:
results of the two-module Sample wt% CMC n,/Pas ),//S 172/Pas ).Z/S
Maxwell model fit (Egs. 52
and 53) V1 (open triangles) 0.5 0.08 0.78 0.16 0.033
V2 (open diamonds) 1.0 0.52 0.48 0.46 0.019
V3 (filled triangles) 1.5 2.55 0.51 0.95 0.014
V4 (filled diamonds) 2.0 12.1 0.56 2.15 0.013
V5 (filled circles) 2.5 40.9 0.76 4.61 0.012
Vo (filled squares) 3.0 60.6 0.79 5.73 0.013

measurements of f,., and df are performed for comparison with the
control unit (phase-locked loop) measured values. For this we drive
the resonator and fluid system with an external power amplified
function generator (Minilab 603, BWD, Australia) and use a laser
interferometer (OFV 2100 with OFV 300 laser, Polytec, USA), an
oscilloscope (9314 M, LeCroy, USA) and a frequency meter (9921,
Racal-Dana, UK) to record the argument of the transfer function
in the vicinity of the resonant frequency. This set-up allows a
strictly stationary measurement of the resonant dynamical behav-
iour of the coupled system.

Reference viscosity measurements of the fluid samples are made
with a Rheometrics ARES rheometer (Rheometric Scientific,
USA), with a 50-mm, 1° cone-plate geometry and 20-mNm torque
sensor. Densities are measured with a DMA 4500 Density Meter
(Paar Physica, Germany).

Materials The first group of samples is described in Table 2. Most
of these fluids are expected to be Newtonian in the context of the
present experiment, i.e. their longest relaxation time is expected to
be shorter than (2nf,.,) . Hence the viscosity of such fluids as
obtained with classical, low frequency rotational viscometers can
be expected to be valid at the probe operating frequency of ca.
623 Hz. This allows us to compute the df values with the models
above and thus to test experimentally the validity of these.

Most of the samples used in this work consist of polydimethyl
siloxane (PDMS) melts. According to the work of Hadjistamov
(1996), at the probe operating frequency of 623 Hz, entangled
PDMS melts with zero shear rate viscosities above ca 500 mPas can
be expected to show a viscoelastic character. Since a 500 mPas
PDMS melt is only weakly entangled (Longin et al. 1998), this limit
can be considered as rather conservative. Nonetheless, the New-
tonian character of the most viscous samples of Table 2 cannot be
assumed a priori.

Low T measurements were performed on the viscous PDMS
samples to verify the Newtonian character at higher frequencies,
based on the time temperature superposition principle (Ferry 1980).

These indicate that all samples are Newtonian at 623 Hz, with the
precision which typically characterizes the superposition.

The second group of samples consists of fluids which show a
non-negligible elastic behaviour even at low frequencies. The
sample viscoelastic fluids used here consist of sodium carboxym-
ethyl cellulose (CMC) aqueous solutions. Sodium CMC was
provided by Aqualon. The essentially viscoelastic character of
the CMC samples can be seen at the relaxation times obtained by
fitting a two-module Maxwell model to low-frequency data. The
model assumes a complex shear modulus of the form

10) iw

i
G = 51
(@) =m 1+ iwk ti 1 +iwi (51)
Storage and loss moduli are accordingly given by
l? Jo?
G(w) =1 = 52
( ) T 1 +/ﬁw2 M 1 +}éw2 ( )
G () = n; ® @ (53)

+
1+ 20 Py 2o

The viscosities (1;, 172) and corresponding relaxation times (4;, 1)
obtained from a log-log least-squares fit of the measured G* values
in the 1-150 rad s™' frequency range are given in Table 3. The
viscoelastic character of the CMC solutions is displayed in Figs. 6
and 7.

Results
Newtonian samples
Figure 8 shows the df values obtained with sample fluids

described in Table 2, together with theoretical values.
Measurements were made with three gap settings,
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Fig. 6 |n*| vs w in the 1- 100
150 rad s! frequency range for
the CMC samples of Table 3. : n
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respectively 100, 150 and 200 um. The dashed lines
represent the df value predicted by the discrete model,
for a fluid with a relative density of 1. Continuous lines
represent df values computed with the continuous
model. Squares represent pseudo-stationary values
obtained with the control-unit. Measurements were
performed with 12 driving cycles and 3 sensing cycles.
Circles represent df values obtained by measuring

¢ =Arg(Gr*(f)) with the laser interferometer in the
vicinity of f,.,, 1.e. under stationary conditions. Ao was
set to 22.5° for all measurements.

For the samples of Table 2, the variation of f,.
measured with both phase-locked loop control unit as
well as the laser interferometer is smaller than the mar-
gin of error which affects the measurements. This is in
accordance with the theoretical predictions since both
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Fig. 8 Theoretical and mea-
sured df values. Hollow symbols:
d=100 um, grey symbols:
d=150 um, dark symbols:
d=200 um. Squares: values ob-
tained with the control-unit
(pseudo-stationary conditions).
Circles: values obtained with
the laser interferometer (sta-
tionary conditions). Continuous
lines: values predicted by the
continuous model. Dashed lines:
values predicted by the discrete
model. Right-hand axis: corre-
sponding Q factor, Eq. (54)

df nge22.5°Hz

[ snis!

models predict with a variation of less than 0.2 Hz over
the investigated viscosity range. This is caused by the
fact the so-called gap loading condition (Schrag 1977)
d < is fulfilled in most cases, so that a decrease of f,., as
a consequence of the mass loading inherent to an
increase of ¢ is inhibited by the finite gap thickness.

Viscoelastic samples

Qualitatively, the influence of a viscoelastic fluid on
the resonant frequency of the system is twofold. On
one hand, the elastic character tends to shift the res-
onant frequency towards higher values, for it increases
the system stiffness. On the other hand, the fluid in-
creases the mass of the oscillating system, thus shifting
the resonant frequency to smaller values. This latter
aspect is limited by the finite gap thickness if d<J as
mentioned above. In contrast to Newtonian fluids
(which induce almost no change in f,., because they
show no elastic response and the sample is fully gap
loaded), the elastic response of a viscoelastic fluid
contributes to the increase of resonant frequency, es-
pecially in the gap loading case. We are hence in
principle able to measure both viscosity and elasticity
of the fluid in terms of complex viscosity n* =n"—iy” or
complex shear modulus G*=iwn* from damping df
and the f,,., shift.

Measurement results for viscoelastic fluids cannot be
presented as in Fig. 8, for the fluid cannot be charac-
terized through one single parameter like the zero shear
rate viscosity 19 for Newtonian fluids. Considering
Fig. 6, we expect for instance the measured damping

0.4 0.7 0.8

1/ Pas

values of the viscoelastic samples to be small, given the
trend observed in the frequency range reachable with the
rotational rheometer. In Table 4 we show the measured

fres and df values for the viscoelastic samples listed in

Table 3, together with complex viscosity values obtained
from inversion of the discrete model. Numerical inver-
sion of the continuous model yields close values, but is
extremely time consuming. Pseudo-stationary values
measured with the control unit agree here with the sta-
tionary, laser interferometer measured ones, as expected
for low dampings (Romoscanu 2003).

Discussion
Newtonian samples

As one can see from Fig. 8, good accordance between
continuous model computed and laser interferometer
measured df values is observed over the whole investi-
gated viscosity range. In contrast, values measured di-
rectly with the control unit (i.e. under pseudo-stationary
conditions) correspond to computed and laser interfer-
ometer measured ones only up to a df value of about
3 Hz, above which the first are smaller. In terms of
mechanical quality factor Q (Sayir 1994),

Q — ﬁes ﬁes
dfau—sse  dfaa

this represents, with f,,,=623 Hz and Ax=22.5°, a min-
imum factor Q,,;,=86 (to be compared to the unloaded
probe factor Qy=(623/0.17)tan(22.5°)=1500). Above this
value, results obtained with the pseudo-stationary

)

tan(Aa) (54)



474

Table 4 Measured f,.; and df values for viscoelastic samples. PS = values measured with the control unit; LI =values measured with the
laser interferometer. #” and 1" obtained from numerical inversion the discrete model

Sample Jres/Hz(PS)  dffHz(PS)  f..s/Hz(Ll)  dfjfHz(Ll) /%  n’/mPas  y”/mPas  6/° ¥ /mPas
No fluid 622.80 0.16 622.8+0.2 0.16 - - - - -
V1 (open triangles) 623.13 0.39 623.1£0.2 0.4 3.5 18 30 31 35
V2 (open diamonds) 623.53 0.47 623.6+0.2 0.5 2.5 25 59 23 64
V3 (filled triangles) 624.13 0.60 624.2+0.2 0.6 2.1 36 103 19 109
V4 (filled diamonds) 624.56 0.81 624.6+0.2 0.8 1.7 55 134 22 145
V5 (filled circles) 625.04 1.01 625.1+0.2 1.1 1.5 72 169 23 184
Vo6 (filled squares) 625.63 1.09 625.8+0.2 1.1 1.4 79 211 21 225

algorithm which is implemented in the control unit
corroborate strictly stationary laser interferometer re-
sults. At lower Q factors, pseudo-stationary df values are
smaller than the laser interferometer and computed
ones. We conclude that in the |#*| < 670 mPas range, the
discrepancy has a mainly instrumental, and not rheo-
logical, origin. In other words, the smaller pseudo-sta-
tionary values are due to an measurement algorithm
artefact rather than to a viscoelastic sample behaviour
(typically characterized by a decrease of |#*| with in-
creasing frequency as in Fig. 6). This can also be seen
without considering the stationary laser interferometer
measurements, from results obtained with the pseudo-
stationary algorithm only, provided such measurements
are performed at different gap widths d. If the discrep-
ancy had a rheological origin, it would be observed for
all |*| exceeding a given, gap-independent value'. In
the present case, one can see as stated above that dis-
crepancy occurs systematically above a fixed df=3 Hz.
This damping value is reached at |#*| values which in-
crease with increasing gap. In the measurements made
with the smallest d value (and thus lowest Q values)
pseudo-stationary values begin to differ from stationary
ones at a |#*| value of ca 0.3 Pas. However PDMS melts
with this viscosity should behave as Newtonian fluids
at f=f.., (Hadjistamov 1996). Consequently, the dis-
crepancy between pseudo-stationary values and model/
stationary values observed at df>3 Hz (0 <0Q,,;,,=86)
must be due to a measurement artefact. We note
that Emphasis Type = "Italic" > Q,,,;, values of the same
order as the value observed here are observed with other
geometries and at essentially different frequencies when
the same pseudo-stationary measurement algorithm is
used (Romoscanu 2003).

A comprehensive discussion of the influence of the
pseudo-stationary algorithm shown in Fig. 2 on the
probe raw data is outside the scope of this paper. Such a
discussion can be found in Romoscanu (2003), where a
method for the correction of the probe raw data at low
Q values, i.e. when the artefact cannot be neglected, is
also proposed. The interest of such a correction (which

'As long as the gap is large enough for the sample to be considered
as a continuum.

would allow the use of the pseudo-stationary algorithm
at Q <0,,.») 1s obvious since the use of a laser as part of
the experimental setup cannot be considered as a valid
alternative to the pseudo-stationary algorithm in an
applied use of the resonator. As far as simplicity, cost-
effectiveness and convenience are concerned, both
methods cannot be compared.

Viscoelastic samples

Figure 6 shows that, for the viscoelastic samples mea-
sured here, |#*| decreases by around one order of mag-
nitude in the 1-150 rad s~ range. From this point of
view, the high frequency results shown in Table 4 are
consistent. This is shown in Fig. 9 and Table 5 where the
measured low frequency |n*| values are extrapolated
(dotted lines) to f,., using the power law model at
Eq. (55). The parameters ¢ and b are obtained from a
least square fit of the low-frequency data, based on the
approximately constant slope in the log-log graph,
Fig. 6. As pointed out by Larson (1999), the viscosity of
dilute polymers has a theoretical high-frequency limit
which is of the order of magnitude of the solvent vis-
cosity #s. The results shown in Table 5 show that the
operating frequency of the probe used here, ca 0.6 kHz,
is obviously still significantly lower than the high
frequency limit.

"] = bo' (55)

Experimental values of 6<45° (y”>#) are also
consequent with the low-frequency values shown in
Fig. 7. Quantitatively, #” measurements are reproduc-
ible with a margin of error of ca. 20%, a value which is
larger than for x#” measurements, and which will also
affect [n*| and 6. Some sources of error which are typical
for aqueous solutions may partially be responsible for
this. For instance, the sample visibly shrinks on a time
scale which is larger than the measuring time (many
minutes compared to seconds), as one can observe
through the upper, transparent fixed plate. This can
for instance have an influence on the reproducibility of
the measurements, especially if solvent evaporation or
concentration changes occur in the vicinity of the sample
lateral surface. Measurements with variation of the
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Fig. 9 Extrapolation of low 100
frequency |n*|data to -
fres=623 Hz and comparison . : .
with experimentally determined * v
values. Open triangles: 0.5 wt%; o ™
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triangles: 1.5 wt%; filled dia- e . ‘."x'.;j; .
monds: 2.0 wt%; filled circles: e S
2.5 wt%; filled squares: A4, . . ‘“',i:"
3.0 wt% % A *oe 8
o A A -
% ! C o o, Al e
& o A
S8 nep . Ton B
ol 7AN B N y SIS - = )
AT + '
[
0.01 — e
0.1 1 10 100 1000 10000
a)/'(rad-s'l)
Table 5 Extrapolation of B )
low frequency |7*| data to- Sample [n*| = bw“(model) [n*] /mPas from extrapolation  Resonator measured
Jres=623 Hz and comparison a b to f.,=626 Hz n*|/mPas
with measured values
V1 (open triangles) -0.20 0.23 43 35
V2 (open diamonds) -0.32 0.98 72 64
V3 (filled triangles) -0.36 291 152 109
V4 (filled diamonds) — —0.48 11.48 222 145
V5 (filled circles) —-0.53 31.38 399 184
V6 (filled squares) -0.57 46.54 394 225

fluid/plates wettability have not been done yet but
should be performed in the future.

Conclusion

In the previous sections it is shown that the resonating
device behaves in a wide extent according to the ideal-
ized theoretical models. Among both proposed models,
the continuous one based on flexural oscillations of the
resonator lateral walls yields theoretical values which
are closer to the measured ones. This model is however
not appropriate in its actual form for a concrete im-
plementation in the resonator control unit software
because of the much more complicated numerical in-
version procedure. Since both models rely to some ex-
tent on an idealization of the actual geometry, the
introduction of a correction factor in the discrete model
can be justified.

One of the essential features of the present instrument
is the pseudo-stationary phase-shift based method, with
successive driving and sensing of the probe performed by
a single electromagnetic device. The results presented
above show that the method can be used to build a

particularly simple and inexpensive rheometric device.
The limitation resides in minimum system Q factor. In-
deed, the algorithm underestimates the measured
damping in an extent which depends on the system Q
factor. For Q <Q.,;=86 (a value which is reached at |#*|
values of a few hundred mPas with usual gap widths,
due to the almost linear relationship between df and |#*|
under gap loading) pseudo-stationary probe raw data
need to be corrected before inversion of the model is
made, if strictly stationary laser interferometer mea-
surements are not considered as an option. This can be
done by converting the biased control unit measured
values into the true stationary values, with the help of a
calibrated relationship based on stationary laser inter-
ferometer measurements. This solution has an important
drawback, namely that it would imply a partially cali-
brated implementation of the instrument. Alternatively,
the effects of the pseudo-stationary algorithm can be
corrected by modelling the influence of the used algo-
rithm on measured probe raw data f,., and df. Such an
approach, which can be found in Romoscanu (2003), is
outside the scope of this paper. It must be noted that the
value of Q,,,=86 observed here is significantly lower
than the unloaded probe factor Qy=1500, so that the
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above-mentioned artefacts are quantitatively relevant
only at relatively large system dampings.

On the other hand, if 0> Q,,,;,, the error induced by
the algorithm is quantitatively negligible, i.e. not larger
than other usual experimental sources of error. In this
case, the fluid complex viscosity can be inferred from

uncorrected pseudo-stationary probe raw data. Pro-
vided this condition is fulfilled (as for the CMC solu-
tions above), the experimental setup described above
can be considered as a simple and efficient tool for the
measurement of high frequency fluid rheological
properties.
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