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Metric Measure Spaces 

By Zoltdn M. Balogh, Kevin Rogovin, and Thomas Ziircher 

ABSTRACT. We extend Cheeger's theorem on differentiability of  Lipschitz functions in metric measure 

spaces to the class of  functions satisfying Stepanov's condition. As a consequence, we obtain the analogue 

of  Calderon' s differentiability theorem of Sobolev functions in metric measure spaces satisfying a Poincard 

inequality. 

1. I n t r o d u c t i o n  

The classical result of Rademacher (see e.g., [7], 3.1.2) states that a Lipschitz function 
f : l~ n ~ ~ is differentiable almost everywhere (in the sense of the Lebesgue measure). There 
are at least two important generalizations of Rademacher's theorem. The first one is due to 
Stepanov (see e.g., [8], 3.1.8) and states that f : R n ~ R is differentiable at a.e. x ~ S(f), 
where 

S(f):={ xelRn: limsuplf(Y)-f(X)ly--+x lY - x l  < c ~ } .  

The second generalization is the theorem of Calderon (see e.g., [13], 6.17) which claims the 
a.e. differentiability of Sobolev functions f 6 Wt,P(IR n) for p > n. These results are major 
cornerstones of analysis in Euclidean spaces with applications in geometric measure theory [8] 
and differentiability of quasiconformal and quasiregular mappings [23]. 

Recent years have seen an intense ongoing research activity in extending classical results of 
analysis in Euclidean spaces to the setting of general metric-measure spaces. We do not intend 
to present a full list of achievements in this area, but we mention the works [12, 15, 21, 11, 9], 
and [10] for results on Sobolev spaces; and works of [14] and [19] for results on quasiconformal 
mappings in this general framework. We refer to the monograph of Heinonen [13] for an overview 
of this development. 

A major advance in this area of research was marked by the work of Cheeger [5] who extended 
Rademacher's differentiability theorem to the fairly large class of metric-measure spaces which 
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satisfy a doubling condition and admit a Poincar6 inequality. Cheeger's work has been recently 
extended to even more general spaces by Keith [16, 17]. 

The main result of  the present article is a Cheeger-Stepanov type differentiability theorem 
in metric-measure spaces. Roughly speaking, we prove that in the presence of  a doubling condi- 
tion the Cheeger-Rademacher differentiability theorem implies a Stepanov-type differentiability 
result. As applications we obtain statements on differentiability of quasiconformal mappings and 
Sobolev functions in various general metric space settings. 

This article is organized as follows. In the second section we recall some terminology and 
preliminary results. In Section 3 we state and prove the Cheeger-Stepanov differentiability theo- 
rem. In Section 4 we present results on differentiability of Sobolev functions and quasiconformal 
mappings as applications. 

2. Preliminaries 

Definition 2.1. Let (X, d) be a metric space. For x ~ X and r > 0 we let B(x, r) = {y 
X I d(x, y) < r} be the open ball of  radius r around x. We will write rB(x,  r) to mean B(x, zr). 
A function f : (X, d) --+ (Y, p)between metric spaces is called K-Lipschitz if for eachx,  y 6 X, 
p ( f ( x ) f ( y ) )  < Kd(x ,  y). We let L I P ( f )  be the infimum of such K. We let LIP(X) be the set 
of  real valued Lipschitz function on X where IR is considered with the usual Euclidean metric. 

Definition 2.2. A triple (X, d, /z)  is called a metric measure space if (X, d) is a metric space 
and # is a Radon measure on X. 

Following Cheeger [5], it is possible to define the notion of  a differentiable structure in 
metric-measure spaces as follows. 

Definition 2.3 (Strong measurable differentiable structure). Let (X, d, /x) be a metric 
measure space, let C C LIP (X) be a vector space of  functions, and let { (Xc~, (pa)} be a countable 
collection such that each set X~ C X is measurable with positive measure, and such that each 

= ((pl ,  ) (Pc~ \ a . . . .  (pN(ot) : X --~ ~N(a)  

is a function for some N (a) ~ N U {0}, where (pi ~ C for every 1 < i < N (or). (Here (pa will be 
viewed to be the empty function if N (or) = 0.) Then {(X~, (pc`)} is said to be a strong measurable 
differentiable structure for (X, d, /z)  with respect to C if the following conditions are true. 

(i) The sets Xa are pairwise disjoint and 

0 

(ii) There exists a number N > 0 such that N (o0 < N for every coordinate patch (Xc`, Pc,). 

(iii) For every f ~ C and coordinate patch (Xa, (pa), there exists a unique (up to a set of  zero 
measure) measurable function d ~ f : Xc` ~ IR N(~) such that for #-almost every x ~ Xa, 

I f  (Y) - f (x) - ( da f  (x),  (pa (y) - (pa (x))l 
lim = 0 (2.1) 
y~x d (y, x) 
y#x 

where (., .) is the usual Euclidean inner-product on R N(a). 
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For those x for which a daf(x) exists so that the relation (2.1) holds, we say that f is differen- 
tiable at x. 

Note that the existence of  a strong measurable differentiable structure on a space X with 
C = LIP (X) contains in the definition itself a Rademacher-type differentiability in the sense 
of  (2.1). I f  X = 1R n, d is the standard Euclidean metric and/.t is the Lebesgue measure on X, 
then the classical Rademacher's theorem implies that X1 = IR n and ~1 (x) = x defines a strong 
measurable differentiable structure for LIP(IRn). The problem arises to find sufficient conditions 
to guarantee the existence of  a strong measurable differentiable structure for LIP(X).  The first 
result in this direction was given by Cheeger in his seminal article, [5]. To formulate Cheeger's 
result we introduce the following concepts. 

Definition 2.4. A measure/z on a metric measure space (X, d, /z)  is said to be doubling i f /z  
is non trivial and there exists a constant C > 0 such that 

#(2B) < C/z(B) ,  

whenever B is a ball in X. 

It turns out that for doubling measures the Lebesgue differentiation theorem holds, see [13], 
1.8. More precisely, let us recall that for a given set A c X, we call x 6 A a point of density of 
A if 

# ( A  N a (x ,  r)) 
lim = 1. 
r--+0 ]z (B(x ,  r ) )  

When/z  is a doubling measure, #-a.e. x 6 A is a point of density of  A. Moreover, for f ~ L p (Iz), 
we call x0 a Lebesgue point of f if 

lim s u p f  I f (x )  - f(xo)[ p dtz(x) = O, 
r--+0 d B(x0,r) 

where for any set S, the average of  f over S is defined as 

/ 'f, f d# :=  f d#.  
s tz(S) 

When # is doubling, if f ~ LP(#) then #-a.e. x is a Lebesgue point of  f .  

In addition to the doubling condition the following general version of  the Poincard inequality 
is a crucial property of  a metric measure space. 

Definition2.5. L e t p  > 1. A metric measure space (X, d, # )  is said to satisfy a (1, p)-Poincar6 
inequality if there exist constants C > 0 and r >_ 1 so that 

lu -uBId# < C diam(B) pP 
B rB dlz/ 

(2.2) 

whenever u is a continuous function with upper gradient p and B is a ball in X. We say p is an 
upper gradient of u if for each rectifiable curve y : [0, T] --* X,  

tu(F(T)) - u(F(0))] <_ [ pd7gl 
ar  

where ~-/1 is the Hausdorff 1-measure in X. 
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When a pair of function (u, p) satisfies Equation (2.2) for all balls B of X, we say that the 
pair (u, p) satisfies a (1, p)-Poincar6 inequality. 

The class of metric-measure spaces that satisfy the doubling condition and a Poincar6 in- 
equality are the ones on which a considerable part of analysis from the Euclidean theory still 
holds [ 14, 15, 19, 21]. According to Cheeger's result [5], these conditions are also sufficient for 
the existence of a strong measurable differentiable structure. 

T h e o r e m  2.6. Let  (X, d,/z) be a metric measure space with Iz doubling that satisfies a (1, p) 
Poincar6 inequality for some p >_ 1. Then (X, d, # )  admits a strong measurable differentiable 
structure for LIP(X). 

Moreover, according to Keith [16] the condition on the Poincar6 inequality can be substan- 
tially relaxed. For his generalization, let us recall the definition of a chunky measure. 

Def in i t ion  2.7. A measure/z on a metric space (X, d) is called chunky if for/z-a.e, x ~ X, 
there exists a positive decreasing sequence {rn } converging to zero so that for each E > 0 there 
exists N ~ N for which 

/z(B(y, Ern)) 1 
> - -  

/z(B(x, rn)) - N 

whenever n > N and y E B(x, rn). 

T h e o r e m  2.8. Let  ( X , d, lz ) be a locally compact metric measure space with X doubling and 
the measure # is Radon and chunky. Let  K > 1, and let C C LIP (X) be a vector space o f  
functions which satisfies the condition that for every f ~ C, 

Lip f (x) < K lip f (x) , (2.3) 

for almost every x ~ X.  Then ( X, d, # )  admits a strong measurable differentiabte structure with 
respect to C. Moreover, i f  (X, d, lz) satisfies a Poincar6 inequality, then there exists a constant 
K > 0 so that each f E LIP(X) satisfies (2.3) at/z-a.e, x ~ X. 

Here, the upper- and lower-scaled oscillations of f ,  Lip f and lip f are defined by Keith as 

If (x) - f (y)l 
lip f (x) = lim inf sup 

r--+O yEB(x,r) r 

I f ( x ) -  f (y)[ 
Lip f (x) = lim sup sup 

r--+O ycB(x,r) r 

Note that Lip f ( xo )  = lira SUpx~x Lf(x!_ -f(x~ and thus Stepanov's theorem could be stated 
0 a~x,x O) 

as f : ~n _+/t~ is differentiable for a.e. x e S ( f ) ,  where 

S ( f )  = {x E I~ n "Lip f ( x )  < cx~} . 

It is an important observation to note that the above quantifies do not change under restriction 
to positive measure sets. To be more precise, for a given subset K of X, define the scaled 
oscillations of f restricted to K as 

I f  (x) - f (Y)I 
lipg f (x) = lim infr~o SUpycgnB(x,r ) r ' 

I f  (x) - f (Y)I 
Lipg f (x) = lim SUpr_~O SUpy~KMB(x,r ) r 
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P r o p o s i t i o n 2 . 9 .  Let ( X, d, Ix ) be a metric-measure space where Ix is a doubling measure. Let 
K c X and f ~ LIP(X).  Then for each point of  density xo of  K, 

Lip g f (xo)  = Lip f (xo)  

lip K f (xo)  = lip f (xo)  �9 

In particular, for Ix-a.e. x e f - l ( o ) ,  Lip f (x) = O. 

Proof. Let us start by the following direct consequence of  the doubling condition for the 
measure Ix (see e.g., [15], 14.6) according to which there exist constants C > 0 and Q > 0 
depending only on the doubling constant for Ix such that 

l( )o I x (B (x , r ) )  > -  

Ix (B (xo, ro)) - C 
(2.4) 

whenever x ~ B (x0, ro) and r < to. 

The proof of  the proposition is based on the following claim. If  x0 e K C X is a point of  
density of  K, then for each E > 0 there exists r > 0 so that for each x e B(x0, r), there exists 
y e K so that d(y, x) < Ed(x, xo). 

To prove the claim we assume by contradiction that there exists a sequence of  points (Xn) so 
that Xn ~ xo and B (xn, ed (Xn, xo)) n K = 0. 

This implies 

IX (B (xo, r) f' /K c) 
0 = lim 

r--~O IX (B (X0, r)) 
IX (B (x0, (1 + e) d (Xn, xo)) f3 K c) 

= lim 
n~oo IX (B (x0, (1 + e) d (Xn, x0))) 

IX (B (Xn, ed (Xn, xo)) (-1 K c) 
> lim 
- n~oo  IX (B (x0, (1 + e) d (Xn, x0))) 

IX (B (Xn, ed (Xn, x0))) 
= lim 

n---+or IX (B (X0, (1 -t- e) d (Xn, X0))) 

Since IX is a doubling measure we can use (2.4) to conclude that 

1 { ed (Xn, xo) ~ Q 
0 > lim / 

- n ~ o o C  ( l + e ) d ( x n , X O ) ]  

= ~  >0, 

which is a contradiction. 

Let f e LIP(X),  clearly LipK f ( x )  < Lip f ( x )  and lipK f ( x )  < lip f ( x )  for all x e K. 
Let xo e K be a point of  density of K and E > 0. For each r > 0 let Xr e B(xo, r) so that 

If(Xr) -- f ( xo ) l  > --Er A- sup I f (x )  -- f ( xo ) l .  
xeB(xo,r) 

Then from the above claim, for r sufficiently small, there exists Yr E K so that d(yr, Xr) < 



410 Zolt6n M. Balogh, Kevin Rogovin, and Thomas Ziircher 

Ed(xr, XO). H e n c e ,  

l ip / ( f (xo)  = lim i n f -  
r----~ 0 

_> lim inf 
r--+0 

> lim inf 
r----~ 0 

> lim inf - -  
r--~O 

1 E 
+ 1 lip f(xo)  - ~ ( 1  

which when we let E --~ 0 implies that l ip / ( f (xo)  
replacing lim inf with lim sup) gives us that Lip/( 

1 
sup If(Y) - f(x0)l 

(1 -~- 6)F y~KnB(xo,(l+E)r) 

If(x0) - f(Yr)[ 

(1 + 6)r 

If(x0) - f(Xr)[ - I f (x , )  - f (Yr)l  
(1 + ~)r 

- E r  + sup I f ( x ) -  f ( Y ) l - e r L I P ( f )  
(1 + ~:)r yeB(xo,r) 

+ LIP( f ) )  

> lip f (xo) .  The same reasoning as above (by 

f (xo)  > Lip f (xo) .  

The second statement of the proposition is obtained from the first one by setting K = 
f - 1  (0) and observing that L i p / ( f ( x )  = 0 for all points x ~ K. [ ]  

C o r o l l a r y  2.10. Let (X, d, #)  be a doubling metric measure space. Assume that there is a 
strong measurable differentiable structure { ( X~ , goa ) } supported by ( X, d, #). Let f : X --+ • be 
a Lipschitz function. Then at Iz-a.e. point x where f (x) = 0 we have d ~ f (x) = O. 

Proof.  Set K := f - 1  (0). By Proposition 2.9 we know that at/z-a.e, point of K we have 
Lip f (x) = 0. Take such a point and assume that x ~ Xa. It follows that 

I f  (y) - f (x)] I f  (x) - f (y)[ 
lim < lim sup = Lip f (x) = 0 .  
y~x  d (y, x) y--~x d (y, x) 
y~x y#x 

By Definition 2.3 the differential is unique up to a set of measure zero and therefore it follows 
that at/z-a.e, point in K the differential of f is 0. [ ]  

Proposition 2.9 together with Keith's theorem, Theorem 2.8, imply the following. 

T h e o r e m  2.11. Let (X, d, tz) be a complete metric measure space with tz doubling on X so 
that there exists a constant C > 0 so that for each f ~ LIP(X), and for Iz-a.e. x, Lip f (x) <_ 
Clip f ( x ) .  Then for each closed subset A o f  X with # (A)  > O, the metric measure space 
( A, d, Iz ) admits a strong measurable differentiable structure with respect to LIP (A). 

P r o o f  Fix a measurable differentiable structure on X. For each f ~ LIP(A), there exists 
F 6 LIP(X) so that FIA = f .  For points of density x0 of A we have by Proposition 2.9 
that Lip f ( xo)  = Lip a F(xo) = Lip F(xo) and lip f (xo)  = lip a F(xo) = lip F(xo). Since X 
is complete and A is closed it follows that A is locally compact. One can adapt the proof of 
Proposition 2.9 to show that/~ restricted to K is chunky. Hence, we can now apply Keith's 
theorem, Theorem 2.8, to the locally compact set A, which completes the proof. [ ]  

R e m a r k  2.12. Theorem 2.11 is useful even if (X, d, #)  admits a Poincar6 inequality. Indeed, 
an arbitrary closed, positive measure subset of X need not admit a Poincar6 inequality. As an 
example one can consider the so-called Cantor-diamond set of Koskela and MacManus [19]. This 
is a connected, compact 2-regular planar set which does not admit any Poincar6 inequality. In 
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contrast to this, the Lip-lip condition of Theorem 2.8 is inherited by all subsets of X when given 
the measure/z. 

3. Stepanov's theorem in metric measure spaces 

Theorem 3.1. Let (X, d,/z) be a metric measure space. Let the measure lz be a doubling 
Borel measure. Assume that there is a strong measurable differentiable structure {(X~, ~o~)} 
for (X, d, Iz) with respect to LIP(X). Then a function f : X ~ ~ is Iz-a.e. differentiable in 
S ( f )  := {x I Lip f ( x )  < oo} with respect to the structure {(X~, ~oa)}. 

Proof. The proof is based upon Maly's proof of the Euclidean version of Stepanov's theorem, 
see [20]. By the definition of S( f ) ,  for each x e S ( f ) ,  there is a neighborhood of x for which 
f is bounded on. Since (X, d) is separable we can find a countable, dense subset D of X. We 
consider the countable collection of balls {Bj } which have their centers in D, rational radius and 
the property that f is bounded on Bj. The definition of S ( f )  guarantees that it is covered by 
the union of all such balls. Next we define for every ball Bj two functions uj : By --+ l~ and 
vj : Bj ~ ]~ (the upper and lower Lipschitz envelopes of f )  as follows 

uj (x) := inf {u (x) : u > f and u is j-Lipschitz on Bj]  , 

vj ( x ) :=  sup {v (x) :  v < f and v is j-Lipschitz on Bj} . 

Since uj is an infimum of j-Lipschitz functions that are bounded from below by f which is 
bounded on B j,  we can see that uj is j-Lipschitz on Bj. Similarly, vj is j-Lipschitz on Bj as 
well. 

We now identify the bad subsets of X in terms of uj and vj as follows: 

o o  

Da := U {x e Bj M X a :  uj or vj is not differentiable at x } 
j = l  

o o  

Ma := U Ix E B j M X a  : ( u j - v j ) ( x ) = O b u t d a ( u j - v j ) ( x )  y&O} 
j = l  

N : = U ( D a U M a )  . 

Note that for each or, the set D,~ is by Definition 2.3 a null set and the same holds for Mu by 
Corollary 2.10. Thus, N is a countable union of null sets, i.e., N has measure zero as well. 

Take a point x0 e S ( f )  \ N and choose a so that x0 e Xa. Since Lip f (xo)  is finite, there 
exist r > 0 and I > 0 such that 

I f ( x ) - f ( x 0 ) l < l . d ( x ,  x0) forall  x e B ( x 0 ,  r ) .  

Using the separability of X we can find an element Bj of the sequence {Bj } with j > l 
satisfying 

x0 6 B j  C B (x0, r) . 

It follows that for x e Bj we have 

f (xo) - j d  (x, xo) < f (x) < f (xo) + j d  (x, xo) �9 
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By the definition of uj  and vj  we obtain that for each x a Bj 

f (xo) - j d  (x, xo) < vj  (x) < f (x) < uj  (x) < f (xo) + j d  (x, x0) (3.1) 

in particular, uj (xo) = f (xo) = vj (xo). Since x0 r Mot we know that dotvj (xo) = dotuj (xo). 
Using (3.1), we build the chain of inequalities 

In conclusion 

0 = lim 
x---~ x 0 
x ~ x  0 

< lim 
x----~ x 0 
x ~ x  0 

Y j  (X) -- Uj (Xo) --  (dot vj (xo) , (ra (x) - (rot (xo)) 

d (x, xo) 

f (x) - f (xo) - (dotuj (xo), (riot (x) - (rot (xo)) 

< lim 
- x ~ x o  d ( x ,  xo) 

X ~ X  0 

d ( x ,  xo )  

u j  ( x )  - u j  ( xo)  - (do tu j  ( xo)  , (pot ( x )  - (rot (xo) )  ~_ O . 

f (x) - f (xo) - (dotv j  ( x o ) ,  (rot (x )  - (rot (xo) )  
lim 0 .  

xoxo d (x, xo) 
x ~ x o  

Since dot f  = dotuj #-a.e. in Bj and the balls {Bj }j cover the whole set S ( f )  \ N the uniqueness 

and the measurability of dot f follow. [ ]  

R e m a r k  3.2. Motivated by Keith's Lip-lip condition from Theorem 2.8 it is natural to ask 
whether a function f : X ~ ~ is differentiable/z-a.e, in the set 

s ( f )  = {x E X : l i p f (x )  < oo}. 

Examples constructed in [3] show that the answer to this question is negative already for X = 
[0, 1]. However, the a.e. differentiability holds true for functions in Nn if we assume that f is 
continuous, lip f is finite outside a set of a-finite Hausdorff n - 1 measure and lip f E LP for 
p > n .  

4.  A p p l i c a t i o n s  

The first part of following statement follows from Theorem 5.1 in [15]. Its proof uses Riesz 
potentials and maximal functions. For the convenience of the reader we present a direct proof, 
based on the method of ball-chaining which has been employed in [14, 15, 21]. 

T h e o r e m  4.1. Let  (X, d,/z) be a doubling metric measure space. Let  f : X ~ • be a 
measurable function and p ~ LlPoc with p > Q and p >_ 1 where Q is as in (2.4). I f  ( f ,  p) 
is a pair which satisfies (1, p)-Poincar6-inequality, then f has a representative which is locally 
(1 - Q / p)-H61der continuous which is lz-a.e, differentiable with respect to the strong measurable 
differentiable structure {(Xot, (rot)} whenever X admits such structure on all o f  LIP(X) .  

Proof .  Let z ~ X, R > 0 and x ~ B(z, R/2)  be a Lebesgue point of f .  Let B0 = B(z, R) 
and for i ~ N, let Bi = B(x, R/4i) .  Then for each i ~ N, Bi C Bi-1 and radBi = �88 radBi_l.  
Since x is a Lebesgue point of f 

f 
f ( x ) = . l i m  ~- f d / ~ .  

t--~cx3d B i 
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In the following chain of estimates C > 0 is a generic constant whose value can vary from 
line to line. 

oo 

IT -- TBoI <-- E IT", -- TBi+,I 
i=0 
oG 

<_ C ~ --4i rBi PP (Poincar6-inequality) 
i=0 

_ - -  . pP 
< C Z 4 i \ ~---~/) ] rBo 

i=0 
(x) 

_CR~_(1 . ] I -Q/p ( f  )l/p < pP (by (2.4)) 
i=0 \ ~ ' ]  BO 

< CR pP 
- \ 4 i . ]  

B0 i =0 

: C R q r B o p p ) I / P  �9 

Hence, for Lebesgue points x, y 6 B(z, R/2) we have that 

I f  (x) - f (Y)I < CR pP (4.1) 
- /z (B (z, rR))  (z,rR) 

Fix p 6 X and let r < diam X. Then for x, y 6 B(p, l r )  we have that B(x, 2d(x, y)) ___ 
B(p, r). By setting z = x and R = 2d(x, y) we see that for each pair of Lebesgue points x and 
y in B(p, l r ) ,  that 

If(x) - f(Y)l < Cd(x' Y) (#(B(x,2)d(x, y))) ) l/P (fB(p,rr)PP dtx) 1/p 

Using (2.4) allows us to conclude that for each pair of Lebesgue points x and y in the ball 
B(p, r/4) that 

I f (x )  - f(Y)l <- Cd(x, y)l-Q/p pP dl~ 
B(p,rr) 

which implies that f is locally H61der continuous on the set of Lebesgue points of f .  Hence, 
there exists a representative of f which is locally (1 - Q/p)-H61der continuous. By choosing 
this representative, every point is a Lebesgue point of f .  Now using this representative of f ,  we 
will show that Lip f(x) is finite for ~-a.e.x.  

Indeed, for each x 6 X, and R > 0 we have by (4.1) that 

( If(x)- _ ( f  I"~I/P sup f (Y) l~  < C pP 
yEB(x,R) d(x, y) ii B(x,2rR) dl~/ (4.2) 
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(• ) 1/p 
Lip f (x)  < C lim sup pP dlz 

R---*O B(x,2r R) 

which is finite whenever x is a Lebesgue point of p. Hence, for/z-a.e, x, Lip f (x)  is finite. By 
Theorem 3.1 the proof is complete. [ ]  

In the following we will place the above theorem in the context of Sobolev spaces defined on 
metric measure spaces. The interested reader is encouraged to consult the overview article [11] 
by Hajlasz for an introduction to Sobolev spaces in metric measure spaces. The interested reader 
should also consult [ 10] for another approach to creating Sobolev spaces in abstract metric measure 
spaces. 

For the record we first recall the notion Newtonian space (as introduced by N. Shanmu- 
galingam in [21]). 

Definition 4.2. Let (X, d,/z) be a metric measure space with/x doubling that satisfies a (1, p)- 
Poincar6 inequality. We define the vector space of functions, ~ l ,p  as the set of all p-integrable 
functions f so that there exists a non negative p-integrable Borel function p which is a weak 
p-uppergradient of f ,  i.e., for modp-a.e, curve y : [0, T] ~ X, 

[ f ( y (T ) )  - f (y(0)) [  _< fy pdT-L 1 

where 7-/1 is the 1-Hausdorff measure. Here, modp(F) of a curve family F is defined as 

modp(F) := in f { fpPd t z , f o reachcurvey~F ,  f e p d ~ l > l  } �9 

The Newtonian space NI,p(x)  is the set of equivalence classes of the relation f ~ g i t  
I l f  - gllNl,p = 0 where 

IIflINLp := Ilfllp + inf {llPllp I P is a weak p-uppergradient of f }  . 

We also define N1LcP(X) as the space of functions in LlPoc which have a weak p-uppergradient 
P 

p E Llo c. 

Since NI 'p(x )  • WI'p(]I~ n) when X = I~ n, the following statementis adirect generalization 
of Calderon's theorem. 

Corollary 4.3. Let lz be a doubling measure that satisfies a (1, p)-Poincar6 inequality with 
p > 1. I fp  > Q where Q is the exponent as in (2A), then each function f ~ NI,P(X) has a 
locally Htlder continuous representative which is differentiable lz-a.e. 

Proof. L e t f  E Nl'P(X) andpbeaweakp-uppergradientoff. Then the pair (f ,  p) satisfies 
the Poincar6 inequality, see [21]. Apply Theorem 4.1 to finish. [ ]  

In IR n, Calderon's Theorem gives that if f ~ WI'p(~ n) with p > n, then f is differentiable 
a.e. and the pointwise gradient of f is equal to the weak gradient of f a.e. In the following we 
will show that when one extends the differential operator d to N I,p, then the extension D agrees 
with the d as calculated by Theorem 3.1. In the following we first show how to use a result of 
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Franchi, Haj~asz, and Koskela to extend d to N I'p . This extension is the only extension which is 
stable under limits in N I'p . 

Let (X, d , /z)  be a metric measure space for which # is doubling that satisfies a Poincar6 
inequality. Fix a strong measurable differentiable structure on X, {(Xa, ~0a)} created by Theo- 
rem 2.6. For/~-a.e. x, let or(x) denote the unique ot so that x ~ Xa. By [5, Theorem 4.38], for 
each x e Xa, the semi-norm 

[IX[Ix = Lip((X, ~0a))(x) 

is a norm on R N(a). We see that for each X e ]~N(a(x)) 

I IXllx : Lip((X, ~0a))(x) 

IIXIIn~u<~) �9 LIP(~oa) 

where 11 �9 [{~N(~) is the Euclidean norm on ]~N(a). Letting Ca = LIP(~pa) we see that for/z-a.e. 
x c X ,  

IIZ[Ix _< Ca(x)llZll~Nc~,, �9 

Moreover, since I[ �9 I Ix is a norm on ~N(a), for each x ~ Xa there exists a constant C(x)  so that 

I[XIIRu<~cx)~ ~ C(x)llXIIx �9 

By partitioning Xa into 
Oc~,n = {x E Xc~ In >_ C(x )  > n - -  1} 

we have that for each x e Ua,n 

1 
-llXIt~(=(x~) _< IIXIIx <_ nllXIt~N(=~x~ �9 (4.3) 
n 

For each locally Lipschitz function u, dau is measurable and so is the function x ~ Lip(u)(x). 
Let u be differentiable at x0 e Xa and set f ( x )  = (d%(xo) ,  ~oa(x) - ~Oa(XO)). The definition of  
differentiability of  u at xo gives that Lip(u - f ) ( x o )  = 0. Hence, we see that 

Lip(u)(x0) < Lip(u - f ) ( xo )  + L i p ( f  )(x0) 

= o + Ildau(xo)llxo 

and 

]ldau(xo) llxo = Lip(f ) (xo)  

_< L i p ( f  - u)(xo) + Lip(u)(xo) 

= Lip(u)(x0) , 

i.e., Lip(u)(x0) = [Idau(xo)llxo whenever u is differentiable at xo e Xa. To simplify notation 
we will write du(x )  for da(x)u(x).  The above implies that for each locally Lipschitz function u, 
x ~ [[du(x)J Ix is measurable. Moreover, from the algebraic nature of  Equation (2.1) we see that 
for each pair of  locally Lipschitz functions u and v, that d(uv ) ( x )  = v(x)  du(x )  + u(x)  dr (x ) .  
Together with Proposition 2.9 we see that the mapping d satisfies the following: 

(1) Ildu(x)llx = Lip(u)(x) < LIP(u) provided that du(x)  exists. 

(2) For each X e ]~, d(Xu)(x)  = X du(x)  provided that du(x )  exists. 

(3) d(u + v)(x)  = du(x)  + d r ( x )  provided that both du(x )  and d r ( x )  exist. 
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(4) d(uv)(x)  = v(x) du(x) + u(x) dr(x)  provided that both du(x) and do(x)  exist. 

Now let N = supu N(ot), which is finite by Cheeger 's theorem, Theorem 2.6. By Keith [18, 
Lemma 6.10 and 6.16], for/z-a.e, x e Xa, there exists an inner product on ]R N(a), (., ")x so that 
for each v e ]R N(a), 

_ _  . ~ 1 / 2  1 Ilollx _ (O, o/x <_ C(N)llvllx . 
C(N) 

In contrast to (4.3), C (N) does not depend on or. Moreover, the mapping x ~ (., .)x is measurable 

as a map from Xa tothe  space of positive definite matrices. Fo reachx  ~ X a , l e t e l ,  .. N(ct) t.^ �9 , ~ X  O ~  

i an orthonormal basis o f ~  N(a) with respect to the inner product (., ")x so that the functions x ~ e x 
are measurable (such a choice exists because the mapping x --~ (., ")x is measurable). Writing 
du(x)  = Y~i ai(x)eix , we see that the function du(x) = (al(x) ,  a2(x) . . . .  ) is a measurable 
function which satisfies the following. 

(1) Ildu(x)ll ~ CIIdu(x)llx ~ C LIP(u)(x)  where I[ �9 II is the Euclidean norm on IR Iv(~). 

(2) For each)~ ~ ]R, dO~u)(x) = Xdu(x) .  

(3) d(u + v)(x) = "du(x) + "dr(x). 

(4) d(uv)(x)  = v(x) "du(x) + u(x) do(x). 

(5) The pair (u, I Id'ull) satisfies a (1, p)-Poincar6 inequality with constants independent of 
u, i.e., there exists constants C > 0 and r > 1 so that for each locally Lipschitz function 
u, and for each ball B, 

/ (f )"' 
B l u - uBId# < C diam(B) tB [l~u II p d u  

Now if we view "du(x) as element of  A s ,  via 

"du(x) = (al (x)  . . . . .  aN(a)(x), 0 . . . . .  0) e R N(a(x)) x ]R N-N(~(x)) 

we then have produced a function d which maps thespace  of locally Lipschitz functions t o  ]I~ N 

so that (1)-(5) from above are true. We now extend d to N I'p as follows. 

In [9], Franchi, Hajlasz, and Koskela showed that if a metric measure space (X, d , /z )  admits 
a Poincar6 inequality with # doubl~g  and if there is a function d as above acting on the space 
of locally Lipschitz function, then d extends uniquely to all of NI.P(X) as follows: if fn is a 
collection of locally Lipschitz functions so that fn --+ f in N 1,p (X), then there exists a measurable 
function v with v(x) ~ ~N(a(x)) SO that ha(x) = IId'fn (x) - v(x)l l  converges to 0 in LP(X) and 
for any other sequence of locally Lipschitzfunctions gn that converges to f in N 1,p (X) satisfies 
dgn ~ v in L p as well. We will write D f  for this v. In particular, if u is locally Lipsch~tz, 
then du(x) = Du(x)  for /z -a .e .x .  By passing to limits we see that the same properties o l d  are 
inherited by D, i.e., for each pair of function u, v ~ NI ' p ( x )  and/x-a.e, x 

(1) For each X ~ ~ ,  D(Xu)(x) = X Du(x). 

(2) ~ ( u  + v)(x) = ~u(x) + ~v(x) .  
(3) /~(uv)(x)  = v(x) Du(x) + u(x) Dr(x)  provided that v is bounded and Lipschitz. 

Moreover, we can extend D to the space N1Lp by multiplying such functions by Lipschitz bump 

functions�9 Note that if N(ot(x)) < N, then for each u ~ N I'p and i > N(ot(x)), the i-th 
co-ordinate of  Du(x) is zero. We now define Du(x) ~ IR N(a) as 

Du (x) = E ai (x)e i 
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where Du(x)  = (al (x), a2(x) . . . .  ). In this fashion we have extended d from the space of  locally 
Lipschitz functions to D acting on N I , p ( x )  so that d = D on the space of  locally Lipschitz 
functions so that if f~ --+ f in N I'p then f IIDfn(X) - Df(x)llPx ~ O. 

T h e o r e m  4.4. Let  ( X, d, Ix) be a metric measure space with Ix doubling that admits a (1, p )- 
Poincard inequality. I f  f ~ N I ' p ( x )  with p > Q where Q as in (2.4)then d f ( x )  = D f ( x )  
Ix-a.e. where D is the unique extension o f  d to NI 'P(X) .  

Proof .  Fix a strong measurable differentiable structure {(~oa, Xa)}aeA on X. By inequal- 
ity (4.3) and possibly reindexing the charts Xa,n to Xa, we can assume that for each ot there exists 
Ca > 0 so that for each ~ e R N(a) and each x e Xa 

1 
~-IIXlIRN(~> ~ IlXllx ~ CallZll~N(~> (4.4) 
L a  

where 11 �9 I IRN(~) is the Euclidean norm on ]~N(a). Let fn be a sequence of  locally Lipschitz 
functions that converge to f in NI 'P(X) ,  i.e., 

and 

fxll dfn(X) - Df(x)l lPxdix(x)  ~ 0 

x [fn(X) - f ( x ) l P  d/z(z)  ~ O. 

For each n, pn(x) = [IDfn(x)llx is a weak p-upper gradient of  fn. Letting p(x) = IIDf(x) i ix  
we see that since fn ~ f and Pn --+ P in L p, the pair (f ,  p) satisfies a (1,p)-Poincar6 inequality. 
Since x ~ IIDf(x)tlx is L p integrable we see that for Ix-a.e. x0 ~ Xa 

l fB lim sup I IDZ(Y)[[ p dix(y) = 0 .  (4.5) 
r---~0 IX(B(x0, r)) (xo,r) \ xa 

For each ot and x e Xa let D a f ( x )  = D f ( x )  which is an element in N s(a). We can view the 
map x ~ D a f (x) as a function from Xa to IR N(a). Extend D a f as zero outside of  Xa. We now 
define a good subset of  Xa as 

Sa = {x0 ~ Xa I x0 is a Lebesgue point of  D a f ,  

x0 is a point of  density of Xa and (4.5) holds}.  

Note that IX(Xa \ Sa) = 0. For each x0 6 Sa, consider the function g defined by 

g(x)  = f (x) -- f (xo) -- (L, ~Oa(X) -- c.0a (X0)) 

where )~ = D f ( x o )  viewing D f ( x o )  as an element of  N N(a). Note that for each ball B, g 
NI,p(B).  One sees that 

Dg(x)  = D f ( x )  - D(()~, ~oa})(x) 

N(a) 

= O f ( x )  - Z ~'i D~~ 
i=1 
N(a) 

= D f ( x )  - E Xi dq)i(x) �9 
i=1 
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Moreover, for x E X,~, d e  = ei where ei is the vector in ~N(a )  whose i-th co-ordinate is one 
and all others are zero. In particular, 

Dg(x) = Df(x) - Df(xo) 

for x 6 Xa. Since fn --+ f in N 1,p, we see that for each ball B, gn "-> g in NI ' p (B)  where 

g.(x) = A(x)  - f(xo) - O~, ~ ( x )  - ~o~(xo)) . 

Hence, by a limiting argument, the pair (g, x ~ l[ Dg (x)l Ix) satisfies a (1, p)-Poincar6 inequality. 
In particular, for each r > 0 and x ~ B(x0, r) ,  inequality (4.2) gives 

lip 

( f  Df(y) N('~) idtz(y))  Ig(x) - g(xo)[ < C - E )~i d e ( y )  
d(x, xo) - B(xo,2rr) i=1 

We claim that 

/ (Y) Y ) lip 
N(u) p 

lim sup Df(y) - ~ Xi d e  du(y) = O. 
r-+O B(x0,r) i=1 

Indeed, since x0 is a Lebesgue point of  D a f and (4.4) we see that 

N(c~) p 
1 

l imsup D f ( y ) -  ~ Xi d~o~ du(y) 
r--+0 /A kay's0 '  (x~ i=1 Y 

= l imsup 1 IID~Z(y)- D~f(xo)lfy dlz(y) 
r ---~0 /Z ( n ( ; 0 ,  r ) )  (xo,r)f-Ixa 

_< lim sup Ca l[ Daf(Y) Daf(xo) dlz(y) 
r- O ( B ( ; 0 ,  r ) ) ( x o , r ) n x ~  - 

< lim sup Cc~ II D~ f (Y) D"  f (xo) d/x (y) 0 - = . 

r ---~0 B(xo,r) 

Since (4.5) holds and x0 is a point of  density of X~, 

lim sup - ~.i d e  
r--~O u ( B ( x o ,  r ) )  (xo,r) \ X~ i=1 

< lim sup - r~O /z(B(xo, r))  (xo,r) \x .  [IDf(Y)IIP dlz(y) 

( l z (B(xo ,  r) \ Xa) ~ lip 
+LIP(~~ ~ ~--~x'-~,r-D ] - 0 .  

Thus, for ~. = Df(xo) 

0 ---- lim sup 
x--+ x 0 

Ig(x) - g(xo)l 
d(x,  xo) 

i f ( x )  - f (xo) - ()~, ~oa(x) - ~oa(xo))[ 
= lim sup 

x-~xo d(x, xo) 
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which by uniqueness property of  the strong differentiable structure of  {(X~, q)~)} implies that 
d f  (xo) = k = D f  (xo), completing the proof. [ ]  

R e m a r k  4.5. With the additional hypothesis that X is complete, D f  can be shown to be an 
integral average pointwise differential, even if p < Q. Indeed, Bj6rn in [4] has shown that 
if (X, d , /z)  is a complete metric measure space with/z  doubling and admits a (1, p)-Poincar6 
inequality, then for each f ~ N I , p ( x )  and/z-a.e, x0 6 X, 

lim sup 1 { I f ( x )  - f ( x o )  - (k, ~Oa(xo)(X) - ~0~(x0)(x0))l dlz(x)  = 0 (4.6) 
r---*0 r J B ( x 0 , r )  

where k = Df(xo) .  

Along similar lines, Keith in [ 17] has also shown that if (X, d, #)  is a complete metric measure 
space with/z doubling and admits a (1, p)-Poincar6 inequality, then for each f ~ N I , p ( x )  and 
/z-a.e. xo ~ X,  D f  is an approximate differential of f at x0 i.e., 

I f ( x )  - f ( x o )  - (Df (xo) ,  ~oc~(xo)(X) - ~O~(xo)(Xo))[ = 0 (4.7) 
aplimx~xo d(x,  xo) 

where L = aplimy~xU(X) if and only if for each E > O, 

/ z ( { y E B ( x , r )  : I L - u ( y ) l  > e } )  
lim = 0 .  
r~0  /z(B(x, r)) 

Theorem 4.1 replaces aplimx~xo of the above with limx-~x0 when p > Q. 

A weaker notion of differentiability is Lq-differentiability. Namely a function f is Lq- 
differentiable at a point xo if there exists k e ]t~ N(a(xo)) so that 

lira sup - I f ( x )  - f ( x o )  - (k, ~O~(xo)(x) - ~o,~(xo)(xo))I q dl~(x) = O. 
r--,o r B(xo,r ) 

Note that if f is differentiable at x0 then for each 1 < q < e~, f is L q-differentiable at x0 with 
k = Df (xo ) .  One can readily see that (4.6) states that each f ~ N 1,p is Ll-differentiable at 
/~-a.e. x0 ~ X. From [22, Theorem VIII . l ] ,  when X = IR n with the Euclidean metric and # is 

p *  - . 

the Lebesgue measure, for f ~ WI'p(IR n) with 1 < p < n, f is L -dxfferentlable a.e. where 
p* = P n  (the Sobolev conjugate of  p). For finer notions of  the degree of smoothness of  a 

, i  - - / v  

function we refer the reader to [6]. 
n 

In the case when the function has bounded variation, f ~ BV(IR n) it follows that f is L ~ - 
differentiable a.e., see [1, Theorem 3.83]. Recently the notion functions of  bounded variation has 
been extended to the class of  metric measure spaces with doubling measure that admit a Poincar~ 
inequality, see [2]. It would be interesting to see whether under this setting functions of  bounded 
variation are L q-differentiable for some values of q. 

R e m a r k  4.6. Let us observe that if the space (X, d,/~) does not support a Poincar6 inequality 
the space N 1,p could be quite nasty. For example, if X is a totally disconnected subset of  j~n then 
N I ' p ( x )  simply coincides with L p and thus it could be that a f ~ N I'p is nowhere differentiable 
in such cases. 

If  we want to obtain differentiability results for Sobolev functions on spaces which do not 
necessarily satisfy a Poincar6 inequality it is useful to recall the definition of  Sobolev space in the 
sense of  Hajlasz as follows. 
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Definition 4. 7. Let (X, d, # )  be a metric measure space. For each p > 1 we let M t'p (X) be 
the Hajlasz space which is the space of  functions f ~ LP(Iz) for which there exists g ~ LP(tz) 
so that for ~-a.e. x, y ~ X, 

I f (x )  - f(Y)l < d(x, y)(g(x) + g(y)) . (4.8) 

C o r o l l a r y  4.8. Let Iz be a doubling measure. I f  p > Q and p > 1 where Q as in (2.4), then 
each function f ~ M I,p has a locally HOlder continuous representative. Moreover, i f  X admits 
a strong measurable differentiable structure, then that representative is differentiable #-a.e. 

Proof. Let f ~ M I'p and let g E L p so that (4.8) of  Definition 4.7 is satisfied. To show that 
( f ,  g) satisfy a (1, p)-Poincar6 inequality, fix a ball B in X. We than have for/z-a.e, x, y ~ B 
that 

I f (x )  - f ( y ) l  _< d(x, y)(g(x) + g(y)) . 

If  we integrate with respect to x e B and then with respect to y e B we obtain (see Theorem 3.1 
in [15]): 

f I f - f B l d l z < _ 2 . d i a m B f  gdlz 
B B 

< 2 .  diam B gP dl~ 
B 

which shows us that ( f ,  g) satisfy the Poincar6 inequality. Applying Theorem 4.1 finishes the 
proof. [ ]  

C o r o l l a r y  4.9. Let f : ( X, d, lz ) --~ ( Y, p, v) be a quasi-conformal homeomorphism between 
metric measure spaces. I f  both # and v are Q-regular and i f  X admits a strong measurable 
differentiable structure, then for each Lipschitz function r : Y ---> ~ the function r o f is 
differentiable Iz-a.e. in X. 

Proof. Let us recall that a measure/z is Q-regular if there exists a constant C > 0 such that 

L r a  <_/z(B(x, r)) <_ Cr a , (4.9) 
C 

for all x ~ X and 0 < r < diam(X). 

Recall also from [14] the metric definition of  quasiconformality of  a homeomorphism 
f : X ---> Y, according to which there exists a constant K > 1 such that for every x ~ X 

SUPd(x,y)<_r p ( f  (x), f (y) ) 
lira sup < K .  (4.10) 

r~O infd(x,y)>_r p ( f ( x ) ,  f ( y ) )  -- 

By Theorem 3.1, we need only check that Lip(r  o f )  is finite/z-a.e. Indeed, for each x e X 
we have by (4.9) and (4.10) 

SUpd(x.y)<_r p ( f  (x), f (y)) 
Lip(C o f ) ( x )  < LIP(C)" lim sup 

r-~O r 
l 

< C2K LIP(C) �9 ( l im sup 
v ( f  (B(x, r))) 

- -  X ,  r - - - ~ 0  /z(B(x,r ) ) )  ] " 
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Since for general homeomorphisms and/z doubling one has that the volume derivative 

d""V(x)f" = lim v ( f  (B(x, r ) ) )  

d/z r~0  #(B(x,  r)) 

exists as a finite number for/z-a.e, x we conclude that Lip(4~ o f)(x) < c~ for/z-a.e, x finishing 
the proof. [ ]  

Remark 4.10. The assumption that both X and Y are Q-regular cannot be dropped. Indeed, 
let ~ : R n -~ l~ be l_H61der continuous function which is nowhere differentiable. Let X be R n 

,41/2 with the Euclidean metric dE and Y be ~n with the metric w E . In this situation, X is n-regular 
and Y is 2n-regular. The map f : X ~ Y as f (x)  = x is quasi-symmetric and 4~ : Y --+ R is 
Lipschitz on Y, but ~b o f is nowhere differentiable on X. 
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