
DOI: 10.1007/s00453-004-1131-0

Algorithmica (2005) 42: 121–139 Algorithmica
© 2005 Springer Science+Business Media, Inc.

Approximating Maximum Weight Cycle Covers
in Directed Graphs with Weights Zero and One1

Markus Bläser2 and Bodo Manthey3

Abstract. A cycle cover of a graph is a spanning subgraph, each node of which is part of exactly one simple
cycle. A k-cycle cover is a cycle cover where each cycle has length at least k. Given a complete directed graph
with edge weights zero and one, Max-k-DCC(0, 1) is the problem of finding a k-cycle cover with maximum
weight.

We present a 2
3 approximation algorithm for Max-k-DCC(0, 1)with running time O(n5/2). This algorithm

yields a 4
3 approximation algorithm for Min-k-DCC(1, 2) as well. Instances of the latter problem are complete

directed graphs with edge weights one and two. The goal is to find a k-cycle cover with minimum weight. We
particularly obtain a 2

3 approximation algorithm for the asymmetric maximum traveling salesman problem
with distances zero and one and a 4

3 approximation algorithm for the asymmetric minimum traveling salesman
problem with distances one and two.

As a lower bound, we prove that Max-k-DCC(0, 1) for k ≥ 3 and Max-k-UCC(0, 1) (finding maximum
weight cycle covers in undirected graphs) for k ≥ 7 are APX-complete.

Key Words. Combinatorial optimization, Approximation algorithms, Inapproximability, Traveling salesman
problem, Cycle covers.

1. Introduction. A cycle cover of a graph is a spanning subgraph such that each node
is part of exactly one simple cycle. Computing cycle covers is an important task in graph
theory and combinatorial optimization [18], [21]. A k-cycle cover (sometimes also called
the (k − 1)-restricted cycle cover) is a cycle cover, each cycle of which consists of at
least k edges.

Max-k-DCC(0, 1) is the following optimization problem. An instance is a complete
directed loopless graph G. Each edge of G has weight either zero or one. The goal is to
find a k-cycle cover of G with maximum weight. Max-k-UCC(0, 1) is similarly defined,
except that the input graph is undirected. Analogously, Min-k-DCC(1, 2) and Min-k-
UCC(1, 2) are the problems of finding a minimum weight k-cycle cover in a directed or
undirected graph, respectively, where the edge weights are one and two.

1 The algorithm in Section 2 generalizes results presented at the 9th Annual European Symposium on Algo-
rithms (ESA), Aarhus, Denmark, 2001 [6]. In Section 3 we strengthen results presented at the 5th International
Workshop on Approximation Algorithms for Combinatorial Optimization Problems (APPROX), Rome, Italy,
2002 [5]. The first author was supported by DFG Research Grant BL 511/5-1, and the work was performed
while he was a member of the Institut für Theoretische Informatik, Universität zu Lübeck. The second author
was supported by DFG Research Grant RE 672/3.
2 Institut für Theoretische Informatik, IFW B46.2, ETH Zürich, ETH Zentrum, 8092 Zürich, Switzerland.
mblaeser@inf.ethz.ch.
3 Birth name: Bodo Siebert. Institut für Theoretische Informatik, Universität zu Lübeck. Ratzeburger Allee
160, 23538 Lübeck, Germany. manthey@tcs.uni-luebeck.de.

Received November 1, 2003; revised November 5, 2004. Communicated by H. Gabow.
Online publication February 7, 2005.

122 M. Bläser and B. Manthey

A special case of the cycle cover problem is the traveling salesman problem (TSP),
where the goal is to compute a Hamiltonian tour of maximum or minimum weight. For
directed graphs (asymmetric TSP, ATSP), we call the former with distances zero and
one Max-ATSP(0, 1) and the latter with distances one and two Min-ATSP(1, 2). Max-
STSP(0, 1) and Min-STSP(1, 2) are the corresponding undirected variants (symmetric
TSP, STSP). These problems have received much attention within theory of approxima-
tion algorithms. Furthermore, they can be viewed as a relaxation of the Hamilton cycle
problem: we are looking for a Hamilton tour that contains as few “nonedges”, i.e., edges
of weight zero or of weight two, as possible.

Max-ATSP(0, 1) generalizes Min-ATSP(1, 2) in the following sense: Every (1 −
α) approximation algorithm for Max-ATSP(0, 1) for some α > 0, translates into a
(1 + α) approximation algorithm for Min-ATSP(1, 2) by replacing weight two with
weight zero [24]. The converse, however, is not known to be true. The same relation
holds for cycle cover problems as well and also for the undirected variants. Therefore,
the maximization problems with weights zero and one seem to be harder than their
minimization counterparts with weights one and two.

1.1. Previous Results. Testing whether a directed graph has a 2-cycle cover can be
solved in polynomial time by computing a maximum matching in a bipartite graph [1]
(this problem is also known as the assignment problem [16]). However, already testing
whether a directed graph has a 3-cycle cover is NP-complete [23] (see also GT 13
of [10]).

Testing whether an undirected graph has a 3-cycle cover can be solved using Tutte’s re-
duction [22] to the classical perfect matching problem which can be solved in polynomial
time [7]. Max-3-UCC(0, 1) can be solved in polynomial time as well. Hartvigsen [11]
presented a polynomial time algorithm for deciding whether an undirected graph pos-
sesses a 4-cycle cover. He also presented a polynomial time algorithm for finding a
5-cycle cover in bipartite graphs [12]. Vornberger [25] proved that finding a 5-cycle
cover of maximum weight is NP-complete if we allow arbitrary edge weights (see also
[4]). He also proved that testing whether an undirected graph has a 6-cycle cover is
NP-complete.

Let n be the number of nodes in the graph considered. For k > n/2, Max-k-
DCC(0, 1) and Min-k-DCC(1, 2) become Max-ATSP(0, 1) and Min-ATSP(1, 2), re-
spectively. Analogously, we get Max-STSP(0, 1) and Min-STSP(1, 2) from the undi-
rected cycle cover problems. All these problems are APX-complete [20]. Engebret-
sen [8] proved explicit lower bounds for the approximability of Min-STSP(1, 2) and
Min-ATSP(1, 2). These bounds were improved by Engebretsen and Karpinski [9]: unless
NP = P, Min-ATSP(1, 2) and Min-STSP(1, 2) do not have approximation algorithms
with the ratio better than 321

320 and 741
740 , respectively. Papadimitriou and Yannakakis [20]

presented a factor 7
6 approximation algorithm for Min-STSP(1, 2). Their algorithm was

generalized to an approximation algorithm with the same approximation ratio for Min-
k-UCC(1, 2) for arbitrary k [6]. Vishwanathan [24] presented a 17

12 approximation for
Min-ATSP(1, 2). By exploiting an algorithm by Lewenstein and Sviridenko [17] for the
asymmetric maximum TSP, we get a 5

8 approximation for Max-ATSP(0, 1) and an 11
8

approximation for Min-ATSP(1, 2). Recently, Kaplan et al. [15] presented an algorithm
that achieves the approximation ratio 2

3 for the maximum ATSP and for computing max-

Approximating Maximum Weight Cycle Covers in Directed Graphs 123

imum weight 3-cycle covers, both with with arbitrary edge weights. Their algorithm
can also be used as a 2

3 approximation for the problem of computing maximum weight
k-cycle covers, although they do not explicitly mention that.

Closely related to the maximum ATSP with distances zero and one is the directed node-
disjoint path packing problem. This problem has various applications such as mapping
parallel programs to parallel architectures and optimization of code [24]. An instance
of this problem is a directed graph. The goal is finding a spanning subgraph consisting
solely of node-disjoint paths with as many edges as possible. The directed node-disjoint
path packing problem is equivalent to Max-ATSP(0, 1).

1.2. Our Results. We present an approximation algorithm for Max-k-DCC(0, 1) that
achieves approximation ratio 2

3 . Its running time is O(n5/2). The analysis of the ap-
proximation ratio and the running time are independent of k. Thus, we also obtain a 2

3
approximation algorithm for Max-ATSP(0, 1).

Recently, Kaplan et al. presented an algorithm that achieves the same ratio in graphs
with arbitrary weights [15]. Our algorithms still remains interesting because the algorithm
presented by Kaplan et al. requires solving a linear program with n2 variables. In contrast,
our algorithm is purely combinatorial and thus much faster.

Our algorithm can also be used for approximating Min-k-DCC(1, 2), for which we
obtain a 4

3 approximation algorithm. This result can be applied to Min-ATSP(1, 2) as
well, for which we obtain the same approximation ratio.

As a consequence of the approximation for Max-ATSP(0, 1), we obtain a 2
3 approxi-

mation for the directed node-disjoint path packing problem.
As already mentioned, the maximization variants with distances zero and one seem to

be harder than their minimization counterparts with distances one and two. The reason
for this is that with distances one and two, every tour is a 2-approximation. In the
case of distances zero and one, the ratio between an arbitrary tour (which might have
weight zero) and an optimum tour may be unbounded. Thus, our algorithm for Max-
ATSP(0, 1) is more complicated than our previous one for Min-ATSP(1, 2) [6], though it
has the same running time. We use a new type of maximum matching and the analysis is
more involved. One reason why the maximization problems are harder is the following:
Consider Min-ATSP(1, 2) and assume that an optimum 2-cycle cover has weight 3

2 n.
Then any tour is a 4

3 approximation. In other words, the problem becomes easier once
the assignment bound is away from the lower bound of n for the weight of an optimum
tour. On the other hand, if in the case of Max-ATSP(0, 1), an optimum 2-cycle cover has
weight 1

2 n, then there might be tours (with weight zero) that are not an approximation
at all. Thus, the problem remains hard even if the assignment bound is away from the
upper bound of n for the weight of an optimum tour.

As a lower bound, we prove that Max-3-DCC(0, 1) is APX-complete (Section 3.1)
and generalize this result to a larger class of problems (Section 3.2): Max-k-DCC(a, b)
is the problem of finding a maximum weight k-cycle cover in directed graphs, the edges
of which have weight either a or b. Min-k-DCC(a, b), Max-k-UCC(a, b), and Min-
k-UCC(a, b) are analogously defined. We prove that Max-k-DCC(a, b) and Min-k-
DCC(a, b) are APX-hard for any k ≥ 3 and 0 ≤ a < b and that Max-k-UCC(a, b) and
Min-k-UCC(a, b) are APX-hard for any k ≥ 7 and 0 ≤ a < b.

124 M. Bläser and B. Manthey

Input: a complete directed loopless graph G, a function w assigning
each edge weight either zero or one, and a k ∈ N.

Output: a k-cycle cover Capx of G.

1. Compute a normalized maximum weight cycle cover C of G.
2. If C contains exactly two weight zero edges, these two edges (u, x) and (x, v) share

one node x , w(u, v) = 1, and all edges in G incident with x have weight zero, then
remove x from G and replace the edges (u, x) and (x, v) in C by (u, v).

3. Build the bipartite graph B, compute a Z -minimum maximum matching M of B, and
construct the function F .

4. Decompose F into a spanning subgraph S, the connected components of which are
trees of height one, paths of length two, and isolated nodes.

5. Merge the cycles according to the decomposition of F to obtain a k-cycle cover Capx.
If x was removed in step 2, insert it arbitrarily into Capx, breaking an edge of weight
zero if possible.

Fig. 1. The approximation algorithm for Max-k-DCC(0, 1).

2. A 2
3 Approximation for Max-k-DCC(0,1). In this section we present an algorithm

for approximating Max-k-DCC(0, 1). This algorithm is shown in Figure 1. An example
of how the algorithm works is presented in Figure 2.

An input for this algorithm is a complete directed graph G. The node set V has
cardinality n. Furthermore, we have a function w that assigns each edge weight zero or
one. Finally, we have an integer k ≤ n. The goal is to compute a k-cycle cover with

(a) (b) (c)

(f)(e)(d)

v7 v4

v3

v6

v5

c1

c3 = z

c2
c2

c1

v1

v2

v2

v3

v4

v5

v2

v3

v4

v5

c1

c2

v1

v1

v6

v7

v6

v7

c2 c1 c3

v6 v1 v2

v3v4v7

v5

Fig. 2. An example of computing a 3-cycle cover. (a) A directed graph G (only weight one edges are drawn).
(b) A cycle cover of G (weight zero edges are drawn dashed). (c) The bipartite graph B. (d) A Z -minimum
maximum matching M of B. (e) The graph/function F . (f) The final cycle cover after merging the cycles.

Approximating Maximum Weight Cycle Covers in Directed Graphs 125

maximum weight. (The integer k will usually be a fixed constant. However, the running
time and approximation ratio are independent of k. Hence, we can assume that k is part
of the input. Particularly for Max-ATSP(0, 1) we need k > n/2, thus k is nonconstant
in this case.) For the analysis, we assume that an optimal k-cycle cover, i.e., one with
maximum weight, has weight n −
. In other words, an optimal k-cycle cover consists
of n −
 edges of weight one and
 edges of weight zero.

Next, we describe the steps of the algorithm in greater detail. Step 2, which treats a
technical special case, is deferred to Section 2.5.

2.1. Computing an Initial Cycle Cover. We start by computing an initial cycle cover
(2-cycle cover) C of G with maximum weight. This can be done by reduction to (un-
weighted) matching in bipartite graphs [1], which can be solved in time O(n5/2) [13].
Then we normalize the cycles of C as follows:

1. We can assume that there is at most one cycle z containing edges of weight zero.
If there are two such cycles, then we can merge them without loss of weight by
discarding one edge of weight zero from either cycle.

2. Let (u, v) be an edge in the cycle z with w(u, v) = 0. Then we can assume that there
does not exist an edge (x, v) for some node x /∈ z with w(x, v) = 1. Otherwise, we
can merge z and the cycle to which x belongs without loss of weight. Analogously, we
can assume that there does not exist an edge (u, x) for some x /∈ z withw(u, x) = 1.

During the normalization, we look at each edge only once and perform at most n merg-
ings. Thus, the normalization can be performed in time O(n2).

Let C = {c1, . . . , cr } be the set of cycles of C after normalization. Some of these
cycles may already have length at least k while others are strictly shorter (short cycles).
We assume that c1, . . . , cs (s ≤ r) are the short cycles. Let C< = {c1, . . . , cs} and
C≥ = C\C<. If k > n/2, then we can assume that k = n. Thus, either C< contains all
cycles or we already have a Hamiltonian tour. For technical reasons, we do not treat z as
a short cycle, even if its length is strictly less than k. That means z = ci for some i > s,
or z does not exist at all.

The basic idea for eliminating the short cycles is to use subtour patching [16]. If
we delete one edge (if possible, one of weight zero) of every cycle and merge the
paths obtained, we get a 1

2 approximation for Max-k-DCC(0, 1). To improve on this
approximation ratio, we try to merge the paths with as many edges of weight one as
possible.

2.2. Finding Additional Edges. To find such edges of weight one, we build a bipartite
graph B as follows. The set of nodes on the left-hand side is C<. The set of nodes on the
right-hand side is V , the node set of G. We connect a cycle c ∈ C< to a node v ∈ V if
and only if v /∈ c and there is a node u ∈ c with w(u, v) = 1.

Let us estimate the size of a maximum matching of B.

LEMMA 1. B has a matching of size at least s −
.

PROOF. Let Copt be a maximum weight k-cycle cover of G. For any cycle c ∈ C< we
have at least one edge (u, v) in Copt with u ∈ c and v /∈ c. We construct a matching T

126 M. Bläser and B. Manthey

using these edges. With each cycle c ∈ C< we associate one edge of Copt that starts at
c. No edge will be associated with more than one cycle in this way. The optimal k-cycle
cover Copt contains at most
 edges of weight zero. Thus, at least s −
 of the edges
associated with cycles in C< have weight one. All these edges correspond to edges in
B. They all start at different cycles on the left-hand side of B and end at different nodes
on the right-hand side of B, since they are all part of a cycle cover. Thus, they build a
matching T of size at least s −
.

In the analysis of the approximation ratio, it will turn out that we need a maximum
matching with a special property.

DEFINITION 1. Let B = (U ∪ V, E) be a bipartite graph and let V ′ ⊆ V . We say that
a maximum matching M is V ′-minimum, if the number of nodes in V ′ that are incident
with an edge of M is minimal among all maximum matchings of B.

Let Z denote the nodes of z. The matching M computed in the algorithm is sup-
posed to be a Z -minimum maximum matching. (When we treated Min-k-DCC(1, 2),
any maximum matching was sufficient [6]. This again gives evidence that approximat-
ing Max-k-DCC(0,1)is harder than approximating Min-k-DCC(1,2).)The next lemma,
which is an algorithmic version of a principle in matching theory [18, Exercise 1.4.3],
shows that such a matching can be computed efficiently.

LEMMA 2. Let B = (U ∪ V, E) be a bipartite graph and let V ′ ⊆ V . A V ′-minimum
maximum matching can be computed in time O(n5/2) (where n = |U | + |V |).

PROOF. Let X be a maximum matching of B = (U ∪ V, E) and m = |X |. Let V ′ =
V \V ′. Let Y be a maximum matching of the graph induced by U ∪ V ′ and p = |Y |.

Any V ′-minimum maximum matching is incident with at least m − p nodes of V ′.
Otherwise there would exist a matching of the graph induced by U ∪ V ′ consisting of
more than p edges, a contradiction.

Let W ⊆ V ′ be the set of all nodes that are matched by both X and Y . We prove
the following claim. From this claim, the lemma follows easily: By applying the claim
repeatedly (at most |V ′| times), we obtain a maximum matching that is incident with p
nodes of V ′ and consequently with m − p nodes of V ′. As observed above, this means
that we have found a V ′-minimum maximum matching.

CLAIM 1. If there is a node v ∈ V ′\W that is matched by Y (and hence v /∈ X), then
we can replace X by a maximum matching X̃ such that X̃ matches the nodes in W ∪{v}.
X̃ can be computed from X in linear time.

PROOF OF CLAIM 1. To prove the claim, we consider the graph (U ∪ V, X ∪ Y). Each
node in this graph has degree at most two. By assumption, v has degree one. Set v0 = v
and assume that v0 is incident with the edge (u1, v0). If the degree of u1 is two, let
(u1, v1) be the other edge incident with u1. Repeating this process with v1, we obtain an
alternating path (u1, v0) ∈ Y , (u1, v1) ∈ X , (u2, v1) ∈ Y , . . .This path ends with a node

Approximating Maximum Weight Cycle Covers in Directed Graphs 127

of degree one. The number of edges in this path is necessarily even, because otherwise,
we have found an augmenting path for Y . This contradicts the maximality of Y . Let
(u
, v
) ∈ X be the last edge in the path. Since v
 has degree one, it is not matched by
Y . We now replace the edges (ui , vi), 1 ≤ i ≤
, in X with the edges (ui , vi−1). This
yields a matching X̃ that matches v0 and all the nodes in V \{v
} that are matched by X .
The running time is linear, since the involved graph has only m + p edges.

It remains to estimate the overall running time. X and Y can be computed in time
O(n5/2). The final matching can be computed from X and Y in time O(n2), since it only
needs O(n) applications of the procedure described in the claim.

2.3. Decomposition of Functions. Using M , we build a directed graph F = (C,A) as
follows. We have an edge (c, c′) ∈ A if and only if there is an edge (c, v) ∈ M with
v ∈ c′. Every node in F has outdegree at most one. Thus, we can view F as a partial
function C → C which we again call F . Let dom(F) ⊆ C< be the domain of F , i.e., the
set of cycles at which an edge in F starts. By construction we have F(c) �= c for any
c ∈ dom(F), i.e., F is loopless.

The function F can be decomposed into simple pieces using the following lemma.
For total functions, this lemma has been proved by Papadimitriou and Yannakakis [20].
For partial functions, it is implicitly contained in their proof.

LEMMA 3. Any loopless partial function F contains a spanning subgraph S, such that
S consists solely of pairwise node-disjoint

• trees of height one,
• paths of length two, and
• isolated nodes such that no node in dom(F) is isolated.

Such an S can be computed in polynomial time.

PROOF. Any weakly connected component of F is either a cycle, possibly with some
trees leading into it, or a tree (the root of which is not in dom(F)), or an isolated node
(which as well is not in dom(F)). It suffices to prove the lemma for weakly connected
components.

First, we consider a tree. We choose a leaf cl that is farthest from the root cr. Let
c̃ = F(cl). If c̃ = cr, then we already have a tree of height one. Otherwise we build a
tree of height one with root c̃ and all its predecessors, i.e., all nodes c with F(c) = c̃.
We remove this tree and proceed with the remaining component. In this way we obtain
a collection of trees of height one. It can happen that cr remains as an isolated node, but
cr /∈ dom(F).

Second, we consider a cycle. If the cycle does not have any tree leading into it, then
we can decompose it into paths of length one (which are trees of height one as well)
and possibly one path of length two. (We need a path of length two, if the cycle has odd
length.) If there are trees leading into the cycle, we decompose them as described in the
previous paragraph. We either end up with a cycle without any trees or we have removed
some of the roots of the trees. In the latter case we have obtained a collection of paths
that can be decomposed into paths of length one and two.

128 M. Bläser and B. Manthey

(d)

(b)

(c)

(a)

Fig. 3. An example of a decomposition of a cycle with trees leading into it.

Finally, if a weakly connected component is a single node, then this node is not in the
domain of F , since F is loopless.

The decomposition can clearly be done in polynomial time.

Let Ciso be the set of all cycles that are isolated nodes in S, the spanning subgraph of
F obtained via Lemma 3. We denote with C<iso = Ciso ∩ C< the set of all short isolated
cycles and with C≥iso = Ciso ∩ C≥ the isolated cycles that are long enough.

An example of a decomposition of a cycle with two trees leading into it is shown in
Figure 3.

2.4. Merging Cycles. Now we merge the cycles. Consider a weakly component K of
S as obtained by Lemma 3. We remove one edge of each of K ’s nodes (which are cycles
in C) and merge the paths obtained to get a longer cycle.

For all these new cycles, we take into account that we might have to add an edge with
weight zero. Thus, we can merge these cycles to one big cycle without losing anymore
weight.

First we treat the isolated nodes of S. The cycles in C≥iso are long enough and do not
need to be considered any further. The cycles in C<iso are merged to one big cycle d. If
the length of z is strictly less than k and z is isolated, then we merge z with d, too. (Note
that we excluded z from C<.) If z is the only isolated cycle of length less than k, then z
becomes d .

Next we consider the components of S that are trees of height one. Let c be the root
of such a tree and let c′1, . . . , c′m ∈ C< be its leaves. For each cycle c′µ, there is an edge
(uµ, vµ) of weight one in G such that uµ belongs to c′µ and vµ to c. By construction, the
nodes v1, . . . , vm are pairwise distinct. The cycles c′1 and c are merged as depicted in
Figure 4. We call the resulting cycle again c and continue the merging with the remaining
cycles c′2, . . . , c′m in the same manner. (The node v in Figure 4 can be one of the other
vµ. This does not matter.) After that, we merge c and d. In c we remove one of the edges
drawn dashed in Figure 4. In d we break one of the edges that do not belong to a cycle
in C<, i.e., an edge that was introduced during the merging. We call the resulting cycle
again d and proceed with the next connected component of S.

Approximating Maximum Weight Cycle Covers in Directed Graphs 129

v1v

u1

v v1

u1

c c

c′1

Fig. 4. Trees of height one.

Finally we treat the components of S that are paths of length two. The three cycles
belonging to such a path are merged as shown in Figure 5. (The head of e may be the tail
of f . The two removed edges in the cycle in the middle may also coincide. In the latter
case we enter the middle cycle via e, go through all its edges except one, then enter the
right cycle via f . From the right cycle, we go directly back to the left one. We only lose
weight one.) The resulting cycle is merged with d as already described above.

We end up with a cycle d and the cycles in C≥iso. If the cycle d still has length strictly
less than k, we break an arbitrary cycle of C≥iso and merge d and this cycle. The resulting
cycle has length at least k. Thus, we obtain a k-cycle cover.

2.5. Analysis. To estimate the approximation performance of our algorithm, we intro-
duce a number of parameters:

1. T denotes the matching constructed from an optimum k-cycle cover Copt in Lemma 1
and t = |T |.

2. Let m = |M |, where M is the matching constructed in the algorithm. Obviously,
m ≥ t . Let mz denote the number of edges of M that are incident with nodes from z.

3. With n<iso we denote the total number of nodes in the cycles of C<iso.
4. Let ζ0 and ζ1 denote the number of edges of weight zero and one of z, respectively,

and ζ = ζ0 + ζ1.
5. Let Iopt be set of edges (x, v) of Copt such that v belongs to z and x does not. In the

same way, Oopt is the set of all edges (v, x) of Copt such that v belongs to z and x
does not. Let σ = |Iopt| = |Oopt|.

6. We set σI = |{e ∈ Iopt | w(e) = 1}| and σO = |{e ∈ Oopt | w(e) = 1}|.
7. Let Zopt be the set of all edges (u, v) of Copt such that w(u, v) = 1 and both u and v

belong to z. Let λ = |Zopt|.
Let us estimate the weight of the k-cycle cover Capx constructed by the algorithm. We

first estimate the loss of weight by patching the isolated cycles, the trees of height one,
and the paths of length two. If the weight of an optimum k-cycle cover is n, then we are
done at this point. If there are weight zero edges in an optimum k-cycle cover, then the
analysis has to be further refined.

fe e f

Fig. 5. Paths of length two.

130 M. Bläser and B. Manthey

The 2-cycle cover C computed in step 1 has weight n− ζ0. For each isolated cycle in
C<iso, we break one edge and might lose weight one. This gives a total loss of |C<iso|. (If z
exists, it contains an edge of weight zero. For any edge merged in d we already took a
loss of one into account. Thus, the possible merging of z and d does not cause any loss.)

Next, we consider the merging as shown in Figure 4. We charge the loss of the merging
to vµ and the nodes of cµ. These are at least three nodes. Since the edge we got from
M has weight one, the loss of this merging is at most 1

3 per node involved. The merging
of c with d produces no loss at all, since we only break edges we have already paid for
when forming c and d .

In the case depicted in Figure 5, the loss of the merging is shared by the nodes of the
three cycles. These are at least six nodes. Altogether, the loss of this merging is again at
most 1

3 per node involved. As above, we do not lose any weight when merging with d.
Each node is only charged once this way. For the moment, assume that the cycle d

has length at least k, thus an additional merging is not needed.
To how many nodes do we assign a loss of 1

3 ? Certainly, we do not assign any loss to
the nodes in C<iso. Furthermore, z has ζ − mz nodes that are not matched and we do not
assign any loss to them, too. (Note that z can only be the root of a tree of height one,
since it can only appear in a connected component of F that is a tree, because z does not
appear on the left-hand side of the bipartite graph B.) Consequently,

w(Capx) ≥ n − ζ0 − 1
3 (n − n<iso − (ζ − mz))− |C<iso|(1)

≥ 2
3 n − ζ0 + 1

3ζ − 1
3 mz − 1

3 |C<iso|,
since n<iso ≥ 2|C<iso|.

The matching T obtained from Copt in Lemma 1 matches≤ σI nodes of z by definition
of σI . Since M is a Z -minimum maximum matching, we have

mz ≤ σI + (m − t).(2)

The matching M can match at most m − t nodes more of z than T . If this were not the
case, then we would be able to find a maximum matching that matches fewer nodes of
z (by using the procedure of Lemma 2 on M and T), contradicting the choice of M .

Next we estimate |C<iso|. Lemma 1 yields |C<iso| ≤
, but this bound is not strong
enough. We have to refine it in terms of the parameters introduced above. First, Copt has
(ζ −σ −λ) edges of weight zero that have both nodes in z. Thus, we do not have to take
them into account while estimating the size of T . Second, (σ − σO) weight zero edges
have their tail in z but not their head. These edges cannot appear in T by construction,
since we only used edges that left short cycles when building T . Third, M has m − t
edges more than T . Altogether,

|C<iso| ≤
− (ζ − σ − λ)− (σ − σO)− (m − t)(3)

≤
− (m − t)− ζ + λ+ σO .

Plugging inequalities (2) and (4) into inequality (2), we obtain

w(Capx) ≥ 2
3 n−ζ0 + 1

3ζ− 1
3σI− 1

3
− 1
3 (m−t)+ 1

3ζ− 1
3λ− 1

3σO + 1
3 (m−t)(4)

= 2
3 n− 1

3ζ0− 1
3
+ 2

3ζ1− 1
3σI− 1

3λ− 1
3σO .

Approximating Maximum Weight Cycle Covers in Directed Graphs 131

x u

y v

x u

y v

Fig. 6. This configuration would increase the weight of z.

The last ingredient we need is the following bound.

LEMMA 4. We have σI +σO+λ ≤ 2ζ1, unless ζ0 = 2, the two weight zero edges (u, x)
and (x, v) of z share one node x , w(u, v) = 1, and all edges of G incident with x have
weight zero.

PROOF. Since z is normalized, for any edge (x, v) ∈ Iopt withw(x, v) = 1, v is the head
of a weight one edge of z. Analogously, for any edge (v, x) ∈ Oopt with w(v, x) = 1,
v is the tail of a weight one edge of z. Thus, we can associate with each edge of weight
one in Iopt ∪ Oopt either the head or the tail of a weight one edge of z. Since there are
ζ1 edges of weight one in z, we are done if we can also associate such a node with each
edge of Zopt.

Let (u, v) be an edge in Zopt. If (u, v) is an edge of z, then we associate u with (u, v).
(This choice is arbitrary, we could also take v.) If (u, v) is not an edge of z, let (u, x)
and (y, v) be the unique edges of z with tail u and head v, respectively. We claim that
if ζ0 �= 2, then either w(u, x) = 1 or w(y, v) = 1. If ζ0 < 2, this is certainly true. If
ζ0 > 2, assume on the contrary, that both weights were zero. Then we could remove the
edges (u, x) and (y, v) and insert the edges (u, v) and (y, x) into C (Figure 6). If x �= y,
then we create two cycles of length at least two. Thus, we would obtain a 2-cycle cover
of strictly larger weight. This contradicts the optimality of C . If x = y, then we create
one cycle and an isolated node x . Since ζ0 > 2, then the new cycle has a weight zero
edge. We can remove this edge and insert x . Again we have a found a 2-cycle cover of
strictly larger weight, a contradiction.

What can we do if ζ0 = 2? The only case that creates any problem is the case where
z contains exactly two consecutive edges (u, x) and (x, v) both of weight zero. If x is
incident with a weight one edge e, then we could insert x into the cycle the other node
of e belongs to using the edge e and we would again get a 2-cycle cover with strictly
larger weight than C , a contradiction.

We now associate with (u, v) one of u or v depending on which ofw(x, u) orw(v, y)
equals one. (If both weights are one, we choose the node arbitrarily.)

Note that we associate the head or tail of a particular edge of z at most once with an
edge of Copt, since the intersection of z and Copt is a collection of disjoint paths.

Except for the case excluded in Lemma 4, inequality (5) and Lemma 4 imply

w(Capx) ≥ 2
3 n − 1

3ζ0 − 1
3
 ≥ 2

3 (n −
).(5)

We are left with the case that the node x is only incident with edges of weight zero.
In this case we transform G into a new graph G ′ by removing x and start with the cycle

132 M. Bläser and B. Manthey

cover C ′ obtained from C by replacing (u, x) and (x, v) by (u, v). The graph G ′ has
n′ = n − 1 nodes. This new 2-cycle cover C ′ fulfills ζ ′0 = 0 since w(u, v) = 1. Any
optimum k-cycle cover of G ′ has weight at least n′ −
′ with
′ ≤
, since we can
transform any k-cycle cover of G into a k-cycle cover of G ′ as follows: We shortcut the
two edges incident with x . The resulting cycle cover has one weight zero edge fewer,
since these two edges have weight zero. The resulting cycle c might have length k − 1.
Thus, we have to merge it with an arbitrary cycle and we might lose weight one. (Note
that if c does not have any weight zero edge, then we have two weight zero edges less
after shortcutting.)

Now we are in a situation where we can apply Lemma 4. We get a k-cycle cover C ′apx
of G ′ of weight

w(C ′apx) ≥ 2
3 n′ − 1

3ζ
′
0 − 1

3

′ = 2

3 n − 1
3
− 2

3 .

Since 2
3 n < n, C ′apx contains a weight zero edge (or we have taken such an edge into

account). Thus, we can insert x into C ′apx without any loss and obtain a k-cycle cover
Capx of G. Its weight is

w(Capx) = w(C ′apx) = 2
3 n − 1

3
− 2
3 ≥ 2

3 (n −
),

since
 ≥ ζ0 = 2. Thus, in the case where d, the cycle obtained by patching the short
cycles, has length at least k, the cycle cover Capx is a 2

3 approximation to an optimum
k-cycle cover.

If d has length strictly less than k, then one additional merging is needed. We refine
the analysis as follows: All cycles in C≥iso consist solely of weight one edges. Since C≥iso is
nonempty, these are at least n/2 edges. The cycle d contains at least half of the original
edges of the merged cycles, since d is the only short cycle left. Hence, d and the cycles
in C≥iso contain at least a fraction of 3

4 of the edges of the 2-cycle cover C . Thus, after the
last merging step we have a cycle cover of weight at least 3

4 (n −
)− 1 ≥ 2
3 (n −
) for

n − ζ0 ≥ 12.
If n − ζ0 ≤ 12, then the cycle z has at least length ζ0 ≥ n − 12. Thus, d has at least

the same length and no additional merging is necessary, since we may assume without
loss of generality that k ≤ n/2+ 1 and n > 24.

THEOREM 1. The algorithm presented in this section is a factor 2
3 approximation algo-

rithm for Max-k-DCC(0,1) with running time O(n5/2) for any k ≥ 3.

COROLLARY 1. Min-k-DCC(1, 2) can be approximated with factor 4
3 in time O(n5/2)

for any k ≥ 3.

COROLLARY 2. Max-ATSP(0, 1) can be approximated with factor 2
3 and Min-ATSP(1, 2)

can be approximated with factor 4
3 in time O(n5/2).

2.6. Tightness of the Approximation Ratio. In this section we provide an example to
show that the analysis of the approximation ratio of our algorithm is best possible.

Approximating Maximum Weight Cycle Covers in Directed Graphs 133

(a) (b)

(d)(c)

x2

u4

v2

u3
x3

x4

v1

v4

v3

u2

u1

x1

Fig. 7. Tightness example for m = 4. (a) The graph. (b) The maximum weight cycle cover. (c) The final result.
(d) The optimal Hamiltonian tour.

We construct a graph with 3m nodes u1, . . . , um, v1, . . . , vm, x1, . . . , xm and the fol-
lowing edges of weight one:

• (ui , vi) and (vi , ui) for 1 ≤ i ≤ m,
• (xi , xi+1) for 1 ≤ i ≤ m − 1 and (xm, x1),
• (ui , xi) for 1 ≤ i ≤ m, and
• (vi , ui+1) for 1 ≤ i ≤ m − 1 and (vm, u1).

All other edges have weight zero. An example of such a graph is shown in Figure 7.
One maximum cycle cover consists of m cycles (ui , vi) of length two and one cycle

(x1, . . . , xm) of length m. One possible maximum matching matches the cycle (ui , vi)

with xi for 1 ≤ i ≤ m. We obtain the tour (v1, u1, x1, v2, . . . , xm−1, vm, um, xm), which
has weight 2m. An optimal k-cycle cover for 3 ≤ k ≤ m consists of the two cycles
(x1, . . . , xm) and (u1, v1, u2, . . . , vm−1, um, vm) and has weight 3m. For m + 1 ≤ k ≤
3m, an optimal k-cycle cover is a Hamiltonian tour of weight 3m − 1. One such tour
is (v1, u2, v2, u3, . . . , um, vm, u1, x1, . . . , xm). Thus, the analysis in Section 2.5 is best
possible: for all k, we cannot expect any approximation ratio better than 2

3 in general.

3. APX-Hardness of Computing Cycle Covers

3.1. APX-Hardness of Max-3-DCC(0,1). In this section we prove that Max-3-DCC(0, 1)
is APX-complete. For this purpose we present an L-reduction [19] (see also, e.g., [3])
from Min-E3-Vertex-Cover. An instance for Min-Vertex-Cover is an undirected graph
H = (X, F). The aim is to find a subset X̃ ⊆ X of minimum cardinality such that
at least one endpoint of each edge in F is a node in X̃ . Min-E3-Vertex-Cover is Min-
Vertex-Cover restricted to cubic graphs, i.e., to graphs each node of which is incident
with exactly three edges. Alimonti and Kann [2] proved that even this restricted version
is APX-complete.

134 M. Bläser and B. Manthey

(b)(a)

vin
c,1=vout

c,4

vin
b,1=vout

b,3
vout

a,1 =vin
a,2

vin
a,1=vout

a,2

vout
b,1 =vin

b,3

vout
c,1 =vin

c,4

x2
x3

x4

x1
fa

fb

fc

Fig. 8. (a) Node x1 and its edges fa , fb , and fc in H . (b) The corresponding subgraph of G. Dashed edges are
associated with x2, x3, or x4.

Let H = (X, F) be a cubic graph with node set X = {x1, . . . , xn} and edge set
F = { f1, . . . , f3n/2} as an input for Min-E3-Vertex-Cover. We construct a complete
edge weighted directed graph G as an instance for Max-3-DCC(0, 1) as follows. For
each edge f j = {xi , xi ′ } ∈ F we use two nodes vin

j,i = vout
j,i ′ and vout

j,i = vin
j,i ′ . We connect

the former to the latter node with an edge of weight one and vice versa. To simplify the
further considerations, we have introduced two names for each node.

Let f j1 , f j2 , and f j3 be the three edges (in arbitrary order) incident with node xi ∈ X .
Then we add two edges (vout

j1,i
, vin

j2,i
) and (vout

j2,i
, vin

j3,i
) both with weight one.

All edges not mentioned above have weight zero. An example of the construction
described is shown in Figure 8.

We say that the edges starting at vout
j1,i

, vout
j2,i

, and vout
j3,i

as well as the edges ending at
vin

j1,i
, vin

j2,i
, and vin

j3,i
are associated with xi . There are be edges in a cycle cover C that are

associated with two nodes.

OBSERVATION 1. All edges having weight one are associated with exactly one node.

We call C consistent with respect to xi if the edges associated with xi are as depicted in
Figure 9. In particular, if C is consistent with respect to xi , then all of the edges associated
with xi are not associated with any other node. The weight wC(xi) of node xi in cycle
cover C is the sum of the weight of all edges associated with xi .

CLAIM 2. We have w(C) =∑n
i=1wC(xi).

PROOF. When considering
∑n

i=1wC(xi), it can happen that we take an edge into account
twice. Due to Observation 1, such edges have weight zero.

(a)

(b) ei,1 ei,2

vout
j3,i

vin
j3,i

vout
j2,i

vin
j2,i

vout
j1,i

vin
j1,i

vin
j1,i

vout
j1,i

vin
j2,i

vout
j2,i

vin
j3,i

vout
j3,i

Fig. 9. The two possibilities of consistency. (a) Node xi does not belong to the vertex cover. (b) Node xi

belongs to the vertex cover.

Approximating Maximum Weight Cycle Covers in Directed Graphs 135

By construction, we also have the following observation.

OBSERVATION 2. For any 3-cycle cover C and any xi ∈ X , we have wC(xi) ≤ 3.
Furthermore, if wC(xi) = 3, then the edges associated with xi run as depicted in
Figure 9(a). If they run as shown in Figure 9(b), then wC(xi) = 2.

LEMMA 5. Let C be a 3-cycle cover of G. We can construct a consistent 3-cycle cover
C̃ of G with w(C̃) ≥ w(C) in polynomial time.

PROOF. Let X inc be the set of nodes with respect to which C is not consistent. For any
xi ∈ X inc, we rearrange the edges associated with xi such that they run as shown in
Figure 9(b). In this way we obtain a new graph C̃ . If an edge is associated with two
nodes xi and xi ′ , then both xi , xi ′ ∈ X inc. Thus, during the rearranging we do not change
the edges of nodes with respect to which C is consistent.

The modification described can obviously be done in polynomial time. We do not
change the weight of any xi with wC(xi) = 3. For all other nodes xi we now have
wC̃(xi) = 2. Thus, w(C̃) ≥ w(C). Furthermore, the graph C̃ obtained is consistent.
Thus, the lemma follows directly from Claim 3.

CLAIM 3. C̃ is a 3-cycle cover.

PROOF. Every edge in C̃ is associated with exactly one node. Thus, C̃ does not contain
any loops. Every node in G has indegree one and outdegree one. Thus, C̃ is a cycle cover.

It remains to prove that C̃ does not contain any cycle of length two. Since C̃ is
consistent, there are only two possibilities for such a cycle: it consists either of vin

j,i and
vout

j,i or of vin
j,i and vout

j ′,i for j �= j ′. The latter is impossible, since H does not contain
multiple edges.

Assume that we have a cycle of length two consisting of the two nodes vin
j,i = vout

j,i ′ and
vout

j,i = vin
j,i ′ . Then the edges associated with xi or xi ′ run as shown in Figure 9(a). While

constructing C̃ , we only rearranged edges such that they run as depicted in Figure 9(b).
Thus, C is already consistent with respect to both xi and xi ′ . However, then C would
already have had this cycle of length two, a contradiction.

We construct a set X̃ as follows: We put xi ∈ X̃ if the edges associated with xi run as
shown in Figure 9(b) and otherwise xi /∈ X̃ . If w(C̃) = 3n −
, then |X̃ | =
.

CLAIM 4. The set X̃ is a vertex cover of H .

PROOF. Assume that there is an edge f j = {xi , xi ′ } and neither xi ∈ X̃ nor xi ′ ∈ X̃ .
Then both (vout

j,i , v
in
j,i) ∈ C̃ and (vout

j,i ′ , v
in
j,i ′) ∈ C̃ . Hence, C̃ contains a cycle of length two,

a contradiction.

Now we are prepared to prove the following theorem.

THEOREM 2. Max-3-DCC(0, 1) is APX-complete.

136 M. Bläser and B. Manthey

PROOF. We proof that the reduction presented is an L-reduction. Let opt(H) be the size
of a minimum vertex cover of H and let opt(G) be the weight of a maximum 3-cycle
cover of G. Since H is cubic, we have opt(H) ≥ n/2. Thus, opt(G) ≤ 3 ·n ≤ 6 ·opt(H).

On the other hand we have
∣
∣|X̃ | − opt(H)

∣
∣ ≤ ∣∣w(C̃)− opt(G)

∣
∣, which completes the

proof.

The graph induced be the weight one edges of G has degree bounded by 4, i.e.,
every node has at most two outgoing and two incoming edges. Thus, Max-3-DCC(0, 1)
remains APX-complete even if we have very few edges with weight one. In particular,
the graph constructed has exactly 3n nodes and 5n edges. This might be of independent
interest for reductions from this problem to others.

3.2. APX-Hardness of Other Cycle Cover Variants. Now we generalize the results of
Section 3.1 to other variants of the cycle cover problem.

We start by proving the APX-hardness of Max-k-DCC(0, 1) for k ≥ 4. For this
purpose, we revisit the reduction presented in the previous section. Let H be a cubic
graph for which we want to compute a minimum vertex cover. We connect the two nodes
corresponding to an edge with two edges as above. Let xi ∈ X be any node and let f j1 ,
f j2 , and f j3 be the edges incident with xi . Instead of connecting vout

j1,i
to vin

j2,i
and vout

j2,i
to

vin
j3,i

with simple edges, we connect them with gadgets consisting of nodes v1
i,1, . . . , v

k
i,1

and v1
i,2, . . . , v

k
i,2, respectively, as depicted in Figure 10. The nodes vout

j3,i
and vin

j1,i
are

similarly connected, except for edge (vk
i,3, v

in
j1,i
) which has weight zero.

Taking an edge (vout
jν ,i
, vin

jν′ ,i
) in the graph constructed in Section 3.1 corresponds to

connecting vout
jν ,i

to vin
jν′ ,i

with a path via v1
i,ν , . . ., v

k
i,ν . Otherwise, we connect v1

i,ν , . . ., v
k
i,ν

with a cycle of length k. In addition to the edges that are already associated with a node
xi , all edges starting or ending at some vµi,ν (ν = 1, 2, 3 andµ = 1, . . . , k) are associated
with xi .

Given an arbitrary cycle cover of the graph constructed, we can obtain a consistent
k-cycle cover in polynomial time without losing weight. If we have a consistent k-cycle
cover with weight (3k + 3)n −
, we obtain a vertex cover of size
. The reduction
presented is an L-reduction for fixed k.

(a)

(b)

(c)

vout
jν,i

vin
jν ,i

vin
jν+1,i

vout
jν+1,i

vout
jν+1,i

vout
jν+1,i

vin
jν+1,i

vout
jν,i

vin
jν ,i

vout
jν,i

v1
i,ν v2

i,ν vk−1
i,ν vk

i,ν

vin
jν ,i

vin
jν+1,i

Fig. 10. (a) The subgraph connecting vout
jν ,i

to vin
jν+1,i

for ν = 1, 2. For connecting vout
j3,i

to vin
j1,i

we have the

same gadget, except for (vk
i,3, v

in
j1,i
) having weight zero. (b), (c) The two possibilities of consistency. (b) Node

xi belongs to the vertex cover. (c) Node xi does not belong the vertex cover.

Approximating Maximum Weight Cycle Covers in Directed Graphs 137

We can extend the result to arbitrary weights: replace weights zero and one with
weights a and b, respectively (0 ≤ a < b). The proof remains the same. Finally, we can
extend the result to Min-k-DCC(a, b) (0 ≤ a < b, k ≥ 3) by replacing weights zero and
one with b and a, respectively.

COROLLARY 3. Max-k-DCC(a, b) and Min-k-DCC(a, b) are APX-hard for all k ≥ 3
and 0 ≤ a < b.

Now we focus our attention to the problem of computing cycle covers in undirected
graphs. Let G be a directed graph with node set V for which we want to compute
a minimum k-cycle cover (k ≥ 3). We construct an undirected graph G ′ by using a
technique for reducing the directed to the undirected Hamilton circuit problem (see, e.g.,
[14]). For every node v ∈ V we create three copies: v, vin, and vout. We connect v to
both vin and vout with an edge of weight one. For every edge e = (v, ṽ) that has weight
one in G, we create an edge connecting vout to ṽin of weight one. All other edges have
weight zero.

Every k-cycle cover C with weightw corresponds to a 3k-cycle cover C ′ with weight
w+2|V |: For v ∈ V take the edges {vin, v} and {v, vout}. Furthermore, if e = (v, ṽ) ∈ C ,
then {vout, ṽin} ∈ C ′. In order to obtain an L-reduction, we need w + 2|V | ∈ O(w). We
restrict ourselves to considering the graphs obtained from the reductions so far: for these
graphs, we have w ≥ (3k + 3)n −
 with
 ≤ n and |V | = (3k + 3)n.

A cycle cover of G ′ is called consistent if it corresponds to some cycle cover of G
as described above. We now explain how to obtain a consistent 3k-cycle cover from an
arbitrary (3k − 2)-cycle cover of G ′.

Assume that there is a node v ∈ V such that {vin, v} or {v, vout} is not in C ′. Due to
symmetry we restrict ourselves to considering the first case. There are two possibilities:
either vin and v belong to different cycles or they belong to the same cycle (but are
not neighbored). In either case there must be an edge with weight zero in the cycle
cover that is incident with v and some node v̂. We discard this edge and add {vin, v}.
Furthermore, there are two edges e1 and e2 different from {vin, v} that are incident with
vin. Let e1 = {vin, v̂1} and e2 = {vin, v̂2}. We choose to delete one of these edges, say
e1, and connect v̂ to v̂1. The choice will be made such that we obtain one cycle. If v and
vin have been in the same cycle, we obtain one cycle that runs through the same set of
nodes. If v and vin have been in different cycles, we obtain one cycle running through
the nodes of both cycles.

In this way we iteratively obtain a new cycle cover. This cycle cover is a 3k-cycle
cover: the length of each cycle is divisible by 3, we started with a (3k − 2)-cycle cover,
and no cycle has been shortened. The cycle cover obtained weighs at least as much as
the original cycle cover. Hence, if Max-k-DCC(0, 1) is APX-hard, then so are Max-
(3k − 2)-UCC(0, 1), Max-(3k − 1)-UCC(0, 1), and Max-3k-UCC(0, 1). Furthermore,
the reduction can be generalized as for directed graphs. Thus, we obtain the following
corollary.

COROLLARY 4. Max-k-UCC(a, b) and Min-k-UCC(a, b) are APX-hard for all k ≥ 7
and 0 ≤ a < b.

138 M. Bläser and B. Manthey

All problems mentioned in the previous corollaries are APX-complete, except for
Min-k-DCC(0, b) and Min-k-UCC(0, b) (with b > 0): these problems do not even have
a constant factor approximation, unless P = NP.

4. Open Problems. One open problem is to generalize our approximation algorithm
for Min-k-UCC(1, 2), such that it yields the approximation ratio 5

6 for Max-k-UCC(0, 1).
Another open problem is the approximability of Max-k-UCC(a, b) and Min-k-

UCC(a, b) for k = 5, 6, i.e., the question of whether these problems are APX-complete
or not.

References

[1] Ravindra K. Ahuja, Thomas L. Magnanti, and James B. Orlin. Network Flows: Theory, Algorithms,
and Applications. Prentice-Hall, Englewood Cliffs, NJ, 1993.

[2] Paola Alimonti and Viggo Kann. Some APX-completeness results for cubic graphs. Theoret. Comput.
Sci., 237(1–2):123–134, 2000.

[3] Giorgio Ausiello, Pierluigi Crescenzi, Giorgio Gambosi, Viggo Kann, Alberto Marchetti-Spaccamela,
and Marco Protasi. Complexity and Approximation: Combinatorial Optimization Problems and Their
Approximability Properties. Springer, New York, 1999.

[4] Alexander Barvinok, Edward Kh. Gimadi, and Anatoliy I. Serdyukov. The maximum traveling salesman
problem. In Gregory Gutin and Abraham P. Punnen, editors, The Traveling Salesman Problem and its
Variations, pages 585–607. Kluwer, Dordrecht, 2002.

[5] Markus Bläser and Bodo Manthey. Two approximation algorithms for 3-cycle covers. In Proc. of
the 5th Internat. Workshop on Approximation Algorithms for Combinatorial Optimization Problems
(APPROX), pages 40–50. Volume 2462 of Lecture Notes in Computer Science. Springer, Berlin, 2002.

[6] Markus Bläser and Bodo Siebert. Computing cycle covers without short cycles. In Proc. of the 9th Ann.
European Symp. on Algorithms (ESA), pages 368–379. Volume 2161 of Lecture Notes in Computer
Science, Springer, 2001.

[7] Jack Edmonds. Paths, trees, and flowers. Canad. J. Math., 17:449–467, 1965.
[8] Lars Engebretsen. An explicit lower bound for TSP with distances one and two. Algorithmica,

35(4):301–319, 2003.
[9] Lars Engebretsen and Marek Karpinski. Approximation hardness of TSP with bounded metrics.

Manuscript, July 2002. Available at http://www.nada.kth.se/ enge/papers/BoundedTSP.pdf.
[10] Michael R. Garey and David S. Johnson. Computers and Intractability: A Guide to the Theory of

NP-Completeness. Freeman, San Francisco, CA, 1979.
[11] David Hartvigsen. An Extension of Matching Theory. Ph.D. thesis, Department of Mathematics,

Carnegie-Mellon University, 1984.
[12] David Hartvigsen. The square-free 2-factor problem in bipartite graphs. In Proc. of the 7th Internat.

Conf. on Integer Programming and Combinatorial Optimization (IPCO), pages 234–241. Volume 1610
of Lecture Notes in Computer Science. Springer, Berlin, 1999. Improved version in preparation.

[13] John E. Hopcroft and Richard M. Karp. An n5/2 algorithm for maximum matchings in bipartite graphs.
SIAM J. Comput., 2(4):225–231, 1973.

[14] John E. Hopcroft, Rajeev Motwani, and Jeffrey D. Ullman. Introduction to Automata Theory, Languages,
and Computation. Addison-Wesley, Reading, MA, 2001.

[15] Haim Kaplan, Moshe Lewenstein, Nira Shafrir, and Maxim Sviridenko. Approximation algorithms for
asymmetric TSP by decomposing directed regular multigraphs. In Proc. of the 44th Ann. IEEE Symp.
on Foundations of Computer Science (FOCS), pages 56–65, 2003.

[16] Eugene L. Lawler, Jan Karel Lenstra, A. H. G. Rinnooy Kan, and David B. Shmoys, editors. The
Traveling Salesman Problem: A Guided Tour of Combinatorial Optimization. Wiley, New York, 1985.

[17] Moshe Lewenstein and Maxim Sviridenko. Approximating asymmetric maximum TSP. In Proc. of the
14th Ann. ACM–SIAM Symp. on Discrete Algorithms (SODA), pages 646–654, 2003.

Approximating Maximum Weight Cycle Covers in Directed Graphs 139

[18] László Lovász and Michael D. Plummer. Matching Theory. Elsevier, Amsterdam, 1986.
[19] Christos H. Papadimitriou and Mihalis Yannakakis. Optimization, approximation, and complexity

classes. J. Comput. System Sci., 43(3):425–440, 1991.
[20] Christos H. Papadimitriou and Mihalis Yannakakis. The traveling salesman problem with distances one

and two. Math. Oper. Res., 18:1–11, 1993.
[21] William R. Pulleyblank. Matchings and extensions. In Ronald L. Graham, Martin Grötschel, and László

Lovász, editors, Handbook of Combinatorics, volume 1, pages 179–232. Elsevier, Amsterdam, 1995.
[22] William T. Tutte. A short proof of the factor theorem for finite graphs. Canad. J. Math., 6:347–352,

1954.
[23] Leslie G. Valiant. The complexity of computing the permanent. Theoret. Comput. Sci., 8(2):189–201,

1979.
[24] Sundar Vishwanathan. An approximation algorithm for the asymmetric travelling salesman problem

with distances one and two. Inform. Process. Lett., 44(6):297–302, 1992.
[25] Oliver Vornberger. Easy and Hard Cycle Covers. Technical Report, Universität/Gesamthochschule

Paderborn, 1980.

