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Exact transverse macro dispersion coefficients for transport
in heterogeneous porous media

Abstract We study transport through heterogeneous
media. We derive the exact large scale transport equa-
tion. The macro dispersion coefficients are determined
by additional partial differential equations. In the case of
infinite Peclet numbers, we present explicit results for the
transverse macro dispersion coefficients. In two spatial
dimensions, we demonstrate that the transverse macro
dispersion coefficient is zero. The result is not limited on
lowest order perturbation theory approximations but is
an exact result. However, the situation in three spatial
dimensions is very different: The transverse macro dis-
persion coefficients are finite – a result which is con-
firmed by numerical simulations we performed.

Keywords Stochastic modelling Æ Coarse
graining Æ Dispersion Æ Transport Æ Heterogeneous
porous media

1 Introduction

Asymptotically, plumes moving in single-scale hetero-
geneous porous media are efficiently modelled by
transport models with equivalent large scale or macro
transport parameters. The large scale dispersion tensor
is anisotropic even if the conductivity tensor of the
medium is isotropic. The anisotropy of the dispersion

tensor stems from the fact that the spreading of the
plume is larger in the direction of the flow field than in
transverse directions.

In general, the perturbation theory approach has
been proved to be a valuable method for the quantitative
prediction of transport properties in heterogeneous
porous media. For a comprehensive review the reader is
referred to the textbooks of (Dagan, 1989) and (Gelhar,
1993). In lowest order perturbation theory, the longitu-
dinal macro dispersion coefficient increases by several
orders of magnitude, whereas the transverse only ap-
proaches an asymptotic value in the order of magnitude
of the pore-scale coefficient. In media of moderate het-
erogeneity, therefore, the transverse mixing of com-
pounds is hardly enhanced. The longitudinal dispersion
coefficient derived in the lowest order approach fits very
well with field findings (Freyberg, 1986), whereas the
transverse macro dispersion coefficient underestimates
the experimental data by at least one order of magnitude
(Gelhar and Axness, 1983).

However, transverse mixing is one of the critical
factors in natural attenuation processes. A remedial
action involves the injection of the adsorbing organic
pollutant (e.g. chlorinated sorbents, hydrocarbons), an
electron acceptor (e.g. oxygen) and the degrading
microbial population. All chemical compounds have to
be available at the same time and at the same location.
One of the major limitations is the amount of ambient
oxygen present in the plume (Alvarez-Cohen, 1993;
Thomas and Ward, 1989; Sims et al., 1992). Field results
(Freyberg et al., 1986; Moltyaner and Killey, 1988) have
shown that transport of oxygen into the plume is dom-
inated by lateral mixing. Therefore, a small lateral or
transverse mixing coefficient becomes an important rate-
limiting factor in biodegradation (Cirpka and Kitanidis,
2000; Thornton et al., 2001; Thullner et al., 2002).

Motivated by these open questions, Dagan (1994)
investigated corrections to the transverse dispersion
coefficient in two dimensions due to fourth order per-
turbation theory contributions in the limit of high Peclet
numbers. Asymptotically, these contributions turned out
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to be zero. Hsu et al. (1996) generalized this two dimen-
sional analysis by taking into account also corrections to
the linearized Darcy flow field by means of second order
terms in the log hydraulic conductivity. The resulting
contributions to the dispersion coefficients, however,
yielded onlyminor corrections to the second order results.

The central aim of this paper is to overcome the
limitations of perturbation theory approaches in the
determination of large scale dispersion coefficients. We
make use of a filtering method called Coarse Graining
(McComb, 1990) and derive exact expressions for the
large scale dispersion coefficients.

2 Heterogeneous transport model

A solute plume released in an aquifer is transported by
advection and spreads with time due to dispersion. Its
movement is modelled by

notcðx; tÞ þ r � uðxÞ �D0rð Þcðx; tÞ ¼ qcðxÞdðtÞ ð1Þ
where cðx; tÞ is the spatial concentration of the solute.
Here and in the following, we denote vector and tensor
quantities by boldface characters. The flow field uðxÞ
follows from Darcy’s Law

uðxÞ ¼ �Kf ðxÞr/ðxÞ ð2Þ
where /ðxÞ is the piezometric head and Kf ðxÞ ¼
Kg expð ~f Þ a local conductivity field. Kg is the geometric
mean and ~f is a normal distributed random field with
vanishing mean. The mean flow field is uniform and
aligned in e1-direction, �ue1. The tensor D0 is the local
dispersion tensor. n is the porosity. As boundary condi-
tion we assume vanishing concentrations at infinity. The
initial concentration distribution is given by qcðxÞ. It is
assumed to be spatially extended over many correlations
lengths of the log conductivity in transverse directions.

3 Method of Coarse Graining

The aim of applying Coarse Graining is to average local functions
over volumes of intermediate size in order to obtain smoothed
functions on coarser resolution scales. Originally, this idea was
developed in the theory of turbulence (McComb, 1980). In
groundwater research, Beckie (2001) and Dykaar and Kitanidis
(1992) made use of this approach for studying groundwater flows,
Rubin (1999) for investigating solute transport in heterogeneous
media. They combined Coarse Graining with a perturbation theory
analysis that limited again the results to moderately heterogeneous
media.

The coarse scale can be any resolution scale of a measurement
or discretization scale of a numerical simulation [Beckie, 2001]. In
the following, we assume that the coarse scale characterized by the
length k is much larger than the correlation length of the hetero-
geneous medium because – in this paper- we focus on the asymp-
totic behaviour. In other words, we perform the spatial average
over a representative volume of the heterogeneous medium.
Moreover, the averaging volume must not only be large compared
to the velocity correlation scale but also small in comparison to the
scale of the plume. Nevertheless, the applicability of Coarse
Graining in not limited to the average over representative volumes
but applies to the average over smaller volumes as well.

Fluctuations are smoothed out over a typical volume kd around
the location x by the following averaging procedure

hcðx; tÞik �
1

kd

Z

x02kd

ddxcðxþ x0; tÞ ð3Þ

where hcðx; tÞik is the coarser concentration distribution, d the
spatial dimension and dd x an infinitesimal volume element. Because
we focus on the asymptotic limit only, the averaged concentration
is called hcðx; tÞi1. The smoothing procedure in (3) can be also
viewed as a convolution of the function cðx; tÞ with a Heavyside
function. Transforming the convolution into Fourier space yields a
product of the Fourier transform ĉðk; tÞ with a function that filters
out Fourier modes k that are larger than a cut-off value / k�1

(Rubin, 1999).
We apply Coarse Graining to the heterogeneous transport

model (1) and derive the exact large scale transport model in
appendix A.

4 Large scale transport model

The exact large scale transport behaviour is described by

nothcðx; tÞi þ �u � rhcðx; tÞi
� r � ðD0 þ dDmacroÞrhcðx; tÞi ¼ 0 ð4Þ

with a constant macro dispersion tensor, D0þ
dDmacro � hci denotes the large scale concentration dis-
tribution. The unresolved subscale effects are now
modelled by the tensor dDmacro with the entries

dDmacro
ij � h~uivji ¼ ~uivj ð5Þ

The auxiliary fields vj solve

ðuðxÞ � r � rD0rÞvj ¼ ~uj ð6Þ
~uj denotes the fluctuating part of the heterogeneous
velocity component ujðxÞ. Making use of the ergodicity
assumption, we may replace in (5) the spatial average
h� � �i by the ensemble average ð. . .Þ. Our large scale
transport equation equals the transport equation of
Neuman and Zhang (1990), Zhang and Neuman (1990)
and Guardagnini and Neuman (2001) after localization.
The large scale transport equation is well known in
context of two-scale homogenisation theory. Lunati
et al. (2002) give a detailed derivation for it.

In many realistic field cases, the Peclet number,
Pe ¼ �ul=D0, is large, Pe� 1, with l the correlation
length of the log-permeability field. Hence, the set of
PDE’s (5) can be approximated by

uðxÞ � rvjðxÞ ¼ ~ujðxÞ ð7Þ

In other words, we focus on purely advective transport
phenomena in heterogeneous porous media.

5 Second order results for the transverse macro
dispersion coefficients

To obtain lowest or second order results, we split the
velocity field in Eq. (7) into the large scale part �u and its

10



deviation ~uðxÞ. We collect the fluctuating parts of the
velocity field on the right hand side of (7) and truncate
the perturbation series for vj by avoiding the second
term

�uox1vjðxÞ ¼ ~ujðxÞ ð8Þ
In second order, the transverse dispersion coefficients
then read

Dmacro
22 ¼ ~u2v2 ¼

1

�u

Zx1

�1

dx01~u2ðx1; x2; x3Þ~u2ðx01; x2; x3Þ

¼ 1

�u

Z1

0

dx01~u2ðx01; 0; 0Þ~u2ð0; 0; 0Þ ð9Þ

using translation invariance of the velocity correlations
in the last manipulation. x1, x2 and x3 denote the com-
ponents of the spatial vector x. Dmacro

33 follows analo-
gously. Moreover, the velocity correlations are even in x1
and we can write

Dmacro
22 ¼ 1

2�u

Z1

�1

dx01~u2ðx01; 0; 0Þ~u2ð0; 0; 0Þ ð10Þ

The integral scale of the transverse velocity correlations
is zero (Hole-effect) and the transverse dispersion coef-
ficients always vanish in second order approximation.
Why do transverse velocity correlations show the Hole-
Effect whereas the longitudinal not? An explanation for
the transverse integrals scale being equal to zero can be
obtained by making use of the potentials generating the
flow field.

5.1 Transverse integral scale in two dimensions

In two dimensions, it always exists a potential u called
Lagrange stream function (Bear, 1972) such that for any
incompressible flow field with components ð~u1; ~u2Þ
ox1uðxÞ ¼ ~u2ðxÞ and ox2uðxÞ ¼ �~u1ðxÞ ð11Þ
holds. Accordingly to the boundary conditions of the
flow field, the stream function vanishes at infinity as
well. Making use of this two dimensional stream func-
tion, it immediately follows that the integral scale of the
any transverse velocity correlations in two dimensions-
and in turn the transverse macro dispersion coefficient-
must be zero

Dmacro
22 ¼ �1

2�u

Zþ1

�1

dx1o
2
x1uðx1; 0Þuð0; 0Þ

¼ �1
2�u

ox1uðx1; 0Þuð0; 0Þ
����
x1¼þ1

x1¼�1
¼ 0 :

ð12Þ

Evidently, the integral scale of the longitudinal velocity
correlations is always finite.

5.2 Transverse integral scales in three dimensions

In three dimensions, the set of equations (8) describes a
more complicated relationship. If two potentials u and
u0 exist such that

ox1uðxÞ ¼ ~u2ðxÞ ox1u
0ðxÞ ¼ ~u3ðxÞ ð13Þ

holds and both potentials go to zero at infinity, it implies
again zero transverse integral scales of the velocity cor-
relations. A very important point is that flow potentials
of the form of (13) do not describe the most general
three dimensional flow. In fact, the existence of such
potentials is equivalent with a vanishing rotation of the
flow field in mean flow direction e1.

Proof. Without any restrictions, any incompressible
flow field can be derived from a vector potential AðxÞ
according to

uðxÞ ¼ r � AðxÞ ð14Þ
Moreover, we have the freedom to set r � AðxÞ ¼ 0
(Coulomb gauge) in order to guarantee the uniqueness
of the vector potential. A representation of the flow field
as given in (13) is not the most general one but implies a
vector potential of the following form

A1

A2

A3

0
@

1
A ¼

0
u0

�u

0
@

1
A ð15Þ

In other words, the first component of the vector po-
tential A1 has to be zero. Next, we apply the rotation to
(14) that yields together with the Coulomb gauge

r� uðxÞ ¼ r �r� AðxÞ ¼ DAðxÞ ð16Þ
For vanishing A1, it directly follows that the rotation of
the flow field in mean flow direction ½r � uðxÞ�1 vanishes
as well. j

Summarized, in two dimensions the transverse inte-
gral scale of the velocity correlations always vanishes
whereas in three dimensions the transverse integral
scales only vanish for flow fields with vanishing rotation
in mean flow direction. In particular, Darcy’s flow
approximated up to second order in the log conductivity
field (linearized version) shows vanishing rotation in
mean flow direction. Therefore, the transverse macro
dispersion coefficients are zero in second order approx-
imation.

In the next sections, we overcome the limitations of
perturbation theory and derive exact results for the
transverse dispersion coefficients.

6 Exact transverse macro dispersion coefficient in two
dimensions

We look for the exact solution for the field v2 (7) to
insert it afterwards into expression (6). Our main finding
in this section will be that the exact solution is equal to
its second order approximation
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v2ðxÞ ¼
1

�u

Zx1

dx01~u2ðx01; x2Þ or �uox1v2ðxÞ ¼ ~u2ðxÞ ð17Þ

We will give a strict proof for this statement in the
following. As already discussed in Sec. 5.1., (17) im-
plies that the field v2 is the stream function of the
fluctuating velocity field ~u. For every stream function,
the gradient of the stream function is orthogonal to
the velocity field and therefore ~uðxÞ � rv2 ¼ 0 holds.
This also follows by simply inserting the solution (17)
into (7)

~u1ox1v2 þ ~u2ox2v2 ¼ ~u1
~u2
�u
þ ~u2ox2

1

�u

Zx1

dx01~u2ðx01; x2Þ

¼ ~u1
~u2
�u
� ~u2

�u
~u1 ¼ 0

The manipulation makes use of the property that the
Darcy flow field is divergence free, ox1 ~u1 ¼ �ox2 ~u2.

Our theoretical result is supported by numerical
simulations based on a random walk method. The sim-
ulations are performed using 2000 realizations of a
Darcy flow field that is approximated by a simplified
linearized version (Dentz et al., 2002). The value of the
mean flow field is normalized to one and the Peclet
number is 1000. The behaviour of the transverse macro
dispersion coefficient depending on the variance of the
log-conductivity values is plotted in Fig. 1.

The numerical result supports our finding that the
exact solution for v2 equals its second order approxi-
mation (dashed line). All higher order perturbation
theory contributions seem to cancel out. Accounting for
perturbation theory contributions up to fourth order,
this has been also shown by Dagan (1994). Our result is
exact in all higher orders perturbation theory.

Moreover, our result demonstrates that using Corr-
sin’s conjecture (dotted line) yields inconsistent results.
Corrsin’s conjecture (Dagan, 1988) is a self-consistent
approximation that replaces the full Greens function in
(A7) by the Greens function of the large scale transport
equation. It results an implicit set of equations for the
macro dispersion coefficients that is consistent with
lowest order results. Corrsin’s conjecture takes some but
not all higher order perturbation theory contributions
into account. Unfortunately, the neglected terms are
essential to get the correct result.

7 Transverse macro dispersion coefficients in three
dimensions

Encouraged from the results for the transverse macro
dispersion coefficient found in two dimensions, we now
investigate the system of PDE’s (7) in three dimensions,

uðxÞ � rv2ðxÞ ¼ ~u2ðxÞ uðxÞ � rv3ðxÞ ¼ ~u3ðxÞ ð18Þ
The simplest idea is to test if – similar to the two
dimensional case – the second order solutions

�uox1v2ðxÞ ¼ ~u2ðxÞ �uox1v3ðxÞ ¼ ~u3ðxÞ ð19Þ

solve the set of Eq. (18). Following this idea, we insert
the solutions (19) into the set of Eq. (18) and find that
they only solve the Eq. (10) if additionally rv2 and rv3
are linearly dependent vectors.

Proof. The set of Eq. (19) is equivalent to

~uðxÞ � rv2 ¼ 0 ~uðxÞ � rv3 ¼ 0 ð20Þ
Applying representation (19) for the transverse velocity
components, we get

�uox1v3ox2v2¼ ~u3ðxÞox2v2¼ ~u2ðxÞox2v3¼ �uox1v2ox2v3

�uox1v3ox3v2¼ ~u3ðxÞox3v2¼ ~u2ðxÞox3v3¼ �uox1v2ox3v3
ð21Þ

or in vector form rv2 �rv3 ¼ 0 which implies that rv2
and rv3 have to be linearly dependent vectors,

rv2ðxÞ ¼ aðxÞrv3ðxÞ with aðxÞ ¼ ~u2ðxÞ
~u3ðxÞ

: ð22Þ

aðxÞ follows by using (19).
By means of equations (20), rv2 and rv3 are pro-

portional to the gradients of the three dimensional
stream functions of the flow field ~uðxÞ (Bear, 1972). In
general, the gradients of the three dimensional stream
functions together with the flow field ~uðxÞ are assumed
to form a three dimensional coordinate system. Hence,
the directions of rv2 and rv3 must not collapse to one
direction, the Eq. (18) and (19) can not be valid at the
same time and the lowest order solutions (19) do not
solve the set of Eq. (18). This heuristic proof is com-
plemented by the correct mathematical proof listed in
appendix B.

In fact, transverse macro dispersion coefficients in
three dimensions are not only determined by second

Fig. 1 Transverse Macro Dispersion Coefficient against r2
f in two

dimensions (Dentz et al., 2003)
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order terms that give zero contribution. Higher
order contributions do not cancel out yielding finite
transverse macro dispersion coefficients in three
dimensions.

Again, we tested our theoretical result by numerical
simulations of particle transport in linearized Darcian
flow fields. Linearized Darcian flow fields show a
vanishing rotation in e1-direction. The numerical sim-
ulation yields transverse macro dispersion coefficients
that increase with increasing variance of the log-per-
meability field as plotted in Fig. 2. The numerical
values clearly differ from the results found in lowest
order perturbation theory. Moreover, we realize that
using Corrsin’s conjecture in three dimensions (dotted
line) better reproduces the behaviour of the transverse
macro dispersion coefficient than in two dimensions.
The reason is that the higher order terms do not
cancel exactly. Corrsin’s conjecture does not exactly
account for all their contributions but approximates
them reasonably well. Based on a quasilinear version
of Corrsin’s conjecture, the first researchers who
have demonstrated that transverse dispersivity in 3D
goes asymptotically to a nonzero constant were
Neuman and Zhang (1990) and Zhang and Neuman
(1990).

8 Conclusions

In this article, we studied macro dispersion coefficients
for transport in flow fields that are uniform in the
mean. We derived the exact large scale transport
equation without making use of a perturbation theory
approximation. Thus, our results are not limited to
moderately heterogeneous media. For transport with

infinite Peclet numbers, we gave a strict proof that the
transverse macro coefficient in two dimensions is zero

for transport in steady state divergence free flow fields.
The strict proof is a novelty in the literature. In con-
trast, the transverse macro dispersion coefficients in
three dimensions have been proved to be finite. The
reason may be that in three-dimensional domains flow
lines can twiggle and pass each other without inter-
secting. Therefore, solute particles that are in trans-
versal direction close to each other at some time can be
found far apart from each other at later times. For
comparison, in two dimensions flow lines can never
pass each other and particles cannot move far apart
from each other in transverse direction.

Our findings demonstrate a fundamental difference
for transport in two and three dimensions. It implies
for practical applications that one should be careful
modelling three dimensional transport by means of
two-dimensional models. A two dimensional situation
might underestimate the transverse mixing consider-
ably.

Appendix A

Transforming (3) into the Fourier Space yields a product
of the Fourier transform ĉðk; tÞ with a function P< that
filters out Fourier modes k that are larger than a cut-off
value / k�1. In the following, the filtered concentration
in the Fourier Space is called ĉ< . This equivalence can
be used for establishing a systematic Coarse Graining
procedure. For a more detailed introduction into the
concept of Coarse Graining, we refer to the book of
McComb (1990) and the review article of Bouchaud and
Georges (1990).

Step 1. In the normal space, we now write the transport
equation in operator notation

Lc ¼ qc ðA1Þ

where L denotes the transport operator ot þ uðxÞ�
r � rD0r. We split the operator L into its mean,
L0 ¼ ot þ �u � r � rD0r, and the deviation from this
operator, eL ¼ ~uðxÞ � r. Both operators are transformed
into Fourier space denoted as L̂; êL. The filtered opera-

tors are denoted as L̂<; êL<.
Step 2. Employing the filter P< to the Fourier trans-
formed transport equation, an equation for c< can be
derived,

L̂<c< ¼ q̂<c � êL<c> ðA2Þ

The Fourier Back transformation of this equation will
yield the desired equation for the smoothed concentra-
tion field.Fig. 2 Transverse Macro Dispersion Coefficient against r2

f in three
dimensions (Dentz et al., 2002)
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Step 3. By employing also the complementary operator
1� P< � P>, another equation follows for c>,

L̂>c> ¼ q̂>c � êL>c< ðA3Þ

Both equations are coupled.

Step 4. Solving (A3) for c> and inserting the solution
into (A2) we obtain an expression for c< from which
c> has been eliminated. For spatially extended initial
concentrations, q>c ¼ 0 holds and c> might be written
as

c> ¼ ðL̂>Þ�1 êL>c< ðA4Þ
with the inverse operator ðL̂>Þ�1 that actually corre-
sponds with the Green’s Function of the subscale
model. We insert (A4) into (A2) for closure of equation
(A2).

Step 5. Finally, the Fourier Back Transformation of
(A2) in combination with (A4) gives the desired equation
for the smoothed field hcðx; tÞi1. Especially, employing
localization of the nonlocal dispersive flux (Neuman,
1993) the smoothed transport model follows as

LCGhci1 ¼ hqci1 ðA5Þ
with a coarse-grained operator LCG defined by

LCG � L0 þ heLðLÞ�1eLi1 ðA6Þ

The first part is the heterogeneity independent part of
the transport operator, L0. The second part of the
operator accounts for unresolved subscale effects.
Moreover, in the asymptotic limit, the Greens function
L�1 reduces to the inverse of the steady state transport
operator L1 ¼ uðxÞ � r � rD0r. The second part of
the smoothed operator is the most interesting part.
Thus, we state the entries of this tensor operator in
explicit form

oxidD
macro
ij oxj � oxi

Z
ddx0~uðxÞiL�1ðx; x0Þ~uðx0Þj

� �
1

oxj

ðA7Þ

For shorter notation, we define
R
ddx0L�1ðx; x0Þ~uðx0Þj

� vj.

Appendix B

In the appendix, we present the detailed proof of our
statement that there exists no three dimensional flow
field that shows a vanishing rotation in e1-direction and
additionally can be derived by a vector potential of the
form (13) with the components v2 and v3 whose gradi-
ents are linearly dependent.

In a preliminary step, we will show that

r2v2ðxÞ ¼ aðxÞr2v3ðxÞ ðB1Þ
holds.

Proof.

�ur2v3 ¼ r2A2 ¼ �½r � uðxÞ�2 ¼ �½r ~f � ~uðxÞ�2 � �uox3
~f

¼ ~u3ox1
~f � ~u1ox3

~f � �uox3
~f

and analogously

�ur2v2 ¼ �r2A3 ¼ ½r � uðxÞ�3 ¼ ½r ~f � ~uðxÞ�3 � �uox2
~f

¼ ~u2ox1
~f � ~u1ox3

~f � �uox2
~f

Together with ox2
~f ¼ aðxÞox3

~f which can be derived di-
rectly from ½r � uðxÞ�1 ¼ 0 (B1) follows. j
Next, we write r2v2 ¼ rðaðxÞrv3Þ ¼ aðxÞr2v3þ raðxÞ�
rv3. Therefore, the last term has to be zero. In other
words, raðxÞ has to be orthogonal to rv3. However,
this contradicts with

r�rv2 ¼ r� ðaðxÞrv3Þ ¼ raðxÞ � rv3 ¼ 0

which implies that raðxÞ is parallel to rv3. j
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