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Abstract Peer-to-peer (P2P) overlay networks such as Bit-
Torrent and Avalanche are increasingly used for disseminat-
ing potentially large files from a server to many end users
via the Internet. The key idea is to divide the file into many
equally-sized parts and then let users download each part
(or, for network coding based systems such as Avalanche,
linear combinations of the parts) either from the server or
from another user who has already downloaded it. However,
their performance evaluation has typically been limited to
comparing one system relative to another and has typically
been realized by means of simulation and measurements.
By contrast, we provide an analytic performance analysis
that is based on a new uplink-sharing version of the well-
known broadcasting problem. Assuming equal upload ca-
pacities, we show that the minimal time to disseminate the
file is the same as for the simultaneous send/receive version
of the broadcasting problem. For general upload capacities,
we provide a mixed integer linear program (MILP) solution
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and a complementary fluid limit solution. We thus provide
a lower bound which can be used as a performance bench-
mark for any P2P file dissemination system. We also inves-
tigate the performance of a decentralized strategy, providing
evidence that the performance of necessarily decentralized
P2P file dissemination systems should be close to this bound
and, therefore, that it is useful in practice.

Keywords BitTorrent protocol - Broadcasting problem -
Content distribution - File sharing - Load balancing -
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1 Introduction

Suppose that M messages of equal length are initially
known only at a single source node in a network. The so-
called broadcasting problem is about disseminating these
M messages to a population of N other nodes in the least
possible time, subject to capacity constraints along the links
of the network. The assumption is that once a node has re-
ceived one of the messages it can participate subsequently
in sending that message to its neighboring nodes.

1.1 P2P file dissemination background and related work

In recent years, overlay networks have proven to be a pop-
ular way of disseminating potentially large files (such as
a new software product or a video) from a single server S
to a potentially large group of N end users via the Inter-
net. A number of algorithms and protocols have been sug-
gested, implemented and studied. In particular, much atten-
tion has been given to peer-to-peer (P2P) systems such as
BitTorrent (Cohen 2003), Slurpie (Sherwood et al. 2004),
SplitStream (Castro et al. 2003), Bullet’ (Kosti¢ et al. 2005)
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and Avalanche (Gkantsidis and Rodriguez 2005), to name
but a few. The key idea is that the file is divided into M
parts of equal size and that a given user may download any
one of these (or, for network coding based systems such as
Avalanche, linear combinations of the bits in the file parts)
either from the server or from a peer who has previously
downloaded it. That is, the end users collaborate by form-
ing a P2P network of peers, so they can download from one
another as well as from the server. Our motivation for revis-
iting the broadcasting problem is the performance analysis
of such systems.

With the BitTorrent protocol,! for example, when the
load on the server is heavy, the protocol delegates most of
the uploading burden to the users who have already down-
loaded parts of the file, and who can start uploading those
parts to their peers. File parts are typically 1/4 megabyte
(MB) in size. An application helps downloading peers to
find each other by supplying lists of contact information
about randomly selected peers who are also downloading
the file. Peers use this information to connect to a number of
neighbors. A full description can be found in Cohen (2003).
The BitTorrent protocol has been implemented successfully
and is deployed widely. A detailed measurement study of
the BitTorrent system is reported in Pouwelse et al. (2005).
According to (Parker 2004), BitTorrent’s share of the total
P2P traffic has reached 53% in June 2004. For recent mea-
surements of the total P2P traffic on Internet backbones see
(Karagiannis et al. 2004).

Slurpie (Sherwood et al. 2004) is a very similar proto-
col, although, unlike BitTorrent, it does not fix the number
of neighbors and it adapts to varying bandwidth conditions.
Other P2P overlay networks have also been proposed. For
example, see SplitStream (Castro et al. 2003) and Bullet’
(Kosti¢ et al. 2005).

More recently, Avalanche? (Gkantsidis and Rodriguez
2005), a scheme based on network coding (Ahlswede et al.
2000) has been suggested. Here users download linear com-
binations of the bits in the file parts rather than individual
file parts. This ensures that users do not need to find spe-
cific parts in the system, but that any upload by a given user
can be of interest to any peer. Thus, network coding can im-
prove performance in a decentralized scenario. Our results
apply to any P2P file dissemination system, whether or not
it uses network coding.

Performance analysis of P2P systems for file dissemina-
tion has typically been limited to comparing one system rel-
ative to another and has typically been realized by means
of simulation and measurements. As an alternative method
of performance analysis, we find the minimum makespan,
that is the minimal time required to fully disseminate a file

Uhttp://bitconjurer.org/BitTorrent/protocol.html.

Zhttp://www.research.microsoft.com/~pablo/avalanche.aspx.
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of M parts from a server to N end users in a centralized
scenario. We thereby provide a lower bound which can be
used as a performance benchmark for any P2P file dissemi-
nation system. We also investigate, what loss in efficiency is
due to the lack of centralized control. Using both theoretical
analysis, simulation, and direct computation, we show that
even a naive randomized strategy can disseminate the file
in an expected time whose size grows with N in a similar
manner as the minimal expected time that could be achieved
a centralized controller. This suggests that the performance
of necessarily decentralized P2P file dissemination systems
can be close to that of our performance bound and so this
bound proves to be practically useful as a benchmark.

In this paper we provide the scheduling background,
proofs and discussion of the results in our extended abstracts
(Mundinger et al. 2006a) and (Mundinger et al. 2006b). It
is essentially Chap. 2 of Mundinger (2005), but we have
added Theorem 5 and the part on theoretical bounds in
Sect. 6. In Yang and de Veciana (2004) the authors also
consider problems concerning the service capacity of P2P
networks, however, they only give an heuristic argument
for the makespan with equal upload capacities, when N
is of the simple form 2" — 1. In Qiu and Srikant (2004)
a fluid model for BitTorrent-like networks is introduced and
studied, also looking at the effect of incentive mechanisms
to address free-riding. Link utilization and fairness are is-
sues in Bharambe et al. (2005). In Massoulié and Vojnovi¢
(2005), also motivated by the BitTorrent protocol and file
swarming systems in general, the authors consider a proba-
bilistic model of coupon replication systems. Multi-torrent
systems are discussed in Guo et al. (2005). There is other
related work in Ramachandran and Sikdar (2005).

1.2 Scheduling background and related work

The broadcasting problem has been studied in the context of
many different network topologies. Comprehensive surveys
can be found in Hedetniemi et al. (1988) and Hromkovic
et al. (1995). The problem was first solved for a com-
plete graph in Cockayne and Thomason (1980) and Far-
ley (1980), for a unidirectional telephone model in which
each node can either send or receive one message dur-
ing each round, but not do both. The minimal number of
rounds required is 2M — 1 + [log, (N 4 1)] for even N,

and 2M + [log, (N + 1)) — [M=1E252 200 | for odd N2

In the bidirectional telephone model nodes can both send
and receive one message simultaneously, but nodes must be
matched pairwise. That is, in each round, a node can only

3Bar-Noy, Kipnis and Schieber report a slightly different expression
in Bar-Noy et al. (2000). This appears to be a transcription error in
quoting the result of Cockayne and Thomason.



J Sched (2008) 11: 105-120

107

receive from the same node to which it is sending. The au-
thors of (Bar-Noy et al. 2000) provide an algorithm which,
when N is odd, takes M + |log, N | rounds and is optimal,
and which, when N is even, takes M + [logy N] +M/N +2
rounds and is optimal up to an additive term of 3.

The simultaneous send/receive model of (Kwon and
Chwa 1995) relaxes the pairing constraint of the bidirec-
tional telephone model and supposes that a node can send
a message to a different node than the one from which it
is presently receiving a message. The optimal number of
rounds turns out to be M + |log, N |. We will return to this
result in Sect. 3.

In all the work reviewed above the aim was to model in-
teractions of processors, and so the authors found it natural
to assume that all nodes have equal upload capacities (i.e.,
equal constraints on the rates at which they can send data).
In this paper we are interested in P2P file dissemination and
so we permit nodes to have different upload capacities. We
work with a new uplink-sharing model that is designed to
model this (cf. Sect. 2). It is closely related to the simul-
taneous send/receive model, but is set in continuous time.
Our work also differs in that we are motivated by the eval-
uation of necessarily decentralized P2P file dissemination
algorithms, i.e., ones that can be implemented by the users
themselves, rather than by some centralized controller. We
retain an interest in the centralized case as a basis for com-
parison and to provide a bound on what can be achieved.
We show that, when upload capacities are equal, the min-
imal number of rounds required is M + [log, N ], just as
for the simultaneous send/receive model. For general upload
capacities, we provide two complementary solutions and in-
vestigate the performance of a decentralized strategy.

1.3 Outlook

The rest of this paper is organized as follows. In Sect. 2 we
introduce the uplink-sharing model and relate it to the si-
multaneous send/receive model. Our optimal algorithm for
the simultaneous send/receive broadcasting problem is pre-
sented in Sect. 3. We show that it also solves the problem for
the uplink-sharing model with equal capacities. In Sect. 4 we
show that the general uplink-sharing model can be solved
via a finite number of mixed integer linear programming
(MILP) problems. This approach is suitable for a small num-
ber of file parts M. We provide additional insight through the
solution of some special cases. We then consider a limiting
case, in which the file can be divided into infinitely many
parts, and provide the centralized fluid solution. We extend
these results to an even more general situation, in which dif-
ferent users might have different (disjoint) files of different
sizes to disseminate (Sect. 5). This approach is suitable for
typical and for large numbers of file parts M. Finally, we
address decentralized algorithms. In Sect. 6 we evaluate the

performance of a very simple and natural randomized strat-
egy, theoretically, by simulation, and by direct computation.
Assuming that the peers have equal upload capacities, we
consider two different information scenarios, and show that
even this naive algorithm can disseminate the file in an ex-
pected time whose size grows with N at a similar rate as
the minimal time that can be achieved by a centralized con-
troller. This suggests that the performance of necessarily de-
centralized P2P file dissemination systems can come close
to the performance bounds of the previous sections, and
so these bounds provide practically useful benchmarks. We
conclude and present ideas for further research in Sect. 7.

2 The uplink-sharing model

We now introduce an abstract model for the file dissemina-
tion scenario described in the previous section, focusing on
the important features of P2P file dissemination.

Underlying the file dissemination system is the Internet.
Thus, each user can connect to every other user and the net-
work topology is a complete graph. The server S has up-
load capacity Cg and the N peers have upload capacities
Ci,...,Cy, measured in megabytes per second (MBps).
Once a user has received a file part, he can participate subse-
quently in uploading it to his peers (source availability). We
suppose that, in principle, any number of users can simulta-
neously connect to the server or another peer, the available
upload capacity being shared equally amongst the open con-
nections (fair sharing). Taking the file size to be 1 MB, this
means that if n users try simultaneously to download a part
of the file (of size 1/M) from the server then it takes n/ M Cg
seconds for these downloads to complete. Observe that the
rate, at which an upload takes place, can both increase and
decrease during the time of an upload (varying according to
the number of other uploads with which it shares the upload
capacity), but we assume that uploads are not interrupted
until complete, that is, the rate is always positive (continu-
ity). In fact, Lemma 1 below shows that the makespan is not
increased if we restrict the server and all peers to carry out
only a single upload at a time. We permit a user to down-
load more than one file part simultaneously, but these must
be from different sources; only one file part may be trans-
ferred from one user to another at the same time. We ignore
more complicated interactions and suppose that the upload
capacities, Cg, C1, ..., Cy, are the only constraints on the
rates, at which file parts can be transferred between peers.
This is a reasonable assumption if the underlying network is
not overloaded. Finally, we assume that rates of uploads and
downloads do not constrain one another.

The assumption that the download rates are uncon-
strained might be thought to be unrealistic. However, we
show in Sect. 3 that if the upload capacities are equal then
additional download capacity constraints do not increase the
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minimum possible makespan, as long as these download
capacities are at least as big. This is usually the case in prac-
tice.

Typically, N is the order of several thousands and the file
size is up to a few gigabytes (GB), so that there are several
thousand file parts of size 1/4 MB each.

Finding the minimal makespan looks potentially very
hard as upload times are interdependent and might start at
arbitrary points in time. However, the following two obser-
vations help simplify it dramatically. As we see in the next
section, they also relate the uplink-sharing model to the si-
multaneous send/receive broadcasting model.

Lemma 1 In the uplink-sharing model the minimal make-
span is not increased by restricting attention to schedules
in which the server and each of the peers only carry out a
single upload at a time.

Proof Identify the server as peer 0 and, for each i =
0,1,..., N, consider the schedule of peer i. We shall use
the term job to mean the uploading of a particular file part
to a particular peer. Consider the set of jobs, say J, whose
processing involves some sharing of the upload capacity C;.
Pick any job, say j, in J, which is last to finish in J, and call
the time at which it finishes 7. Fair sharing and continuity
imply that job j is amongst the last to start amongst all the
jobs finishing before or at time ¢7. To see this, note that if
some job k were to start later than j, then (by fair sharing
and continuity) k must receive less processing than job j by
time ¢ and so cannot have finished by time ¢ 7. Let #; denote
the starting time of job j.

We now modify the schedule between time #; and ¢y
as follows. Let K be the set of jobs, with which job j’s
processing has involved some sharing of the upload capac-
ity. Let us re-schedule job j so that it is processed on its
own between times 1y — 1/C;M and ty. This consumes
some amount of upload capacity that had been devoted to
jobs in K between ty — 1/C; M and ty. However, it re-
leases an exactly equal amount of upload capacity between
times f; and 7y — 1/C; M, which had been used by job j.
This can now be allocated (using fair sharing) to processing
jobsin K.

The result is that j can be removed from the set J. All
jobs finish no later than they did under the original sched-
ule. Moreover, job j starts later than it did under the orig-
inal schedule and the scheduling before time #; and after
time 77 is not affected. Thus, all jobs start no earlier than
they did under the original schedule. This ensures that the
source availability constraints are satisfied and that we can
consider the upload schedules independently. We repeatedly
apply this argument until set J is empty. U

Using Lemma 1, a similar argument shows the following
result.
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Lemma 2 In the uplink-sharing model the minimal make-
span is not increased by restricting attention to schedules,
in which uploads start only at time 0 or at times when other
uploads finish.

Proof By the previous Lemma it suffices to consider sched-
ules, in which the server and each of the peers only carry out
a single upload at a time. Consider the joint schedule of all
peersi =0,1,..., N and let J be the set of jobs that start
at a time other than 0, at which no other upload finishes.
Pick a job, say j, that is amongst the first to start in J, say
at time #;. Consider the greatest time ¢y such that 7 < 1,
and ¢y is either O or the time when some other upload fin-
ishes, and modify the schedule so that job j already starts at
time .

The source availability constraints are still satisfied and
all uploads finish no later than they did under the original
schedule. Job j can be removed from the set J, and the
number of jobs in J that start at time #; is decreased by 1,
although, there might now be more (but at most N in to-
tal) jobs in J that start at the time when job j finished in
the original schedule. But this time is later than #;. Thus,
we repeatedly apply this argument until the number of jobs
in J that start at time 7, becomes 0 and then move along
to jobs in J that are now amongst the first in j to start at
time #; > #;. Note that once a job has been removed from J,
it will never be included again. Thus, we continue until the
set J is empty. O

3 Centralized solution for equal capacities

In this section we give the optimal centralized solution of
the uplink-sharing model of the previous section, when up-
load capacities are equal. We first consider the simultaneous
send/receive broadcasting model, in which the server and all
users have upload capacity of 1. The following theorem pro-
vides a formula for the minimal makespan and a centralized
algorithm that achieves it is contained in the proof.

Our result agrees with that of Bar-Noy et al. (2000), who
obtained it as a by-product of their result on the bidirectional
telephone model. However, they required pairwise match-
ings in order to apply the results from the telephone model.
For the simultaneous send/receive model, they use perfect
matching in each round for odd N, and perfect matching on
N — 2 nodes for even N. As a result, their algorithm differs
for odd and even N and is substantially more complicated to
describe, implement and prove to be correct than the one we
present within the proof of Theorem 1. Theorem 1 has been
obtained also by Kwon and Chwa (1995), via an algorithm
for broadcasting in hypercubes. By contrast, our explicitly
constructive proof makes the structure of the algorithm very
easy to see. Moreover, it makes the proof of Theorem 3, for
the uplink-sharing model, a trivial consequence (using Lem-
mas 1 and 2).
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Essentially, the log, N-scaling is due to the P2P ap-
proach. This compares favorably to the linear scaling of N
that we would obtain for a fixed set of servers. The factor of
1/M is due to splitting the file into parts.

Theorem 1 In the simultaneous send/receive model the
minimum number of rounds required to complete the dis-
semination of all file parts is M + |log, N |. If each round
takes 1/ M units of time, then the minimal makespan is, for
all M and N,

[logy N|

T =1
+ M

ey

Proof Suppose that N =2" — 1 4+ x,forx =1,...,2". So
n = |log, N]. The fact that M + n is a lower bound on the
number of rounds is straightforwardly seen as follows. There
are M different file parts and the server can only upload one
file part in each round (or, if network coding is used, one lin-
ear combination of the information in the file parts). Thus, it
takes at least M rounds until the server has completed suffi-
cient uploading that the whole file can be recovered by one
peer. The content of the last of these M uploads contains
information that is essential to recovering the file, but this
information is now known to only the server and one peer.
It must takes at least n further rounds for this information to
reach the other N — 1 peers.

Now we show how the bound can be achieved. The re-
sult is trivial for M = 1. It is instructive to consider the case
M =2 explicitly. If n =0 then N = 1, and the result is triv-
ial. If n =1 then N is 2 or 3. Suppose N = 3. In the follow-
ing diagram each line corresponds to a round; each column
to a peer. The entries denote the file part that the peer down-
loads that round. The bold entries indicate downloads from
the server; un-bold entries indicate downloads from a peer
who has the corresponding part.

1

21
212

Thus, dissemination of the two file parts to the 3 users can
be completed in 3 rounds. The case N =2 is even easier.

If n > 2, then in rounds 2 to n each user uploads his part
to a peer who has no file part, and the server uploads part 2 to
a peer who has no file part. We reach a point, shown below,
at which a set of 2! peers have file part 1, aset of 2" 1 — 1
peers have file part 2, and a set of x peers have no file part
(those denoted by - - - x). Let us call these three sets Ay, A>
and Ay, respectively.

1
21

2121
21212121

2121k %

We describe what happens during round n + 1, taking
cases x = 1 and x > 1 separately. If x = 1, then peers in A
upload part 1 to 2"~! — 1 peers in A, and to one peer in
Ao. Peers in A upload part 2 to 2"~! — 1 peers in A;. The
server uploads part 2 to one member of Aj. If x > 1, then
peers in Ay upload part 1 to 2"~! — |x/2] peers in A, and
to |x/2] peers in Ag. Peers in A, upload part 2 to 2"~ —
[x/2] peersin A1 and to another [x /2] — 1 peers in Ag. The
server uploads part 2 to a member of Ag. Thus, at the end of
this round 2" — x peers have both file parts, x peers have
only file part 1, and x — 1 peers have only file part 2. One
more round (round n + 2) is clearly sufficient to complete
the dissemination.

Now consider M > 3. The server uploads part 1 to one
peer in round 1. In rounds j =2, ..., min{n, M — 1}, each
peer, who has a file part, uploads his part to another peer,
who has no file part, and the server uploads part j to a peer,
who has no file part. If M < n, then in rounds M to n each
peer uploads his part to a peer, who has no file part, and the
server uploads part M to a peer, who has no file part. As
above, we illustrate this with a diagram. Here we show the
first n rounds in the case M < n.

1
21
3121
41213121

M1--21 %%

When round n ends, 2" — 1 peers have one file part and
x peers have no file part. The number of peers having file
part i is given in the second column of Table 1. Our al-
gorithm works for any M and N. To see what happens if
M > N (and indeed if M > [log, N1) one should read as 0
any entry in the table which evaluates to less than 1; for ex-
ample, the bottom two entries in column 2 and the bottom
entry in column 3 are O forn = M — 2. Now inround n + 1,
by downloading from every peer, who has a file part, and
downloading part min{n + 1, M} from the server, we can
obtain the numbers shown in the third column. Moreover,
we can easily arrange so that peers can be divided into the
sets By2, B1p, B1, Bz and B, as shown in Table 2. In round
n+ 2, x — 1 of the peers in By upload part 1 to peers in
B, and B,,. Peers in By and B3 each upload part 2 to the
peers in By, and to [x/2] of the peers in By. The server
and the peers in By, and B, each upload a part other than 1
or 2 to the peers in Bj, and to the other |x/2] peers in Bj.
The server uploads part min{n 4 2, M} and so we obtain the
numbers in the fourth column of Table 1. Now all peers have
part 1 and so it can be disregarded subsequently. Moreover,
we can make the downloads from the server, By, and B,
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Table 1 Number of file part replica as obtained with our algorithm

Part Numbers of the file parts at the ends of rounds
n n+1 n+2 n+3 n+M-—1

1 2n-l 2" N N N

2 22 2n-l 2" N N

3 211—3 2n—2 2n—1 on N

4 211—4 2n—3 2n—2 2n—l N

M=2 on—M+2 2n—M+3 2n—M+4 on—M+5 . N

M—1 on—M+1 on—M+2 on—M+3 on—M+4 ... on

M 2}1—M+1 -1 2n—M+2 -1 2n—M+3 —1 271—M+4 -1 . om_q

Table 2 File parts held by various sets of peers at the end of round
n+1

Set Peers in the set have Number of peers in set
Bi» parts 1 and 2 21— x/2]

Byp part 1 and a part other than 1 or 2 21 _1x/2]

By just part 1 X

By just part 2 [x/2]

B, just a part other than 1 or 2 [x/2]—1

so that (disregarding part 1) the number of peers who ulti-
mately have only part 3 is |x/2]. This is possible because
the size of B, is no more than |x/2]; so if j peers in B),
have part 3 then we can upload part 3 to exactly |x/2] — j
peers in Bjy. Thus, a similar partitioning into sets as in Ta-
ble 2 will hold as we start step n 4+ 3 (when parts 2 and 3
take over the roles of parts 1 and 2, respectively).

We continue similarly in subsequent rounds until, at the
end of round n + M — 1, all peers have parts 1,..., M — 2,
2" — x peers also have both part M — 1 and part M, x peers
also have only part M — 1, and x — 1 peers also have only
part M. It now takes just one final round to ensure that all
peers have parts M — 1 and M. (]

Note that the optimal strategy above follows two princi-
ples. As many different peers as possible obtain file parts
early on so that they can start to assist in uploading, and the
maximal possible upload capacity is used. Moreover, there
is a certain balance in the upload of different file parts, so
that no part gets circulated too late.

It is interesting that not all the available upload capacity
is used. Suppose M > 2. Observe that in round k, for each
k=n+2,...,n+ M —1,only x — 1 of the x peers (in set
B1), who have only file part kK —n — 1, make an upload. This
happens M — 2 times. Also, in round n + M there are only
2x — 1 uploads, whereas N + 1 are possible. Overall, we use
N + M — 2x less uploads than we might. It can be checked
that this number is the same for M = 1.

@ Springer

Suppose we were to follow a schedule that uses only x
uploads during round n + 1, when the last peer gets its first
file part. We would be using 2" — x less uploads than we
might in this round. Since 2" —x < N + M — 2x, we see that
the schedule used in the proof above wastes at least as many
uploads. So the mathematically interesting question arises as
to whether or not it is necessary to use more than x uploads
inround n+1.Infact, ( N+ M —2x)— (2" —x) =M —1, so,
in terms of the total number of uploads, such a scheduling
could still afford not to use one upload during each of the
last M — 1 rounds. The question is whether or not each file
part can be made available sufficiently often.

The following example shows that if we are not to use
more than x uploads in round n + 1 we will have to do some-
thing quite subtle. We cannot simply pick any x out of the 2"
uploads possible and still hope that an optimal schedule will
be shiftable: by which we mean that the number of copies of
part j at the end of round k will be the same as the number
of copies of part j — 1 at the end of round k — 1. It is the fact
that the optimal schedule used in Theorem 1 is shiftable that
makes its optimality so easy to see.

Example 1 Suppose M =4 and N =13=234+6—1, so
M + |log, N] = 7. If we follow the same schedule as in
Theorem 1, we reach after round 3,

1
21399

Now if we only make x = 6 uploads during round 4, then
there are eight ways to choose, which six parts to upload and
which two parts not to upload. One can check that in no case
it is possible to arrange the parts to upload so that once this
is done and uploads are made for round 5 then the resulting
state has the same numbers of parts 2, 3 and 4, respectively,
as the numbers of parts 1, 2 and 3 at the end of round 4. That
is, there is no shiftable optimal schedule. In fact, if our six
uploads had been four part 1s and two part 2s, then it would
not even be possible to achieve (1).
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In some cases we can achieve (1), if we relax the demand
that the schedule be shiftable. Indeed, we conjecture that this
is always possible for at least one schedule that uses only x
uploads during round n + 1. However, the fact that we cannot
use essentially the same strategy in each round makes the
general description of a non-shiftable optimal schedule very
complicated. Our aim has been to find an optimal (shiftable)
schedule that is easy to describe. We have shown that this is
possible if we do use the spare capacity at round n + 1. For
practical purposes this is desirable anyway, since even if it
does not affect the makespan it is better if users obtain file
parts earlier.

When x = 2" our schedule can be realized using match-
ings between the 2" peers holding the part that is to be com-
pleted next and the server together with the 2" — 1 peers
holding the remaining parts. Otherwise, this is not always
possible to schedule only with matchings. This is why our
solution would not work for the more constrained bidirec-
tional telephone model, considered in Bar-Noy et al. (2000)
(where, in fact, the answer differs as N is even or odd).

The solution of the simultaneous send/receive broadcast-
ing model problem now gives the solution of our original
uplink-sharing model, when all capacities are the same.

Theorem 2 In the uplink sharing model the minimum
makespan is the same as in the simultaneous send/receive
model, namely, given by (1) for all M and N .

Proof Lemmas 1 and 2 show that for the uplink-sharing
model with all upload capacities equal to 1 there is an opti-
mal schedule in which at all times each peer is uploading at
most one file part to just one other peer. Thus, by the same
argument as in the first paragraph of the proof of Theorem 1,
we have that (1) is a lower bound on the makespan. Theo-
rem | shows that this lower bound can be attained. (]

In fact, the proof of Theorem 1 shows that there is an
optimal schedule, in which no peer downloads more than
a single file part at a time. Thus, we also have the following
result.

Theorem 3 In the uplink-sharing model with all upload ca-
pacities equal to 1, constraining the peers’ download rates
to 1 does not further increase the minimal makespan.

4 Centralized solution for general capacities

We now consider the optimal centralized solution in the
general case of the uplink-sharing model in which the up-
load capacities may be different. Essentially, we have an un-
usual type of precedence-constrained job scheduling prob-
lem. In Sect. 4.1 we formulate it as a mixed integer linear

program (MILP). The MILP can also be used to find ap-
proximate solutions of bounded size of sub-optimality. In
practice it is suitable for a small number of file parts M.
We discuss its implementation in Sect. 4.2. Finally, we pro-
vide additional insight into the solution with different ca-
pacities by considering special choices for N and M when
C1=Cy=---=Cy, but Cs might be different (Sects. 4.3
and 4.4).

4.1 MILP formulation

In order to give the MILP formulation, we need the follow-
ing lemma. Essentially, it shows that time can be discretized
suitably.

Lemma 3 Consider the uplink-sharing model and suppose
all uplink capacities are integer multiples of a common time
unit. Then there exists T such that, under an optimal sched-
ule, all uploads start and finish at integer multiples of t.

Proof Without loss of generality, let us suppose that
Cs,Cq, ..., Cy are all positive integers. Let L be their least
common multiple. The time that the first job completes must
be an integer multiple of 1/M L. All remaining jobs are
of sizes 1/M or 1/M — (1/MC;)C; for various C; < C;.
These are also integer multiples of 1/M L. Repeating this,
we find that the time that the second job completes and
the lengths of all remaining jobs at this point must be in-
teger multiples of 1/(M L)?. Repeating further, we find that
T=1/(ML)MV suffices. O

We next show how the solution to the general problem
can be found by solving a number of linear programs. Let
‘slot ¢’ be the interval of time [(t — 1)7,77),t =0, ....Re-
call that the uploads of all file parts start and finish at the
ends of such slots. We let the server be denoted with index 0.
Let x;jx(t) be 1 or 0, as peer i does or does not download
file part k from peer j during slot 7. Let p;x(¢) denote the
proportion of file part k that peer i has downloaded by the
end of slot z. Since slots are of length t, the minimum time
needed to disseminate all file parts is the least value of 7'z,
for which all file parts can be uploaded within 7T slots. T cor-
responds to the least integer S, for which the optimal value
of the following MILP is the total number of file parts, M N.
Since this T is certainly greater than 1/(Cst) and less than
N/(Cst), we can search for its value by a simple bisection
search, solving the MILP with objective function

maximize Z pik(S), 2
ik

for various integers S, subject to the constraints given be-
low. The source availability constraint (6) guarantees that
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a user has completely downloaded a part before he can up-
load it to his peers (here & () = 1{p;r(t) = 1}). The con-
nection constraint (7) requires that each user only carries
out a single upload at a time. This is justified by Lemma 1,
which also saves us another essential constraint and vari-
able to control the actual download rates. The single user
downloading from peer j at time ¢ will do, so at rate C; as
expressed in the link constraint (5). Continuity and stopping
constraints (8), (9) require that a download that has started
will not be interrupted until completion and then be stopped.
The exclusivity constraint (10) ensures that each user down-
loads a given file part from exactly one other user. Stopping
and exclusivity constraints are not based on assumptions, but
obvious constraints to exclude redundant uploads.

Regional constraints

xijk () €{0, 1},
pik() €10, 1],

forall i, j, k, t; 3)
for all i, k,¢. 4

Link constraints between variables

t N
pik(t) =Mz Y Y xiji(t)Cj, foralli,k,t. 5)
r'=1j=0

Essential constraints

xije(t) = Ex(0) <0, foralli, j k1
(Source availability constraint); (6)

in k(@) <1, forall j,+ (Connection constraint); (7)
ik

Xijk() =& @+ 1) — x50t +1) <0, foralli, j, k,t
(Continuity constraint); ®)

xijk (1) +&ik () < 1,
(Stopping constraint); ©)]

D xijpy <1, foralli,k,t
j

foralli, j, k,t

(Exclusivity constraint). (10)

Initial conditions

pok(0) =1,
pik(0) =0,

for all k; (11)
for all i, k. (12)

Linearization constraints

&ix(t) €{0,1}, foralli,k,t; (13)
pik(t) — &k (1) = 0,
pik(t) — &k (1) < 1,

(14)
forall i, k,¢.
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4.2 Implementation of the MILP

MILPs are well-understood and there exist efficient compu-
tational methods and program codes. However, as the num-
bers of variables and constraints in the LP grows exponen-
tially in N and M, this approach is not practical for large N
and M.

Nonetheless, we can use the MILP to bound the mini-
mum makespan by replacing t with a larger value. Suppose
7 is such that the conclusion of Lemma 3 holds. Pick 7/, with
7’ > 7. Consider the MILP with t’ replacing t, and with
“<” replacing “=""1in (5) to accommodate the fact that a job
can now complete part way through a slot. If 77 is the least
integer S such that the optimal value of the MILP is NM
then 7’7’ is the minimum makespan in a problem, in which
there is the requirement that jobs may start only at times
that are integer multiples of 7/ and in which the makespan is
taken to be the first time, which is an integer multiple of 7/,
and all jobs are complete; so 7't = Tt. Now consider an
optimal schedule for the original problem. Let the N M jobs
be indexed in the order of their start times in this schedule.
Suppose job j is the first such indexed job whose start time
is not an integer multiple of t’. Let us delay the schedule
from this point onward by increasing the start times of jobs
J, ..., NM by the same amount s, with s < 7/, so that j now
starts at an integer multiple of t’. We repeat this process
on the resulting schedule until we finally have a schedule,
in which all jobs start at times that are integer multiples
of /. This produces a feasible schedule for the modified
problem. It is clear that no start time has increased by more
than NM+1’, and so this is also a bound on the increase in
makespan. Thus, we may conclude that 7't’ < Tt + NM+t'.
So T't" — NM<t' and T'7’ are, respectively, lower and upper
bounds on 7, the minimal makespan in the original prob-
lem, and are easier to compute than 7't.

4.3 Insight for special cases with small N and M

We now provide some insight into the minimal makespan
solution with different capacities by considering special
choices for N and M, when C; =C, =--- = Cyp, but Cg
might be different. This addresses the case of the server hav-
ing a significantly higher upload capacity than the end users.

Suppose N =2 and M = 1, that is, the file has not been
split. Only the server has the file initially; thus, either (a)
both peers download from the server, in which case the
makespan is T = 2/Cy, or (b) one peer downloads from the
server and then the second peer downloads from the first; in
this case T = 1/Cgs + 1/C}. Thus, the minimal makespan is
T*=1/Cs+min{l/Cs, 1/C1}.

If N = M = 2 we can again adopt a brute force approach.
There are 16 possible cases, each specifying the download
source that each peer uses for each part. These can be re-
duced to four by symmetry.
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Case A: Everything is downloaded from the server. Thisis 4.4 Insight for special cases with large M

effectively the same as case (a) above. When C; is small ) ) )
compared to Cyg, this is the optimal strategy. We still assume €y = €3 = -~ = Cy, but Cs might be dif-

Case B: One peer downloads everything from the server.
The second peer downloads from the first. This is as case
(b) above, but since the file is split in two, T is smaller.
Case C: One peer downloads from the server. The other peer
downloads one part of the file from the server and the other
part from the first peer.

Case D: Each peer downloads exactly one part from the
server and the other part from the other peer. When Cj is
large compared to Cy, this is the optimal strategy.

In each case, we can find the optimal schedule and, hence,
the minimal makespan. This is shown in Table 3.

The optimal strategy arises from A, C or D as C;/Cy
lies in the intervals [0, 1/3], [1/3, 1] or [1, 00), respectively.
In [1, 00), B and D yield the same makespan. See Fig. 1.
Note that under the optimal schedule for case C one peer has
to wait while the other starts downloading. This illustrates
that greedy-type distributed algorithms may not be optimal
and that restricting uploaders to a single upload is sometimes
necessary for an optimal schedule (cf. Sect. 2).

Table 3 Minimal makespan in the four possible cases when
N=M=2

Case Makespan
2
A Cs
1 1 1 1
B 705 + 20+ max(at )
1 11
C 2Cs + maX(—S, ﬁ)
1 1
b G e
Fig.1 Minimal makespan as a 6 .

function of C1/Cy in the four
possible cases when N = M =2

[y

Time

ferent. In the limiting case that the file can be divided into
infinitely many parts, the problem can be easily solved for
any number N of users. Let each user download a fraction
1 — « directly from the server at a rate Cs/N and a frac-
tion /(N — 1) from each of the other N — 1 peers, at a
rate min{Cs/N, C1/(N — 1)} from each. The makespan is
minimized by choosing o« such that the times for these two
downloads are equal, if possible. Equating them, we find the
minimal makespan as follows.

Case1: C; /(N —1) <Cg/N:

(1—-—a)N o NCq

TG o T YToeNa

r—_ N (15)
Cs+ NCy

Case2: C{/(N —1)>Cs/N:

(l—oe)N: oaN N a:u N
Cs (N — 1)Cs N

T—_L1. (16)
Cs

In total, there are N MB to upload and the total available
upload capacity is Cs + NC1 MBps. Thus, a lower bound
on the makespan is N/(Cs + NC) seconds. Moreover, the
server has to upload his file to at least one other user. Hence,
another lower bound on the makespan is 1/Cg. The former
bound dominates in case 1, and we have shown that it can
be achieved. The latter bound dominates in case 2, and we
have shown that it can be achieved. As a result, the minimal
makespan is

) 1 N
T* =max{ —, —— 1\ (17)
Cs Cs+ NC
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Fig. 2 Minimal makespan as a 6 -
function of Cy/Cy for different —_ M=1
values of M when N =2
.
[0
——— M=2
, St M-3
Time
3t
2
‘\“ N
l _______
C1
0.5 1 1.5 2 2.5

Figure 2 shows the minimal makespan, when the file is split
in 1, 2 and infinitely many file parts when N = 2. It illus-
trates how the makespan decreases with M.

In the next section we extend the results in this limiting
case to a much more general scenario.

5 Centralized fluid limit solution

In this section, we generalize the results of Sect. 4.4 to al-
low for general capacities C;. Moreover, instead of limiting
the number of sources to one designated server with a file to
disseminate, we now allow every user i to have a file that is
to be disseminated to all other users. We provide the central-
ized solution in the limiting case that the file can be divided
into infinitely many parts.

Let F; > 0 denote the size of the file that user i is to
disseminate to all other users. Seeing that in this situation
there is no longer one particular server and everything is
symmetric, we change notation for the rest of this section,
so that there are N > 2 users 1,2,..., N. Moreover, let
F=Y" Fand C =YY C;. We will prove the follow-
ing result.

Theorem 4 In the fluid limit the minimal makespan is
Fi B

T*:max{— ﬂ M} (18)

C,' G ey’ C
and this can be achieved with a two-hop strategy, i.e., such
in which the file from user i is uploaded to user j, either
directly from user i, or via at most one intermediate user.

Proof If N = 2 then the minimal makespan is clearly
max{F/Cy, F,/C,}. This is the value of 7* in (18).

Now consider N > 3. Each user has to upload his file at
least to one user, which takes time F;/C;. Moreover, the to-
tal volume of files to be uploaded is (N — 1) F and the total
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available capacity is C. Thus, the makespan is at least 7*.
Thus, each of the N 4 1 terms within the braces on the right
hand side of (18) are lower bounds on the makespan. It re-
mains to show that a makespan of 7* can be achieved. There
are two cases to consider.

Case 1: (N — 1)F/C > max; F;/C; for all i and T* =
(N-DF/C.

Let us adopt a protocol in which peer i sends a portion
«a; F; of his file directly to each of the other N — 1 peers, and
sends a nonoverlapping portion «; F; of his file to peer j,
who is then responsible for forwarding it to each of the re-
maining (N — 2) peers. Let

_W=DG F;
T (N=2)C (N=2)F

i

Note that ) ; &; = 1, and that by the assumptions of this case
o > 0.

Peer i now makes these uploads at constant rates, sending
his own file to peer j atrate (o; +o ;) F; / T* and forwarding
file k to other peers at rate (N — 2)a; Fy/T*. The sum of
these rates is

(N—=DaiFi+(d—-a)Fi + (N =2)a;(F - F;)
- =

Ci,

and so peer i is indeed uploading at maximum rate. Notice
that peer i receives the portion of file k that it must forward
at rate o; Fy,/ T*, which is fast enough for it to maintain the
forwarding rate of (N — 2)«; F,/ T™ to the other peers.

Case 2: F;/C; > (N — 1)F/C, and T* = F;/C;, for
some i.

Peer i now spends all the time 7™ uploading his file to
other peers. Suppose we reduce the capacity of all other
peers according to the formula
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o - G N=DFFC;+ F;FC—(N-DFF;Ci
TOE FiC— FC;

It is not hard to check that C} <Cjand 0 < Fj/C;. <
F;/C;. With C"' = C; + Zj#C} we also have (N —
1)F/C = F;/C;. We have reduced the problem to a case,
where we can apply the protocol of Case 1. U

’

In practice, the file will not be infinitely divisible. How-
ever, we often have M >> log(NN), and this appears to be
sufficient for (18) to be a good approximation. Thus, the
fluid limit approach of this section is suitable for typical and
for large values of M.

6 Decentralized solution for equal capacities

In order to give a lower bound on the minimal makespan,
we have been assuming a centralized controller does the
scheduling. We now consider a naive randomized strategy
and investigate the loss in performance that is due to the lack
of centralized control. We do this for equal capacities and
in two different information scenarios, evaluating its perfor-
mance by analytic bounds, simulation as well as direct com-
putation. In Sect. 6.1 we consider the special case of one
file part, in Sect. 6.2 we consider the general case of M file
parts. We find that even this naive strategy disseminates the
file in an expected time whose growth rate with N is similar
to the growth rate of the minimal time that we have found
for a centralized controller (cf. Sect. 3). This suggests that
the performance of necessarily decentralized P2P file dis-
semination systems should still be close to our performance
bounds so that they are useful in practice.

6.1 The special case of one file part
6.1.1 Assumptions

Let us start with the case M = 1. We must first specify what
information is available to users. It makes sense to assume
that each peer knows the number of parts into which the file
is divided, M, and the address of the server. However, a peer
might not know N, the total number of peers, nor his peers’
addresses, nor if they have the file, nor whether they are at
present occupied uploading to someone else.

We consider two different information scenarios. In the
first one, List, the number of peers holding the file and their
addresses are known. In the second one, NoList, the num-
ber and addresses of all peers are known, but not which
of them currently hold the file. Thus, in List, download-
ing users choose uniformly at random between the server
and the peers already having the file. In NoList, download-
ing users choose uniformly amongst the server and all their

peers. If a peer receives a query from a single peer, he up-
loads the file to that peer. If a peer receives queries from
multiple peers, he chooses one of them uniformly at ran-
dom. The others remain unsuccessful in that round. Thus,
transmission can fail in List only if too many users try to
download simultaneously from the same uploader. In No-
List, transmission might also fail if a user tries to download
from a peer who does not yet have the file.

6.1.2 Theoretical bounds

The following theorem explains how the expected make-
span, that is achieved by the randomized strategy, grows
with N in both the List and the NoList scenarios.

Theorem 5 In the uplink-sharing model with equal upload
capacities, the expected number of rounds required to dis-
seminate a single file to all peers in either the List or NoList
scenario is @ (log N).

Proof By Theorem 1, the running time is £2(log N). So we
need only show that it is also O (log N). In the List scenario
our simple randomized algorithm runs in less time than in
the NoList scenario. Since we already have the lower bound
given by Theorem 1, it suffices to prove that the expected
running time in the NoList scenario is O(log N). There is
also similar direct proof that the expected running time un-
der the List scenario is O (log N).

Suppose we have reached a stage in the dissemination
at which n; peers (including the server) have the file and ng
peers donot, withng+n; = N+ 1. (The base caseisn; =1,
when only the server has the file.) Each of the peers, that
does not have the file, randomly chooses amongst the server
and all his peers (NoList) and tries to download the file. If
more than one peer tries to download from the same place
then only one of the downloads is successful. The proof has
two steps.

(1) Suppose that n1 < ng. Let i be the server or a peer
who has the file and let /; be an indicator random variable
that is 0 or 1, as i does or does not upload it in the next slot.
LetY = Zi I;, where the sum is taken over all n| peers who
have the file. Thus, n1 — Y is the number of uploads that take
place. Then

ElL =|1 1 n0< 1 1 n0< 1 (20)
T N) ~ 2ng) T Je'

Now since E(Y_;I;) = > ; El;, we have EY < ni/J/e.
Thus, by the Markov inequality, for a nonnegative random
variable Y we have that for any k (not necessarily an integer)
P(Y > k) <(1/k)EY, and we get, by taking k = (2/3)n;,
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Fig. 3 Scatter plots of simulation data for List and NoList

1
P<n1 — Y = number of uploads < gnl)

< = 1)
3

_ p(y > §n1> <MV 308 <1,

Thus, the number of steps required for the number of peers,
who have the file, to increase from n; to at least n; +
(1/3)n1 = (4/3)n; is bounded by a geometric random vari-
able with mean u = 1/(1 — 3/(24/¢)). This implies that we
will reach a state, in which more peers have the file than do
not, in an expected time that is O (log N). From that point
we continue with step (ii) of the proof.

(ii) Suppose n1 > ng. Let j be a peer who does not have
the file and let J; be an indicator random variable that is 0
or 1, as peer j does or does not succeed in downloading it in
the nextslot. Let Z =) j Jj, where the sum is taken over all
ng peers who do not have the file. Suppose X is the number
of the other ng — 1 peers that try to download from the same
place, as does peer j. Then

_oy—g| M (1 "y
P(J]—O)—E|:N<1+X>:|ZE|:N(1 X)i|
_n1<1 no—l) nl(l N—nl)

“NU N N N

_
_mz/.

(22)

Hence, EZ < (3/4)n¢ and so, again using the Markov in-
equality,

1
P (no — Z = number of downloads < §n0>

7 %no 6
o

It follows that the number of peers, who do not yet have the

file, decreases from ng to no more than (7/8)ng in an ex-

pected number of steps no more than ' = 1/(1 — g) =1.

Thus, the number of steps needed for the number of peers

@ Springer

50

40

Makespan (NoList)
20 30

10

Log number of peers 25

without the file to decrease from ng to 0 is O(logng) =
O(log N). In fact, this is a weak upper bound. By more
complicated arguments we can show that if ng = a N, where
a < 1/2, then the expected remaining time for our algorithm
to complete under NoList is © (loglog N). For a > 1/2 the
expected time remains & (log N). (]

6.1.3 Simulation

For the problem with one server and N users we have carried
out 1000 independent simulation runs* for a large range of
parameters values, N =2, 4, ..., 225 We found that the
achieved expected makespan appears to grow as a + b X
log, N. Motivated by this and the theoretical bound from
Theorem 5, we fitted the linear model
yij = o+ Bxi + €ij, (24)
where y;; is the makespan for x; = log, 2! =i, obtained
in run j, j = 1,...,1000. Indeed, the model fits the data
very well in both scenarios. Figure 3 shows the scatter plots.
The following results enable us to compare the expected
makespan of the naive randomized strategy to the that of
a centralized controller.

For List, the regression provides a good fit, with R-
squared value of 0.9975 and p -value 0. The regression line
is

1.1392 4+ 1.1021 x log, N. (25)

For NolList, there is more variation in the data than for List,
but, again, a linear regression provides a good fit, with R-
squared of 0.9864 and p -value 0. The regression line is

1.7561 + 1.5755 x log, N. (26)

As expected, the additional information for List leads to a
significantly lesser makespan when compared to NoList, in

4 As many as 1000 runs were required for the comparison with the com-
putational results in Tables 4 and 5, mainly because the makespan al-
ways takes integer values.
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particular the log-term coefficient is significantly smaller.
In the List scenario, the randomized strategy achieves a
makespan that is very close to the centralized optimum of
1+ [log, N ] of Sect. 3: It is only suboptimal by about 10%.
Hence, even this simple randomized strategy performs well
in both cases and very well when state information is avail-
able, suggesting that our bounds are useful in practice.

6.1.4 Computations

Alternatively, it is possible to compute the mean makespan
analytically by considering a Markov Chain on the state
space 0, 1,2, ..., N, where state i corresponds to i of the N
peers having the file. We can calculate the transition prob-
abilities p;;. In the NoList case, for example, following the
Occupancy Distribution (c.f. (Johnson et al. 1993)), we ob-
tain

< (—1)J=i+mj)
Piitm = 2 (= DI —m)I(j —i+m)!

j=i—m

.\ N—i
> <b> ) 27)

N -1

Hence, letting k(i) denote the expected time to hit state N
from i, we have

L+3 0, k()pij

k(@)=
1 —pii

(28)

The quantity of interest is k(0). Although in principle, k(0)
can be computed from (27) and (28), in practice its accurate
computation is very computationally demanding.

For NoList (and by similar formulae for List) we com-
pute the expected makespans shown in Tables 4 and 5,
for N =2,4,...,2% We also find the expected makespans
from simulation. The computed and simulated values dif-
fer by only small amounts, without any apparent trend. It
can also be checked by computing the standard deviation
that the computed mean makespan is contained in the ap-
proximate 95% confidence interval of the simulated mean
makespan. The only exception is for N = 128 for NoList,
where it is just outside by approximately 0.0016. The com-
putations support the accuracy of our simulation results.
However, exact computations are computationally too dif-
ficult for larger N. Even at the small value of N =2° =512
we must be careful if we are to get correct answers. We com-
pute as rationals the 130, 816 probabilities p; ;4. We then
carry out a similar number of multiplications and additions
in double precision arithmetic to find £(0) from (28).

Table 4 Simulated and computed mean makespans for List are close

N Sim. Comp. Difference
2 2.000 2.000 =0.000
3.089 3.083 +0.006
4.167 4.172 —0.005
16 5.333 5.319 +0.014
32 6.534 6.538 —0.004
64 7.806 7.794 +0.012
128 8.994 8.981 +0.013
256 10.059 10.057 +0.002
512 11.107 11.116 —0.009

Table 5 Simulated and computed mean makespans for NoList are
close

N Sim. Comp. Difference
2 2314 2.333 —0.019
4.071 4.058 +0.013
5.933 5.956 —0.023
16 7.847 7.867 —0.020
32 9.689 9.710 —0.021
64 11.430 11.475 —0.045
128 13.092 13.173 —0.081
256 14.827 14.819 +0.008
512 16.426 16.427 —0.001

6.2 The general case of M file parts
6.2.1 Assumptions

We now consider splitting the file into several file parts. With
the same assumptions as in the previous section, we repeat
the analysis for List for various values of M. Thus, in each
round a downloading user connects to a peer chosen uni-
formly at random from those peers that have at least one file
part that the user does not yet have. An uploading peer ran-
domly chooses one out of the peers requesting a download
from him. He uploads to that peer a file part that is randomly
chosen from those that he has and the peer still needs.

6.2.2 Simulation

It is computationally too demanding to carry out the sort of
exact calculations we performed in the case of a single file
part, so we use only simulation to estimate the makespan.
Again, we consider a large range of parameter. We carried
out 100 independent runs for each N =2, 4, ..., 215 For
each value of M =1 — 5, 8, 10, 15, 20, 50 we fitted the
linear model (24).

Table 6 summarizes the simulation results, and Fig. 4
show scatter plots for M = 10 and M = 50. The R-squared

@ Springer



118

J Sched (2008) 11: 105-120

R RN

.
..
— o . »
o . - . -
— o & .
i e ee
_— - - L= -
i e o e o
- + e.,e =
2 e e
B . .
= « o &
= « o e e
=] .« . & .
= “« o o’e
o) - e %
2 « . 9
2 . e e
E sz
= ..
= o
‘-

AR

Log number ol peers

Fig. 4 Scatter plots of data for List, with M = 10 and M = 50

Table 6 Simulation results in the decentralized List scenario for vari-
ous values of M and log-term coefficients in the centralized optimum
(cf. Theorem 1)

M Fitted makespan R-squared 1/M
1 0.7856 + 1.1520 x log, N 0.9947 1.000
2 1.3337 4+ 0.6342 x log, N 0.9847 0.500
3 1.4492 4+ 0.4561 x log, N 0.9719 0.333
4 1.4514 4+ 0.3661 x log, N 0.9676 0.250
5 1.4812 4+ 0.3045 x log, N 0.9690 0.200
8 1.4907 +0.2113 x log, N 0.9628 0.125

10 1.4835+40.1791 x log, N 0.9602 0.100

15 1.4779 4+ 0.1326 x log, N 0.9530 0.067

20 1.4889 + 0.1062 x log, N 0.9449 0.050

50 1.4524 + 0.0608 x log, N 0.8913 0.020

values indicate a good fit, although the fact that these de-
crease with M suggests there may be a finer dependence on
M or N. The final column of the table can be compared with
the coefficient of log, N in the second column (remember-
ing that Theorem 1 gave a lower bound on makespan of or-
der (1/M)log, N). In fact, we obtain a better fit using Gen-
eralized Additive Models (cf. Hastie and Tibshirani 1990).
However, our interest here is not in fitting the best possible
model, but to compare the growth rate with N to the one
obtained in the centralized case in Sect. 3. Moreover, from
the diagnostic plots we note that the actual performance for
large N is better than given by the regression line, increas-
ingly so for increasing M. In each case we obtain signifi-
cant p -values. The regression 0.7856 + 1.1520 x log, N for
M =1 does not quite agree with 1.1392 4 1.1021 x logy, N
found in (25).
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We conclude that, as in the centralized scenario, the
makespan can also be reduced significantly in a decentral-
ized scenario even when a simple randomized strategy is
used to disseminate the file parts. However, as we note by
comparing the second and fourth columns of Table 6, as M
increases the achieved makespan compares less well relative
to the centralized minimum of 1 + (1/M)|log, N|. In par-
ticular, note the slower decrease of the log-term coefficient.
This is depicted in Fig. 5.

Still, we have seen that even this naive randomized strat-
egy disseminates the file in an expected time whose growth
rate with N is similar to the growth rate of the minimal time
that we have found for a centralized controller in Sect. 3,
confirming our performance bounds are useful in practice.
This is confirmed also by initial results of current work on
the performance evaluation of the Bullet’ system (Kostié
et al. 2005).

The program code for simulations as well as the compu-
tations and the diagnostic plots used in this section are avail-
able on request and will be made available via the Internet.’

7 Discussion

In this paper we have given three complementary solutions
for the minimal time to fully disseminate a file of M parts
from a server to N end users in a centralized scenario,
thereby providing a lower bound on and a performance
benchmark for P2P file dissemination systems. Our results
illustrate that the P2P approach, combined with a splitting of
the file into M parts, can achieve a significant reduction in
makespan. Moreover, the workload of the server is less than

Shttp://www.statslab.cam.ac.uk/~jm288/.
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Fig. 5 Illustration of the
log-term coefficients of the
makespan from Table 6: the
decentralized List scenario
(solid) and the idealized
centralized scenario (dashed)
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in the traditional client/server approach, in which it does all
the uploading. We have also investigated the loss in effi-
ciency that occurs, when no centralized control is practical.
We found that the minimum makespan achievable if neces-
sarily decentralized P2P file dissemination systems can be
close to our performance lower bound, thereby confirming
their practical use.

It would be interesting to compare dissemination times of
various efficient real overlay networks directly to our perfor-
mance lower bound. A mathematical analysis of the proto-
cols is rarely tractable, but simulation or measurements such
as in Izal et al. (2004) and Pouwelse et al. (2005) for the Bit-
Torrent protocol can be carried out in an environment suit-
able for this comparison. See also testbed results for Slurpie
(Sherwood et al. 2004) and simulation results for Avalanche
(Gkantsidis and Rodriguez 2005). Our bounds can be com-
pared to the makespan obtained by Bullet’ (Kosti¢ et al.
2005). Initial results confirm their practical use further.

In practice splitting the file and passing on extra informa-
tion has an overhead cost. Moreover, when using Transmis-
sion Control Protocol (TCP), longer connections are more
efficient than shorter ones. TCP is used practically every-
where except for the Internet Control Message Protocol
(ICMP) and User Datagram Protocol (UDP) for real-time
applications. For further details see (Srikant 2004). If split-
ting has an overhead cost then it will not be worthwhile to
make M too large. This could be investigated in more detail.

In the proof of Lemma 1 and Lemma 2 we have used fair
sharing and continuity assumptions. It would interesting to
investigate whether either of these can be relaxed.

It would also be interesting to model to a dynamic set-
ting, in which peers join the population of peers randomly.
What will happen if peers’ leave once they have completed
their download of the file (a behavior sometimes called easy-
riding)? In Internet applications users often connect for only

M

relatively short times. Work in this direction is pursued in
Qiu and Srikant (2004), using a fluid model to study the
steady-state performance, and there is other relevant work
in Yang and de Veciana (2005). Also of interest would be
to model users who attempt to free-ride by not contributing
any uploading effort. The BitTorrent protocol implements a
choking algorithm to limit free-riding.

In some scenarios it might be appropriate to assume that
users push messages rather than pull them. See Franklin and
Zdonik (1997) for an investigation of the design space for
distributed information systems. The push-pull distinction
is also part of their classification. In a push system the cen-
tralized case would remain the same. However, we expect
the decentralized case to be different. There is a number of
other interesting questions which could be investigated in
this context. For example, what happens if only a subset of
the users is actually interested in the file, but the uploaders
do not know which?

It could be interesting to consider more general upload
and download constraints. We might suppose that user i can
upload at a rate C; and simultaneously download at rate D;.
Or we might suppose that it takes time #;; for a file to be
sent from user i to user j. This produces a transportation
network problem, in which the link costs are the link delays.
The minimum makespan problem can be phrased as a one-
to-all shortest path problem if C; is at least N + 1. How-
ever, the problem is sufficiently different from traditional
shortest path problems that greedy algorithms, induction on
nodes and dynamic programming are not readily applied.
For M = 1, Priifer’s (N + 1)~! labeled trees (Bollobs
1998), together with the obvious O(N) algorithm for the
optimal scheduling on a tree, provides a basis for exhaustive
search or a branch and bound algorithm.
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