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Abs t r ac t  Highly realistic virtual htunan models are rapidly becoming commonplace in computer graphics. 
These models, often represented by complex shape and requiring tabor-intensive process, challenge the problem 
of automatic modeling. The problem and solutions to automatic modeling of animatable virtual humans are 
studied. Methods for capturing the shape of real people, parameterizatlon techniques for modeling static shape 
(the variety of human body shapes) and dynamic shape (how the body shape changes as it moves) of virtual 
humans are classified, summarized and compared. Finally, methods for clothed virtual humans are reviewed. 
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1 In troduc t ion  

Human body modeling and animation have been 
one of the most difficult tasks encountered by ani- 
mators. In particular, realistic human body model- 
ing requires an accurate geometric surface through- 
out the simulation. 

At this time, a variety of human body model- 
ing methodologies are available, that  can be classi- 
fied into three major  categories: creative, recon- 
structive, and interpolated. Anatomically based 
modelers, such as Scheepers et al.[ 1], Shen and 
Thalmann [2], and Wilhelms and Van Gelder [3] fall 
into the former approach. They observe that the 
models should mimic actual components of the 
body and their models consist of multi-layer s for 
simulating individual muscles, bones and tissues. 
While allowing for an interactive design, they how- 
ever require considerable user intervention and thus 
s~fffer from a relatively slow production time and a 
lack of efficient control facilities. 

Lately, much work has been devoted to the 
reconstructive approach to build 3D geometry of 
human automatical ly  by capturing existing shape. 
Some of them rely on stereo [4], structured light [5], 
or 3D scanners[6] Some systems use 2D images 
either from video sequences[71 or from photos [8'9]. 
"vVhile they are effective and visually convincing, 
one limiting factor of these techniques lies in that  
they hardly give any control to the user; i.e., it 
is very difficult to automatically modify resulting 
models to different shapes as the user intends. 

The third ma jo r  category, interpolated model- 
ing, uses sets of example models with an interpo- 
lation scheme to construct new models. Because 

interpolation provides a way to leverage existing 
models to generate new ones with a high level of 
control in an interactive time, it has gained grow- 
ing popular i ty  in various graphical objects incIud- 
ing human models. 

This paper  reviews automat ic  modeling tech- 
niques for animatable vir tual  humans, primarily 
for real-time applications. We focus our study 
on body modeling which are readily animatable.  
Model-based reconstructive methods and interpo- 
lated methods are discussed in detail, because 
anatomical models are more designated to the in- 
teractive design. 

This paper  is organized as follows. First we look 
for methods for shape capture of real people in Sec- 
tion 2. Then we review methods for modeling the 
variety of human body shapes in Section 3. After 
studying methods for dynamic shape change as the 
body moves in Section 4, we contimm in Section 5 
to the methods for dealing with dressed humans. 
We conclude the paper  in Section 6. 

2 S h a p e  C a p t u r e  

Since the advent of 3D image capture tech- 
nology, there has been a great deai of interest in 
the application of that  technology to the measure- 
ment of the h~unan body. In the market,  there are 
now available several systems tha t  are optimized 
either for extracting accurate measurements from 
parts  of the body, or for realistic visualization for 
use in games, virtual environments and, lately, e- 
commerce applications [l~ . 

For many years, the goal has been to develop 
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techniques to convert the scanned data into com- 
plete, readily animatable models. Apart from solv- 

ing the classical problems such as the hole filling 
and noise reduction, the internal skeleton hierarchy 
should be appropriately estimated in order to make 
them move. Accordingly, several approaches have 
been under active development to endow semantic 
structure to the scan data. Dekker e~ a/. [ii] have 
used a series of meaningful anatomical assumptions 
in order to optimize, clean and segment data  from a 
Hamamat su  whole body range scanner in order to 
generate quad mesh representations of human bod- 
ies and build applications for the clothing industry 
(see Fig.l).  Ju and others [12] introduce methods to 
automatically segment the scan model to conform 
it to an animatable model. 

Fig.1. After a scanned data (left) is segmented (middle) for 
an estimation of the skeleton structure, the posture can be 
modified (right)Jill. 

Allen et al. [i3] proposed an optimization tech- 
nique for estimating poses and kinematics of the 
human body scans. A template model is used, 
which is equipped with the skeleton hierarchy and 
the skin mesh with markers placed on it. By finding 
the DoF that  minimizes the difference marker posi- 
tion, the pose and kinematics of the scan could be 
found. Once the global proportion of the physique 
is captured, the displacement map is added by ray 
casting. Holes are filled by interpolating the rays. 

Seo eta/ .  [14] adopts a similar optimization tech- 
nique based on manually selected feature points. 

There are two main phases of the algorithm: 
the skeleton fitting and the fine refinement. The 
skeleton fitting phase finds the linear approxima- 
tion (posture and proportion) of the scanned model 
by conforming the template  model to the scanned 
data  through skeleton-driven deformation. Based 
on the feature points, the most likely joint param- 
eters are found that minimize the distance of cor- 
responding feature locations. The fine refinement 
phase then iteratively improves the fitting accu- 
racy by minimizing the shape difference between 
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the template and the scan model. The found shape 
difference is saved into the displacement map of the 
target scan model. A conformation result on a fe- 
male scan data is shown in Fig.2. 

.e 

It ,, 

Fig.2. Conformation of a template model (left) onto a 
scanned data (middle)[ 14]. The template after the confor- 
mation is shown (right). 

It is only recently that it has become a pop- 
ular area the development of technologies espe- 

cially for human body modeling. To recover the 
degrees of freedom associated with the shape and 
motion of a moving human body, most of the exist- 
ing approaches introduce simplifications by using a 
model-based approach, l<akadiaris et al, in [15], use 
2D images from three mutually orthogonal views to 

fit a deformable model to approximate the differ- 
ent body sizes of subjects. The model then can be 
segmented to different body parts as the subject 
moves. Plaenkers et al. [16] also use video cameras 

with stereo pair for the model acquisition of body 
part. A person's movements such as walking or 
raising arms are recorded to several video sequences 
and the program automatically extracts range in- 
formation and tracks outline of body. The problem 
to be solved is twofold: first, robustly extract sil- 
houette information from the images; second, fit 
the reference models to the extracted information. 
The data was used to instantiate the models and 
the models, augmented by our knowledge about hu- 
man body and its possible range of motions, are in 
turn used to constrain the feature extraction. They 
focus however more on the tracking of movement 
and the extraction of a subject's model is consid- 
ered as the initial part of a tracking process. 

Recently, more sophisticated models were intro- 
duced and they limit their aims to the construc- 
tion of realistic human model. Recent work of 
Hilton et al. [9] involves the extraction of body sil- 
houettes from a number of 2D views (front, side 
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and back) and the subsequent deformation of a 3D 
template to fit the silhouettes. The 3D views are 
then mapped as texture onto the deformed model 
to enhance realism. Similarly, Lee eta/. Is] proposed 

a feature-based approach where silhouette informa- 
tion from three orthogonal images is used to deform 
a generic model to produce personalized animat- 
able model. 

(a) (b) 

Fig.3. Image-based shape capture by Hilton eta/. [9]. (a) 
Input images. (b) Reconstructed model. 

(a) 

(b) 

Fig.4. Image-based shape capture by Lee et a/.[ s]. (a) Input 
images. (b) Reconstructed model, 

Based on adding details or features to an exist- 
ing generic model, these approaches concern mainly 
the individualized shape and visual realism using a 
high quality textures. While they are effective and 
visually convincing in the cloning aspect, these ap- 
proaches hardly give any control to the user; i.e., 
it is very difficult to modify these meshes to a dif- 
ferent shape as the user intends. These approaches 
have the drawback that  they must deal with special 
cases using ad hoc techniques. 

3 S t a t i c  S h a p e  

A common problem in human modeling is how 
to systematically model the variety of human body 
shapes. In most cases, modifying existing model, 
variously named as reference, generic or template, 
tends to be popular due to the expenses of recov- 
ering 3D geometry. 

Automatically modifying shapes is desirable for 
at least two reasons. Firstly, it is often the case 
that we want to modify shapes to meet new needs 
or requirements. In a garment application, for ex- 
ample, we might want to create a 3D body model 
in a way that it satisfies a number of measurement 
constraints with minimum user intervention, and 
in an interactive runtime setting. Secondly, auto- 
matic modification makes it easy to avoid redun- 
dancy in a crowd. Without  having to create or 
reconstruct each individual, one can obtain crowds 
by blending of existing models, for instance. 

In this section, we review several techniques 
that automate this task. 

3.1 A n t h r o p o m e t r i c  M o d e l s  

Anthropometry, the biological science of human 
body measurement, systematically studies human 
variability in faces and bodies. Systematic col- 
lection of anthropometric measurements has made 
possible a variety of statistical investigations of 
groups of subjects, which provides useful informa- 
tion. for the design of products such as clothing, 
footwear, safety equipment, furniture, vehicles and 
any other objects with which people interact. Since 
anthropometry was first introduced in computer 
gTaphics[17], a number of researchers have inves- 
tigated the application of anthropometric data in 
an automatic creation of virtual humans. Spread- 
sheet Anthropometry Scaling System (SASS) pre- 
sented by Azula et al. enables the user to create 
properly scaled human models that can be manip- 
ulated in their animation system "Jack ''[Is] (see 

Fig.5). The system creates a standardized human 
model based on a given statistically processed pop- 
ulation data or alternatively, a given person's di- 
mension can be directly used in the creation of a 
virtual human model. In the former case, it auto- 
maticaIly generates dimensions of each segment of 
a human figure based upon population data sup- 
plied as input. Their initial virtual human was 
composed of thirty-one segments, of which twenty- 
four had a geometrical representation. For each 
segment or body structure with geometrical rep- 
resentation, three measurements were considered, 
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namely the segment length, width, and depth or 
thickness. Measurements were compiled from the 
NASA Man-Systems Integration Manual [19] and 
the Anthropometry Source Book [5]. The desired di- 
mension was primarily implemented by rigid scale 
of each component, although they showed later the 
extension of the system equipped with partially de- 
formable models. Later Seo et al.'s paper [2~ re- 
ported a similar approach, but with face models 
incorporated. 

Fig.5. Anthropometric human models by Azuola et al.[ is] 

More recently, DeCarlo e t a / .  [21] have shown 
tha t  the problem of generating face geometries can 
be reduced to that  of generating sets of anthropo- 
metric measurements by adopting variational mod- 
eling technique. The underlying idea is to generate 
a shape that shares, as much as possible, the impor- 
tant properties of a prototype face and yet still re- 
spect a given set of anthropometric measurements. 
They cast the problem as a constrained optimiza- 
tion: anthropometric measurements are treated as 
constrains, and the remainder of the face is deter- 
mined by optimizing an objective function on the 
surface. A variety of faces are then automatically 
generated for a particular population. This is an 
interesting approach that, unfortunately, is slow in 
creation time (approximately one minute per face) 
owing to the nature of variation modeling. Also, 
the shape remains as a passive constitute as the 
prototype shape is conformed to satisfy the mea- 
surement constraints while "fairness", i.e., smooth- 
ness of the shape is being maximized. Therefore, 
every desirable facial feature has to be explicitly 
specified as a constraint in order to obtain realistic 
shape in the resulting model that are observable in 
real faces, such as hooked noseor double chin. 

3.2 I n t e r p o l a t i o n  T e c h n i q u e s  

In literature, a considerable amount of work 
has been undertaken with respect to editing exist- 
ing models and blending between more than two 
examples to generate new ones. Although it is 
domain independent, the interpolation techniques 
or example-based approaches have been intensively 
used for parameterized motion blending to leverage 

existing motion data. Rose et al_% paper ':Verbs 
and Adverbs" [22] has shown results in this area us- 
ing radial basis functions (RBF). Each example of 
motion is manually annotated with a set of adverb 
values, such as happy, angry, tired, etc. After nor- 
malization, each annotated motion is used to form 
an adverb and verb spaces using scattered data in- 
terpolation. Once the continuous range spaces are 
formulated, at any point in the adverb space, a 
corresponding motion is derived through RBF in- 
terpolation of example motions. 

Sloan eta/. [23] have shown the application of 
similar technique in generation of face models. Us- 
ing a number of example face models obtained from 
image based capture, they have shown interactive 
blending results with control parameters such as 
gender and age. 

More recently, novel interpolation methods that 
start with range scan data and use data interpola- 
tion to generate controllable diversity of appear- 
ance in human face and body models have been 
introduced. Arguably, the captured geometry of 
real people provides the best available resource to 
model and estimate correlations between measure- 
ments and the shape. In the work with similar goals 
but applied to face models, other researchers [24] 
have introduced a 'morphable face model' for ma- 
nipulating an existing model according to changes 
in certain facial attributes. New faces are modeled 
by forming linear combinations of the prototypes 
that are collected from 200 scanned face models. 
Manual assignment of attributes is used to define 
shape and texture vectors that, when added to or 
subtracted from a face, will manipulate a specific 
attribute (see Fig.6). 

"q . . . . . . .  s h a p  p e 

Fig.6. Manipulation of a face model by facial attributes [24]. 

The automatic  modeling approach introduced 
by Seo and Magnenat -Thalmann [14] is aimed at re- 
alistic human models whose sizes controllable by a 
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number of anthropometric parameters. Instead of 
statistically analyzed form of anthropometric data, 
they make directly use of captured sizes and shapes 
of real people from range scanners to determine 
the shape in relation with the given measurements. 
The body geometry is represented as a vector of 
fixed size (i.e., the topology is known in a pri- 
ori) by conforming the template  model  onto each 
scanned models, A compact vector representation 
was adopted by using principal component anal- 
ysis (PCA). A new desired physique is obtained 
by deformation of the template model, which is 
considered to have two distinct entities - -  rigid 
and elastic deformations.  The rigid deformation 
is represented by the corresponding joint parame-  
ters, which will determine the linear approximat ion 
of the physique. The  elastic deformation is essen- 
tially vertex displacements, which, when added to  
the rigid deformation,  depicts the detail shape of 
the body. Using the prepared dataset  from scan- 
ners, interpolators  are formulated for bo th  defor- 
mations.  Given a new arbi t rary  set of measure- 
ments  at runtime,  the joint parameters  as well as 
the displacements to be applied on the template  
model  are evaluated from the interpolators.  And  
since an individual can simply be modeled by pro- 
viding a number  of parameters  to the system, mod-  
eling a popula t ion  is reduced to the problem of au- 
tomat ica l ly  generat ing a parameter  set. The re- 
suiting models as shown 

in Fig.7 exhibit a visual fidelity, and the perfor- 
mance and robustness of the implementation. 

Recently, Seo et al. [2s] have shown that the 
modification of an individual model could be driven 
by statistics that are compiled from the example 
models (see Fig.8). 

"7*w-- 

!i 
(a) (b) 

/): ,  " :  

(c) 

Fig,8. Variations of a body model according to fat 
percentage[ 25]. (a) Original model. (b) Modification of 
the physique (fat percentage 38%). (c) Modification of the 
physique (fat percentage 22%). 

Regression models are built  upon  the female 
scan database, using shape parameters like fat per- 
centage as estimators, and each component of the 
body vector as response variables. In order to avoid 
erroneous estimation arising from relatively small 
and skewed dataset, sample calibration is preceded. 
In cases where tall-slim and short-overweight bod- 
ies are overrepresented in the database, for in- 
stance, weights for each sample are determined so 
that the linear function that maps the height to the 
fat percentage has the slope 0. All resulting models 
remain readily animatable through recalculation of 
the initial skin attachment. 

-20kg -40kg -20kg Original +20kg --M-Okg +20kg 
-20cm +20cm 

Fig.9. Variations of a body model by modifying the height 
and the weight[ 261. 

Fig.7. Various body models generated by controlling sizing Allen et a/. [26] have shown similar results but 
parameters[14], with manipulation of several control parameters si- 
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multaneously, by learning a linear mapping from 
the database models. Once the correspondence is 
established for all example models, a mapping func- 
tion was found by solving for a mapping transfor- 
mation that  maps the body feature, such as height 
and weight, onto the orthogonal body space that  
has been formed by PCA (see Fig.9). 

4 D y n a m i c  S h a p e  

Modeling of how the body changes shape as it 
moves has been a long sought problem in character 
animation. In this section, we review- methods for 
systematically deforming the skin shape during the 
animation. 

4.1 S k e l e t o n  D r i v e n  D e f o r m a t i o n  ( S D D )  

The skeleton-driven deformation, a classical 
method for the basic skin deformation is perhaps 
the most widely used technique in 3D character ani- 
mation. In research literature, an early version was 
presented by Magnenat-Thalmann et al.[ 27], who 
introduced the concept of Joint-dependent Local 
Deformation (JLD) operators to smoothly deform 
the skin surface. This tectmique has been given var- 
ious names such as Sub-Space Deformation (SSD), 
linear blend skinning, or smooth skinning. This 
method works first by assig-ning a set of joints with 
weights to each vertex in the character. The ioca- 
tion of a vertex is then calculated by a weighted 
combination of the transformation of the influenc- 
ing joints as shown in (1). 

{ 

The skeletal deformation makes use of an initial 
character pose, nameIy dress pose, where -1 
the transformation matr ix of the i-th influencing 
joint and PD~s~ the Position of the vertex are de- 
fined. While this method provides fast results and 
is compact in memory, its drawbacks are the un- 
desirable deformation artifacts in case of impor- 
tant  variation of joint angles among the influencing 
joints. 

4.2 O v e r c o m i n g  t h e  P r o b l e m s  w i t h  
S k e l e t o n  D r i v e n  D e f o r m a t i o n  

Several at tempts have been made to overcome 
the limitation of geometric skin deformation by 
using examples of varying postures and blending 
them during animation. Aimed mostly at real-time 
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applications, these example-based methods essen- 
tially seek for solutions to efficiently leverage re- 
alistic shapes that  come either from captured skin 
shape of real people, physically based on simulation 
results, or sculpted by skilled designers. 

Pose space deformation [~s] approaches the prob- 
lem by using artistically sculpted skin surfaces-of 
varying posture and blending them during anima- 
tion. Each vertex on the skin surface is associated 
with a linear combination of radial basis functions 
that compute its position given ~he pose of the mov- 
ing character. These functions are formed by using 
the example pairs - -  the poses of the character, 
and the vertex positions that  comprise skin sur- 
face. Two deformation results of a bending arm, 
one by PSD and the other by the classical skeleton 
driven deformation, are comparatively illustrated 
in Fig.10. More recently, Kry et al. [29] proposed an 
extension of that  technique by using principal com- 
ponent analysis (PCA), allowing for optimal reduc- 
tion of the data and thus faster deformation. 

Fig.lO. Pose space de format ion  (left) resul t  compared  to the  

skeleton dr iven deformat ion  (right) [28]. 

Fig.ll. Example-based skin deformation by S]oan et all 2s]. 

Sloan et al. 12a] have shown similar results us- 
ing RBF for blending the arm models (see Fig.ll). 
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Their contribution lies in that they make use of 
equivalent of cardinal basis fnnction. The blending 
functions are obtained by solving the linear sys- 
tem per example rather than per degree of free- 
dom, which potentially is of a large number, thus 
resulting in an improved performance. 

Allen et al. [13] present yet another example- 
based method for creating realistic skeleton-driven 
deformation (see Fig.12). Unlike previously pub- 
lished works, however, they start from an unor- 
ganized scan data instead of using existing mod- 
els that have been sculpted by artists. After the 
correspondence is established among the dataset 
through a feature-based optimization on a template 
model followed by a refitting step, they build blend- 
ing function based on the pose, using k-nearest- 
neighbors interpolation. Additionally, they build 
functions for combining subparts of the body, al- 
lowing for blending several datasets of different 
body parts like arms, shoulder and torso. 

Fig.12. Example-based skin deformation by Allen et aL [13]. 

More recently, Mohr et al. [3~ showed the exten- 
sion of the SDD by introducing pseudo joints. The 
skeleton hierarchy is completed with extra joints in- 
serted between existing ones to reduce the dissimi- 
larity between two consecutive joints. These extra 
joints can also be used to simulate some nonlin- 
ear body deformation effects such as muscle bulges. 
Once all the extra joints have been defined, they use 
a fitting procedure to set the skinning parameters 
of these joints. The weights and the dress position 
of the vertices are defined by a linear regression so 
that the resulting skin surface fits to example body 
shape designed by artists. Having weights well de- 
fined, those examples could be discarded during the 
runtime. 

5 D r e s s e d  V i r t u a l  M o d e l s  
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Recent years have witnessed the increasing num- 
ber of modeling simulation techniques developed 
on dressed virtual humans. In this section we dis- 
cuss several cloth modeling and simulation meth- 
ods that are closely related to the body deformation 
and animation. 

5.1 G a r m e n t  M o d e l i n g  

Despite several attempts to capture and model 
the appearance and the behavior of 3D cloth mod- 
els automatically [31'32], garment models worn by 

virtual models today come mostly from an inter- 
active process. In works presented by Cordier et 
al.[ 6,3s], the garments worn on a 3D body model 

are automatically resized as the body changes its 
dimension (See Fig.14). They first attach the cloth 
mesh to the body surface by defining attachment 
data of the garment mesh to the skin surface. The 
cloth deformation method makes use of the shape 
of the underlying skin. Each vertex of the garment 
mesh is associated to the closest triangle, edge or 
vertex of the skin mesh. In Fig.13, the garment ver- 
tex C is in collision with the skin triangle $IS2S3. 
C' is defined as the closest vertex to C located on 
the triangle $1S2S3. The barycentric coordinates 
of C' is then with SI, $2 and $3. 

/ 

Fig.13. IV[apping of attachment information [33j- 

These barycentric coordinates provide an easy 
way to compute the rest shape of the garments by 
using the location of the skin vertices. For ev- 
ery position of the triangle SIS2S3, the position 
of the cloth vertex can be easily computed. The 
association between the original body and the gar- 
ment permits to smoothly interpolate the garment 
so that the garment remains appropriately worn on 
the virtuaJ body. 

5.2 R e a l - T i m e  G a r m e n t  S i m u l a t i o n  

Extensive research has been carried out in cloth 
simulation. Several of them have focused on the 
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quality of garment simulation, where constraint of 
real-time was not a priority. Their aim was to de- 
velop a physics-based method that  is able to sim- 
ulate the dynamics of cloth independent of its use 
whether as clothing or other situations like in fur- 
nishing tablecloth. They integrated complex colli- 
sion detection and they were able to simulate the 
physical behavior of garments [34-36]. 

e 

Fig.14. Resizing cloth models in accordance with the body 
deformation[an]. 

Other research has focused on the real-time as- 
pect of the animation of deformable objects using 
physicM simulation. 

Baraff et a/.[37,3sl have used the Implicit Euler 
Integration method to compute the cloth simula- 
tion. They stated tha t  the bottleneck of fast cloth 
simulation is the fact tha t  the time-step must be 
small enough in order to avoid instability. They 
described a method tha t  can stably take large t ime 
steps, suggesting the possibility of real-time anima- 
tion of simple objects. 

Meyer eta/ .  [39] and Desbrun et a/.[ 4~ have used 
a hybrid explicit/ implicit  integration algorithm to 
animate real-time clothes, integrated with this is a 

voxel-based collision detection algorithm. 
Other research has focused on the collision de- 

tection, stat ing that  it is one of the bottlenecks 
to real-time animation. Vassilev et a/.[ 41] proposed 
to use the z-buffer for collision detection to gen- 
erate depth and normal maps.  Computa t ion  t ime 
of their collision detection does not depend on the 
complexity of the body. The main drawback is tha t  
the maps need to be pre-computed before simula- 
tion, restricting the real-time application. 

Another approach presented by Grzeszczuk et 
a/. [42] uses a neural network to animate dynamic 
objects. They  replaced physics-based models by a 
large neural network tha t  automatical ly learns to 
simulate similar motions by observing the models 
in action. Their  method works in real-time. How- 
ever, it has not been proven tha t  this method can 
be used for complex simulation such as cloth. 

In [6], Cordier et al. introduced a method for 
cloth animation in real-time. The algorithm works 
in a hybrid manner  exploiting the merits of bo th  
the physical-based and geometric deformations. It  
makes use of predetermined conditions between the 
cloth and the body model, avoiding complex colli- 
sion detection and physical deformations wherever 
possible. Garments  are segmented into pieces tha t  
are simulated by various algorithms, depending on 
how they are laid on the body  surface and whether  
they stick or flow on it. 

6 C o n c l u s i o n  

Although the problem of modeling virtual hu- 
mans have been the well-studied area, the grow- 
ing needs of applications where a variety of real- 
istic, controllable virtual humans call for efficient 
solutions that  automatically generate high-quality 
models. We have reviewed several techniques, 
which are devoted to the generation of static and 
dynamic shape of the human body  automatically. 

In comparison with undressed body models, lit- 
tle at tention has been devoted to the task of dress- 
ing automatically virtual human modeIs. This sit- 
uation will change rapid/y, since most of practical  
applications today involve vir tual  humans, often 
crowds, with clothes. This is the case particularly 
with the growing power of graphics hardware and 
software techniques for support ing large number of 
virtual human models in real-t ime applications. 
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