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SUMMARY 

Microvascular endothelial cells (MVEC), which differ from large vessel endothelial ceils, have been isolated successfully 
from lungs of various species, including man. However, contamination by nonendothelial cells remains a major problem in 
spite of several technical improvements. In view of the organ specificity of MVEC, endothelial cells should be derived from 
the tissue involved in the diseases one wishes to study. Therefore, to investigate some of the immunopathological mechanisms 
leading to acute respiratory distress syndrome (ARDS), we have attempted to isolate lung MVEC from patients undergoing 
thoracic surgery for lung carcinoma and patients dying of ARDS. The method described here includes four main steps: (1) 
full digestion of pulmonary tissue with trypsin and collagenase, (2) aggregation of MVEC induced by human plasma, (3) 
Percoll density centrifugation, and (4) selection and transfer of MVEC after local digestion with trypsin/EDTA under light 
microscopy. Normal and ARDS-derived lung MVEC purified by this technique presented contact inhibition (i.e., grew in 
monolayer), and expressed classical endothelial markers, including yon Willebrand factor (vWF), platelet endothelial cell 
adhesion molecule I(PECAM-1, CD31), and transcripts for the angiotensin converting enzyme (ACE). The cells also formed 
capillarylike structures, took up high levels of acetylated low-density lipoprotein (Ac-LDL), and exhibited ELAM-1 indu- 
cibility in response to TNF. Contaminant cells, such as fibroblasts, smooth muscle cells, or pericytes, were easily recognized 
on the basis of morphology and were eliminated by selection of plasma-aggregated cells under light microscopy. The 
technique presented here allows one to study the specific involvement and contribution of pulmonary endothelium in various 
lung diseases. 
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INTRODUCTION 

Since the endothelial cell culture was developed in 1973 (19), the 
awareness has grown that these cells play active roles in homeostasis 
and pathology. In particula, microvascular endothelial cells (MVEC) 
have been shown to have more physiological and pathological sig- 
nificance than large vessel endothelial cells (LVEC) [for review see 
Scott and Bicknell (29)]. In physiological conditions, MVEC are cru- 
cial in modulating metabolisms and tissue functions, while in patho- 
logical conditions, they are central to the process of inflammation 
(31). MVEC have been successfully isolated from almost all organs 
and tissues (29). MVEC differ from LVEC by various morphological 
and functional variables (14). Furthermore, endothelial cells from 
arterial origin are different from those of venous origin (1). These 
data suggest that LVEC may not be adequate for the study of patho- 
logical events occurring in microvessels. Moreover, MVEC derived 
from various organs also differ in some characteristic (2). Indeed, 
MVEC derived from different areas of the microcirculation exhibit 
differential adhesive properties for granulocyte (23). 

~To whom correspondence should be addressed at Division of Investigative 
Surgery, Department of Surgery, University Hospital, University of Geneva, 
24, rue Micheli-du-crest 1211, Geneva 14, Switzerland. 

In view of the organ specificity of MVEC, endothelial cells should 
be derived from the tissue involved in the diseases one wishes to 
study (29). Therefore, to further investigate the pathophysiology of 
acute respiratory distress syndrome (ARDS), a clinical condition dur- 
ing which lung MVEC express increased levels of cell adhesion mol- 
ecules and thereby mediate the sequestration of polymorphonuclear 
leukocytes in microvessels (35), we attempted to isolate lung MVEC 
from patients who died of this syndrome. 

MVEC have been successfully isolated from bovine (11), sheep 
(25), rat (33), mouse (2), rabbit (36), and human (16) lungs, but 
isolation and culture of these MVEC seems more laborious than from 
other organs. Although more than 25% of MVEC of the body are 
found in the lung, the presence of about 40 other cell types in this 
organ renders the isolation of pure MVEC difficult. The contamina- 
tion by nonendothelial cells, such as fibroblasts, pericytes, and 
smooth muscle cells remains a major problem in lung MVEC culture. 
Several techniques have been established to purify MVEC, including 
the use of selective culture rnedimn (13), treatment with trypsin (27), 
subcellular cloning (25), weeding of nonendothelial cells by manual 
manipulation (24), labeling endothelial cells with fluorescent probes 
and subsequent cell sorting by fluorescence-activated cell sorter (3), 
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FIG. 1. Four steps of lung microvascular endothelial cell (MVEC) isolation. A, Cell suspension after digestion with trypsin and 
collagenase; B, induction of MVEC aggregates by plasma; C, formation of MVEC colony after a 3-d culture; D, purified lung MVEC grown 
to confluence. 

and sorting using magnetic beads conjugated with Ulex europaeus 
agglutinin-1 (UEA-1) (14). However, it was noted that adherent  beads 
are phagocytosed by cells and thereby interfere with cell functions 
(8). Moreover, the antibody conjugated on magnetic beads seriously 
affects the phenotypic analysis, as discussed below. 

Here, we describe a method allowing a highly pure MVEC popu- 
lation to be obtained from human lung, either in normal or diseased 
conditions. These purified lung MVEC were identified by three typ- 
ical features of endothelial cells: expression of yon Willebrand factor 
(vWF), platelet endothelial  cell adhesion molecule I(PECAM-1, 
CD31), and transcripts for the angiotensin converting enzyme (ACE). 
The cells also formed capillalylike structures, took up high levels of 
acetylated low-density lipoprotein (Ac-LDL), and exhibited endothe- 
lial cell leukocyte Adhesion Molecule 1 (ELAM-1) inducibility in 
response to tumor necrosis factor alpha (TNF). 

MATERIALS AND METHODS 

Isolation of MVEC From Human Lung 

Human lung tissue samples (20-30 g) were collected from AnDS patients 
who died in the surgical intensive care unit of our hospital. Informed consent 

for postmortem biopsy of the lung was obtained from the next of kin. Control 
human lung tissues were obtained from patients undergoing thoracic surgery. 
Samples were collected from macroscopically and microscopically normal 
tissue. The study protocol was examined and approved by the institutional 
Ethical Committee for Research in Humans (15). Peripheral lung parenchyma 
was aseptically removed and stored in Dulbecco's modified Eagle's medium 
(DMEM) containing 0.1% ethylene diaminetetraacetic acid (EDTA) at 4 ° C 
and kept up to 6 h prior to processing. The tissue was washed with DMEM 
and the pleuron was carefully dissected from the underlying tissue with scis- 
sors to preclude contamination by mesothelial cells. The peripheral lung 
tissue devoid of large vessels was dissected, finely minced into 3 X 3 mm 
pieces and washed with DMEM on a sterile 20-~m metal mesh to remove 
blood cells. The tissue was then digested for 20-30 rain at 37 ° C in 0.1% 
trypsin (Sigma Chemical Co., St. Louis, MO, USA) containing 0.1% EDTA 
(1 ml/g tissue) pH 7.2, followed by 0.2% collagenase (Sigma II type) pH 7.4, 
for another 20 min at 37 ° C. The digested solution was filtered through 100- 
~m nylon mesh to discard large fragments of connective tissue. The filtrate 
was centrifuged at 500 × g for 5 rain at 4 ° C and the pellet was resuspended 
in 5 ml DMEM containing 20% human plasma and incubated for 5 min to 
induce the aggregation of MVEC. The cell suspension was overlaid on 20 ml 
of 20% Percoll and centrifuged at 1500 ×g  for 15 min at 4 ° C. The pellet 
was collected and washed twice in DMEM by centrifugation at 500 X g for 
5 min. The cells were resuspended in DMEM containing 2 nrM L-glutamine, 
100 U/ml penicillin, 100 tag/ml streptomycin, 30% fetal calf serum (FCS), 
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FIG. 2. Morphology of lung MVEC. A, Microvilli (×  10 000), B, capillar- 
ylike tube formation (× 400); C, Weibel-Palade bodies (X 28 000). 

40 U/ml hepm'in, and 100 gg/ml endothelial cell growth supplement (Sigma). 
The cells were plated onto T25 flasks precoated with 2% gelatin (Sigma) and 
cultured at 37 ° C in a 5% COs atmosphere. 

Purification of Human Lung MVEC 

The cells were cultured for 4B h, washed with DMEM to remove nonad- 
herent cells, and fresh growth medium was added. After 1 wk, MVEC grew 

FIG. 3. Immunoeytochemieal staining for endothelial markers. A, von 
Willebrand factor; B, CD31; C, acetylated low-density lipoprotein uptake on 
normal lung microvascular endothelial cells. 

out as typical "cobblestone" colonies and exhibited the characteristics of 
monolayer growth and contact inhibition. These "cobblestone" colonies were 
marked under an inverted microscope in a laminar flow hood. The nonen- 
dothelial cells around the colonies were weeded by manual manipulation, as 
described (24). The medium was removed, the flask was washed with DMEM, 
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FIG. 4. Profiles of yon Willebrand factor (vWF) (A) and acetylated low-density lipoprotein (Ac-LDL) (B). Flow cytometric analysis of 
lung microvascular endothelial cells (MVEC) from control patients and patients who died of acute respiratory distress syndrome (ARDS). 
(A). Analysis ofvWF expression. The open histograms represent the fluorescence with second step only, and the shaded histograms indicate 
the specific staining with anti-human vWF antibody. Human umbilical vein endothelial ceils (HUVEC) and human fibroblasts (MRC) used 
respectively as positive and negative controls. (B). Analysis of Ac-LDL uptake. The open histograms represent the lung MVEC alone, and 
the shaded histograms indicate uptake of Ac-LDL after 4 h incubation with Ac-LDL. HUVEC and human smooth muscle cells (SMC) 
used respectively as positive and negative controls. 

and a drop of trypsin/EDTA was added onto the marked colonies with a 
micropipette. Under an inverted microscope, the digested cells were carefully 
transferred to a new flask with a micropipette. Purified MVEC were cultured 
until cells reached confluence, then passaged after trypsin/EDTA treatment 
at a rate dependent on their growth. 

Characterization of Human Lung MVEC 

1. Morphology. Purified lung MVEC were seeded on a chamber slide 
(Nune, Inc., Naperville, IL) and grown to confluence. To check their ability 
to form capillarylike structures in vitro, the cells were cultured in chamber 
slides coated with 3% gelatin. After 3 d of culture, the formation of capillar- 
ylike structm'es was observed under an inverted phase contrast microscope. 

2. Traltsmission electron microscopy. Cells were seeded in a gelatin-coated 
cell culture insert with 0.45 #m pore size (Falcon, Meylan Cedex, France) 
and grown to confluence. The cells were washed with DMEM and then fixed 
with 2.5% glutaraldehyde for 30 min at 4 ° C, washed with 0.1 M phosphate- 
buffered saline (PBS) pH 7.2, and postfixed with 1% osmium tetroxide for 
20 rain. The cells were dehydrated with different concentrations of ethanol 
and embedded in Epon 812. Selected areas of monolayer cell cultures were 
stained with uranyl acetate and lead citrate, and examined in a Philips EM 
400 electron microscope. 

3. Expression of endothelial markers: vWF and PECAM-1. Lung MVEC (5 
X 103 cells in 0.5 ml) were plated in a chamber slide and grown to subcon- 
fluence. Human umbilical vein endothelial cells (HUVEC), purified as de- 
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TABLE ] 

ACE 
272 bp 

SUMMARY OF DIFFERENCES BETWEEN MICROVASCULAR 
ENDOTHELIAL CELLS (MVEC), LARGE VESSEL ENDOTHELIAL 
CELLS (LVEC), AND POSSIBLE CONTAMINANT CELLS, SUCH AS 

FABROBLASTS AND SMOOTH MUSCLE CELLS (SMC) ° 

MVEC LVEC fibrobiasts SMC 

1 2 3 4 5 6 7 8 9 1 0  
FIG. 5. Expression of angiotensin converting enzyme (ACE) transcripts 

in normal and acute respiratory distress syndrome (ARDS)-derived lung mi- 
crovascular endothelial ceils (MVEC) Reverse transcription/polymerase 
chain reaction (RT/PCR) analysis. Lane 1: a DNA ladder. Lanes 2-5: normal 
lung MVEC. Lanes 6-9: ARDS-derived lung MVEC. Last lane: THP-1 cells 
used as negative control. 

cobblestone/ 
Morphology spindle cobblestone spindle spindle 
Growth characteristic mono laye r  monolayer polylayer polylayer 
Capillarylike structures yes yes no no 
Microvilli + + + - - - 
Weibel-Palade Bodies + + + + - - 
vWF + + + + - - 
CD31 + / -  + - - 
Ac-LDL uptake high high low low 
ACE + + + + + - 
ELAM-1 inducibility + + - - 
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FIG. 6. Inducibility of ELAM-1 on lung microvascular endothelial cells 
(MVEC). Normal or acute respiratory distress syndrome (ARDS)-derived lung 
MVEC were stinmlated for 4 h with recombinant human TNF (hTNF). Inten- 
sity of staining was determined by a cell-based enzyme-linked immunosor- 
bent assay (ELISA). Negative controls consisted of human lung fibroblasts 
(MRC) and smooth muscle cells (SMC). 

scribed (19), and human fibroblasts (MRC, a kind gift from Dr. M. Pepper, 
University of Geneva Medical School), were used as positive and negative 
controls, respectively. The cells were fixed with methanol at - 2 0  ° C for 10 
rain, washed three times with PBS containing 1% bovine serum albumin 
(BSA), and preincubated with PBS containing 5% FCS, 0.05% Tween 20 for 
20 rain at 37 ° C to block nonspecific binding. The cells were stained with 1/ 
20 diluted rabbit antiserum to human vWF (Sigma) or 1/100 diluted mono- 
clonal antibody to human PECAM-1 (9Gll, from British Biotechnology) for 
45 min at room temperature. Cells were washed three times with PBS/BSA 
and incubated with 1/100 dilnted fluorescein isothiocyanate (F1TC)-conju- 
gated goat anti-rabbit IgG (Sigma) or 1/100 diluted FITC-conjugated goat 
anti-mouse IgG antibody (Sigma) for 30 min at room temperature. After wash- 
ing and mounting, the staining was observed under a fluorescence 
microscope. Alternatively, for flow cytometry, single-cell suspensions were 
prepared by trypsinization, fixed 5 min with - 2 0  ° C methanol, and then 
incubated with PBS containing 5% FCS and 0.05% Tween 20 for 10 min to 
block nonspecifie binding. Cells were washed, stained as above at room tem- 
perature, and analyzed with a FACSean (Beeton-Dickinson, San Jose, CA). 

4. Uptake ofacetylated LDL. Uptake was demonstrated with the fluorescent 
probe l'-dioctadeeyl-3,3,3',3'-tetramethyl-indoearbncyanide perehlorate 

a vWF = yon Willebrand factor; Ac-LDL = acetylated low-density lipo- 
protein; ACE = angiotensin converting enzyme; ELAM-1 = endothelial cell 
leukocyte adhesion molecule 1; + = positive; - = negative. 

conjugated to Ac-LDL (Dil-Ac-LDL) (Paesel + Lorei, Frankfurt, Germany). 
The ceils were incubated with 10 gg/ml DiI-Ac-LDL in DMEM containing 
10% FCS, for 4 h at 37 ° C. The medium was removed and ceils were incu- 
bated for 10 min in fresh medium. For fluorescence microscopy, ceils were 
fixed with 10% buffered formalin, washed, mounted, and then observed under 
fluorescence microscopy. For flow cytometry, after 4 h of incubation with Ac- 
LDL, single-cell suspensions were prepared by trypsinization. HUVEC and 
human smooth muscle cells (SMC, kind gift from Dr. G. Gabbiani, University 
of Geneva Medical School) were used as positive and negative controls, re- 
spectively. The fluorescence intensity was analyzed with a FACScan. 

5. Expression of angiotensin converting enzyme. The expression of ACE 
mRNA was studied by reverse transcription/polymerase chain reaction (RT/ 
PCR) as described (10). Briefly, total RNA was isolated from 1 X ]06 cells 
by the single guanidinium thiocyanate-phenol-chloroform mixture extraction 
method (5). RNA was incubated for 30 rain at 37 ° C in 40 mM Tris-HC1 pH 
7.5, 10 mM NaCI, 6 mM MgC12, and 2.5 units of RQ1 DNAse (Promega Corp., 
Madison, WI, USA) to remove any contaminating genomic DNA from the 
preparations. After phenol°chloroform extraction and ethanol precipitation, 
pellets were resuspended in water. Synthesis of the first strand of cDNA was 
performed according to the instructions delivered with the cDNA Synthesis 
Kit (Boehringer Mannheim, Germany), using random primers and AMV re- 
verse transcriptase (10 units/sample) in a final volume of 20 pl. After 1 h 
incubation at 42 ° C, samples were heat inactivated and kept frozen ( - 2 0  ° 
C) until use. Two gl of cDNA were then amplified in a 25 gl reaction mixture 
containing buffer, deoxynucleotide triphosphates (dNTP), and 2.5 units of 
ampliTaq (Perkin Elmer Cetus, Emeryville, CA). Samples were overlaid with 
mineral oil and amplified at 94 ° C for 5 min, 60 ° C for 1 min, and 72 ° C for 
30 s followed by 35 cycles at 94 ° C for 30 s, 60 ° C for 30 s, and 72 ° C for 1 
min, 30 s. PCR was carried out in an automated DNA Thermal Cycler (Perkin 
Elmer Cetus), in the presence of 0.2 p~M of each primer. The following oli- 
gonucleotides were used: 

GAPDH 1,5'-TGAAGGTCGGTGTGAACGGATTTGG-3' 
GAPDH 2,5'-ACGACATACTCAGCACCAGCATCAC-3' 
ACE 1,5'-GATGTGGCCATCACATFCGTCAGA-3' 
ACE 2,5'-GCTGCAGAAGAACATGCAAA-3' 

One half of the reaction was electrophoresed on 1.5% agarose gels containing 
ethidium bromide and the appropriate bands were visualized under UV light. 

6. Inducibility of ELAM-1. A cell-based enzyme-linked immunosorbent 
assay (ELISA) was used to detect and quantitate TNF-inducible ELAM-1 
expression. Briefly, purified MVEC were seeded in 96-well plates and cul- 
tured to confluence. Cells were then stimulated with different doses of re- 
combinant human TNF in DMEM containing 10% FCS for 4 h at 37 ° C. Cells 
were washed with DMEM and fixed with - 20 ° C methanol for 10 rain. After 
fixation, PBS containing 5% FCS and 0.05% Tweeu 20 was added for 20 rain 
to block nonspecific binding. Cells were incubated with monoclonal antibody 
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to human ELAM-1 (28.109.76 from Janssen Biochemica, Beerse, Belgium), 
diluted in PBS/BSA (final concentration 10 gg/ml) for 45 rain at room tem- 
perature, washed with PBS/BSA, and then incubated with 1/1000 diluted 
peroxidase-conjugated anti-mouse IgG (Sigma) for 30 rain at room tempera- 
ture. Cells were further incubated with diluted substrate, tetrameth- 
ylbenzidine (TMB, from Medgenix, Fleurus, Belgium) for 30 rain, stopped 
with 2 N H2S04, and optical density was read in an automatic ELISA reader 
at 492 nm. 

RESULTS 

The four steps of lung MVEC purification are shown in Fig. 1 A- 
D. The cell aggregation induced by human plasma was demonstrated 
to be vWF positive by immunofluorescence (data not shown). After 
Percoll centrifugation, the aggregated cells were found in the pellet. 
When cells adhered to the plastic well, the aggregated MVEC pre- 
sented a cobblestonelike morphology and exhibited the characteris- 
tics of monolayer growth and contact inhibition. Lung MVEC from 
both types of tissues formed classical capillarylike "tubular" struc- 
tures when cultured on 3% gelatin-coated slides. Transmission elec- 
tron microscopy showed the presence of Weibel-Palade bodies in the 
cytoplasm and abundant microvilli on MVEC plasma membrane (Fig. 
2 A-C). Although lung MVEC are positive for vWF, the immunoflu- 
orescence staining pattern was less granular, because they have fewer 
Weibel-Palade bodies than HUVEC (9,17,21). Mesothelial cells can 
also exhibit cell surface microvilli, but we found the microvilli and 
Weibel-Palade bodies within the same cells. The isolated ceils were 
stained with cytokeratin 8, a marker of mesothelial ceils by immu- 
nocytochemistry. The results indicated that less than 1% of the cells 
were positive in both normal and in ARDS lung MVEC. The isolated 
cells expressed vWF and CD31, as shown by immunofluorescence 
staining (Fig. 3 A and B), and took up large amounts of Ac-LDL (Fig. 
3 C). The staining for vWF and uptake of Ac-LDL were also studied 
by flow cytometry, to analyze the intensities of fluorescence (Fig. 4 
A and B). By RT/PCR, all purified MVEC from normal and ARDS 
lung showed the expression of ACE mRNA and its absence in the 
monocytic THP-1 cell line (a kind gift of Dr. J. Pugin, University of 
Geneva Medical School), used as negative control (Fig. 5). Moreover, 
both normal and ARDS-derived lung MVEC exhibited a clear in- 
ducibility of ELAM-1 after a 4-h in vitro stimulation with recombi- 
nant human TNF, in a dose-dependent manner, as shown by cell- 
based ELISA (Fig. 6). In contrast, both MRC and SMC remained 
negative for ELAM-1 induction. 

DISCUSSION 

In the present study, we report a method to isolate and purify 
human lung MVEC, from either normal or inflamed lung tissue, that 
leads to cells expressing classical morphological and functional 
markers of endothelial cells, including monolayer growth, expression 
of vWF, CD31, ACE, high Ac-LDL uptake, and, most importantly, 
ELAM-1 inducibility in response to TNE This method consists of 
four main steps: 

1. Pulmonary tissue was digested fully with trypsin and collage- 
nase to release MVEC from vascular walls. We found that trypsin is 
capable of digesting perivaseular connective tissues while collage- 
nase is beneficial to separate intercellular junctions. Using trypsin/ 
eollagenase digestion sequentially can result in higher yield in 
MVEC from mierovessels. 

2. Aggregation of MVEC was induced by human plasma. In usual 
conditions, plasma does not induce MVEC aggregation, but it did 

after trypsin/collagenase digestion. The aggregated cells were dem- 
onstrated to be vWF positive by immunocytoehemical staining. The 
mechanism involved in MVEC aggregation is not known. A probable 
explanation is that trypsin/collagenase may induce the expression of 
a glycoprotein IIb/IIIa--like molecule (26) on the surface of MVEC 
acting as a fibrinogen receptor, or the adherence of blood platelets 
to isolated MVEC. That MVEC aggregation may be induced by the 
fibrinogen contained in plasma. 

3. The aggregated MVEC were collected after 20% Pereoll density 
eentrifugation. 

4. Because endothelial colonies were formed quickly after aggre- 
gated MVEC adhered to plastic wells, these colonies were easily 
selected and transferred after local digestion with trypsin/EDTA un- 
der light microscopy. Lung MVEC were successfully isolated from 
normal human lung using magnetic beads conjugated with anti-en- 
dothelial antibody. Using anti-CD31-conjugated magnetic beads, we 
obtained pure MVEC, but the anti-CD31 antibody on the bound 
beads affected the phenotypie analysis of purified MVEC by flow 
cytometry. Indeed, FITC-conjugated second antibody bound to both 
antibodies to CD31 and to other surface molecules, leading to false 
positive results (data not shown). 

The appearance of MVEC as "cobblestone" or "spindle-shaped" 
may depend on the culture medium and the origin of MVEC (arte- 
riole, capillary, posteapillary venule, or venules). It has been shown 
that MVEC from arteriolar and capillary origin exhibit typical cob- 
blestonelike morphology, while MVEC from postcapilla1"y venules are 
spindle-shaped (30). We selected the cell colonies with cobblestone- 
like morphology because they can be easily recognized from fibro- 
blasts and SMC that present spindle-shaped morphology. MVEC from 
normal lungs consistently presented the "cobblestone" pattern, while 
those purified from lungs of ARDS patients often change morphology 
to "spindle-shaped" after cell transfer. This morphological change 
may imply that MVEC derived from ARDS patients were activated 
in vivo, because these MVEC exhibited significant phenotypic 
change (15). Also, it has been shown that upon activation, such as 
stimulation by TNK endothelial cells can shift from the cobblestone- 
to the spindle-shape morphology (28). Contamination by fibroblasts 
or SMC is frequently seen in lung MVEC cultures. Unlike MVEC, 
both fibroblasts and SMC exhibit overlay growth (i.e., without contact 
inhibition), express neither vWF nor CD31, and take up only low 
levels of Ae-LDL (34). Although a contamination by fibroblasts or 
SMC is easily recognized on the basis of morphology and other char- 
acteristics (summarized in Table 1), their eradication from MVEC 
cultures is laborious or impossible. Therefore, selection of pure en- 
dothelial colonies is critical at the purification step. The induction 
of aggregation of lung MVEC by human plasma makes this selection 
easier. 

Mesothelial cell contamination can be troublesome when lung 
MVEC are isolated from small animals such as mice or rats, because 
in these cases it is difficult to remove the pleura completely. In the 
case of human lung, nevertheless, this mesothelial cell contamination 
can be minimized by carefld dissection of the visceral pleura prior 
to proceeding with the isolation procedure. Mesothelial cells present 
the same morphology as MVEC, by light microscopy, and can take 
up Dil-Ac-LDL (22,32). Mesothelial cells have also been found to 
express ACE and vWF (6) but, unlike MVEC, they fail to express 
CD31, to form capillarylike structures and to express ELAM-1 in 
response to TNF (20). Staining for cytokeratin 8, a marker of meso- 
thelial cells, indicated that less than 1% of the ceils are positive in 
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MVEC isolated from ei ther  normal or ARDS lung (data not shown). 
Finally, contaminat ion by pericytes can  sometimes occur in MVEC 
cuhures .  These  cells do not express endothel ial  markers,  and are 
easily detached by strong washings with a Pas teur  pipette, as they 
are less adherent  to plastic than MVEC (our unpubl i shed  observa- 
tion). 

To rule out a contaminat ion of MVEC cultures by LVEC is not 
easy because  both cell types express the same endothelial  markers  
and morphology. Avoiding contaminat ion of LVEC is also important  
in isolation of MVEC. Lung MVEC derived from ARDS pat ients  
exhibi ted a marked ICAM-1 upregulation, while the pulmonary vein 
endothel ial  cells isolated from the same pat ients  did not (our unpub-  
l ished data). Several differences exist between MVEC and LVEC, 
such as density of Weibel-Palade bodies, prostagtandin metabolism, 
and ACE activity (4,12,18,21), but some specific markers of MVEC 
would be necessary (Table 1). The abundance  of microvilli  have been  
found on brain MVEC (30), but  not LVEC such as HUVEC. This 
surface feature was also demonstrated on lung MVEC, but not on 
pulmonary artery endothel ial  cells (7). Moreover, mierovilli  were also 
found in microvessels in t issue sections of bra in  and lung (our un- 
publ ished data). These  data indicated that cell surface microvilli  are 
a feature of MYEC. Because large vessels are not found in the pe- 
r ipheral  lung parenchyma (i.e., under  the visceral pleura), we se- 
lected these areas for the MVEC isolation in order to avoid contam- 
ination by LVEC. In conclusion, by allowing the study of the relevant  
cell from the relevant  tissue, this method may be useful for investi-  
gations dedicated to various immunopathological  reactions occurring 

in the lung. 
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