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Abstract This article is the continuation of Part I: ‘Thermodynamic Implications’ of a article with the same
title. Knowledge of the content/results of Part I, Hutter and Schneider (Continuum Mech. Thermodyn., 2009) or
Schneider and Hutter (Solid–Fluid Mixtures of Frictional Materials in Geophysical and Geotechnical Context,
2009), is assumed. The intention is to see whether (i) well-known formulations of binary mixture models can be
derived from the thermodynamic model, (ii) classical hypo-plasticity is deducible from the frictional evolution
equation and (iii) the popular assumption of pressure equilibrium is justified. To this end, we ignore mass and
volume fraction interaction rate densities, restrict considerations to isothermal processes, ignore higher order
non-linearities in the constitutive relations and use the principle of phase separation. These assumptions trans-
form the equilibrium stresses, heat flux and interaction forces to considerably simplified forms. Furthermore,
the analysis shows that classical hypo-plasticity can be reconstructed with the introduction of a new objec-
tive time derivative for the stress-like variable. Non-equilibrium contributions to the stresses and interaction
forces are also briefly discussed. It is, finally, shown that the assumption of pressure equilibrium precludes
the application of frictional stresses in equilibrium. This unphysical assumption is, therefore, replaced by a
thermodynamic closure condition that is more flexible and less restrictive. It allows for frictional stresses in
thermodynamic equilibrium and, therefore, is sufficiently general for applications to mixture theories.

Keywords Debris flow · Second law of thermodynamics · Solid–fluid mixture · Frictional material ·
Pressure equilibrium

1 Introduction

In Hutter and Schneider [21], a continuum thermodynamic formulation of solid–fluid debris-flow models was
presented. This article, henceforth referred to as ‘Part I’, presented the thermodynamic implications, which
were deduced from an entropy principle due to Müller. Results, which are explicitly derived and extensively
discussed in book form by Schneider and Hutter [38], were only collected. The ‘credo’ in Part I is that postu-
lation of closure conditions for constitutive quantities must be done by a full exploitation of the second law of
thermodynamics even when at last only a mechanical theory is pursued. In this article, we continue this analysis
with the presentation of explicit constitutive relations for stress and interaction force parameterizations which
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are capable to reproduce the entire range of dynamical processes from quasi-static creep to catastrophic rapid
motion of a saturated soil mass. In the following, we assume the reader to be familiar either with Part I or the
content of the first seven chapters of Schneider and Hutter [38].

In Part I, we developed a theory for an isotropic visco-elasto-plastic heat conducting mixture of n constitu-
ents, (i) in which mass interactions between the constituents may occur, (ii) some or all of the constituents are
density preserving in the sense that they possess constant constituent mass densities, (iii) which is saturated in
the sense that no void spaces are present in the mixture, (iv) that ignores constituent energy interactions, (v)
which is capable of measuring the distribution and evolution of submacroscopic structures by means of internal
variables and corresponding balance laws and (vi) allows in the linearized case for a hyperbolic equation for
the temperature distribution.

In the sequel, we aim to reduce the above theory to a model that is sufficiently simple to be numerically
solvable but, equally, allows for the description of the main properties of debris flows, namely, (i) fluidisation
in a thin shear band close to the bed, (ii) particle size segregation,1 (iii) shear stresses present in thermodynamic
equilibrium and (iv) velocity differences of the fluid and the solid grains.

To this end, we commence in Sect. 2 with the presentation of the basic physical assumptions, e.g. the
binary mixture postulate, no mass interaction processes, etc, followed in Sect. 3 by the parameterization of
the constituent equilibrium stresses, separately for the elastic and frictional parts of the solid stress. Section 4
deals with the non-equilibrium stresses as non-linear viscous solid and fluid sub-bodies. Here, we show that
knowledge of viscometry is helpful in the parameterization of the viscous stress contributions. In Section 5,
we state the final constitutive relations. Section 6 addresses the popular ‘assumption of pressure equilibrium’;
we point out its weaknesses and propose an alternative, which is free of its inconsistencies. We close in Sect.
7 with a discussion and conclusions.

2 Physical assumptions

We model debris flows here as saturated mixtures of two constituents, where we interpret the first constituent
as solid grains and the second as a fluid. Thus, the Greek indices take the identifiers s, for the solid and f, for
the fluid. As a consequence of the saturation condition, the volume fraction for the fluid, νf , is replaced by
(1 − νs) and, as we have seen in Part I, an independent constraint field s arises for which the field equations
(to be specified) have to be solved. We also assume that both constituents are density-preserving,

ρs = const., ρf = const. , (1)

i.e., no constituent is compressible (m = 0, Part I). The binary mixture concept, in which the solid constituent is
not split into a number of separate components, implies that different characterizations of the solid component
by the grain size or differences in resilience, etc., are not accounted for. Furthermore, we shall also exclude
melting of the solid particles in the moving process. This would in most situations require a three constituent
or even more detailed mixture concept. This excludes very large landslides in which the frictional heat will
melt the rock and—after solidification of the molten rock—generate so-called frictionites. Thus,

cs = cf = 0 . (2)

As a consequence of this, the volume fraction production rate densities vanish,

ns = nf = 0 , (3)

and the mass- and volume fraction balance equations turn into

∂νs + ∇ · (νsvs) = 0 ,

∂νs − ∇ · (vf) + ∇ · (νsvf) = 0 . (4)

By subtracting these two equations one obtains

∇ · (νsvs + (1 − νs)vf) = 0 , (5)

1 Despite some claims in the literature, stating that particle size segregation can only be accounted for by discrete mechanics,
we state that a mixture model with several solid constituents is one possible approach to model such separations.
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which may replace one of the equations (4). If we now define by

vvol = νsvs + (1 − νs)vf (6)

the volume-weighted mixture velocity, (5) states that

∇ · (vvol) = 0 . (7)

This result is sufficiently significant to state it in words: The volume-weighted mixture velocity is solenoidal.
We emphasize this property, because in the literature (primarily of fluvial hydraulics) it is often used without
explicitly mentioning that the mixture velocity is volume-weighted rather than mass weighted (=barycentric).
Its simplicity also yields modelling and computational advantages. For a formal comparison of volume and
mass weighted mixture concepts, see Chen and Tai [8].

In Part I, we were concerned, among other things, with thermodynamic processes, involving the tempera-
ture, θ , its gradient, ∇θ , and its material time derivative, θ̇ . However, for the sake of simplicity we shall restrict
considerations in this Part II to isothermal processes, i.e., each material element of the mixture is thought
to exhibit the same temperature for all times. Therefore, all temperature related quantities in the constitutive
relations can be omitted and the energy equation as an evolution equation for the temperature can be dispensed
with. As a consequence, the considered debris flow problem is purely mechanical. This may exclude some
pyroclastic gravity currents and certainly lava flows.

Finally, we ignore frictional behaviour for the fluid constituent and set Z̄f = 0.
When incorporating the above assumptions into the constitutive relations, these relations are of the class

C = Ĉ
(
νs, ∇νs, vfs, Bs, Bf , Ds, Df , Wfs, Z̄s

)
,

for C :=
{

T̄s, T̄f , m̄i
s

}
. (8)

in which for reasons of material objectivity we have introduced 2

vfs := vf − vs, Wfs := Wf − Ws (9)

as an objective difference velocity of the solid and the fluid and the difference of the solid and fluid vorticity
tensors, respectively.

For the ‘inner’ part of the Helmholtz free energy, we have the following dependencies

�G
I = �̂G

I

(
νs, Bs, Bf , Z̄s

)
. (10)

As �G is independent of ρα , see (1), the true thermodynamic pressures, pG
s and pG

f , are not present in this
model. We further remark, that �G

I only depends on equilibrium quantities, and thus, the identifier (·)|E can
be omitted for all quantities derived from �G

I , i.e. βG
s , ζα (α = s, f ) and �G

I,xJ , where xJ ∈ {Bs, Bf , Z̄s
}
.

For details see Part I.
With all these simplifications, the constitutive laws for the equilibrium quantities q|E, T̄β |E (β = s, f ) and

m̄i
s|E (see relations in Part I) take the forms

q|E = qN|E , (11)

T̄s|E = −
̄sI + 2ρ sym(�G
I,Bs

)Bs + ρ�G
I,Z̄s

(Φ̄s),Ds |E + T̄N
s |E , (12)

T̄f |E = −
̄fI + 2ρ sym(�G
I,Bf

)Bf + T̄N
f |E , (13)

m̄i
s|E = {(

ζs − ξ̄sζs
)+ ξ̄sζf − θ(kv

s ),νs

}∇νs

+ρ
(
�G

I

)
,Z̄s

(
Φ̄s
)
,vs |E + m̄N

s |E
= {

ζs − ξ̄s (ζs − ζf) − θ(kv
s ),νs

}∇νs

+ρ
(
�G

I

)
,Z̄s

(
Φ̄s
)
,vs |E + m̄N

s |E
=
{
βG

s

(
1 − ξ̄s

)− ρf�
G
I + ς − θ(kv

s ),νs

}
∇νs

+ρ
(
�G

I

)
,Z̄s

(
Φ̄s
)
,vs |E + m̄N

s |E , (14)

2 Analogously, vsf = vs − vf = −vfs. Therefore, either vfs or vsf is the generic variable and both are equivalent to one another.
For a similar reason, we omit in (8) m̄f = −m̄s.
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in which


̄s = νs

(
βG

s − ρf�
G
I + ς

)
− θkv

s , (15)


̄f = (1 − νs)
(
−ρf�

G
I + ς

)
− θkv

f . (16)

Notations and variables are defined in Part I.
We know from hydrostatics, that fluids in thermodynamic equilibrium can only sustain spherical stresses,

i.e. pressures, and thus the second and third term in (13) can only have the form

2ρ sym(�G
I,Bf

)Bf + T̄N
f |E =: πf I , (17)

where πf is a scalar which depends only on equilibrium variables. In addition, 
̄f contains the independent
saturation pressure, ς . Thus, and if one so desires, 
̄f itself rather than ς or ζf could be regarded as an inde-
pendent quantity which is not determined by constitutive relations but from the solution of the field equations.
Without loss of generality, it is, therefore, permissible to incorporate πf into 
̄f , and we are left with

T̄f |E = −
̄fI . (18)

In the above expressions (12), (13) and (14), T̄N
s |E, T̄N

f |E and m̄iN
s |E which are nonlinear of higher order in

the variables Y (see Part I) are formally accounted for. In the sequel, these will now be ignored as they can be
shown to be of minor influence (see Svendsen and Hutter [39] and Schneider and Hutter [38]).

In summary, we, therefore, have the following equilibrium quantities

T̄s|E = −
̄sI + 2ρ sym(�G
I,Bs

)Bs + ρ�G
I,Z̄s

(Φ̄s),Ds |E , (19)


̄s = νs

(
βG

s − ρf�
G
I + ς

)
− θkv

s ,

T̄f |E = −
̄fI , (20)


̄f = (1 − νs)
(
−ρf�

G
I + ς

)
− θkv

f − πf ,

m̄i
s|E =

{
βG

s

(
1 − ξ̄s

)− ρf�
G
I + ς − θ(kv

s ),νs

}
∇νs

+ρ
(
�G

I

)
,Z̄s

(
Φ̄s
)
,vs |E , (21)

where, in particular, the elastic and hypo-plastic parts of (19) still have to be discussed in greater detail.

3 Parameterization of the constituent equilibrium stresses

We have pointed out in Part I that all constitutive quantities can be decomposed into equilibrium and non-equi-
librium parts, i.e.

T̄s = T̄s|E + T̄s|N , T̄f = T̄f |E + T̄f |N , m̄i
s = m̄i

s|E + m̄i
s|N . (22)

In the last section, we have found representations for the equilibrium parts of the constitutive quantities, but in
particular the equilibrium solid stress tensor, T̄s|E, which consists of a constraint-configuration (cs), an elastic
(es) and a frictional (fric) (hypo-plastic) part, i.e.,

T̄s|E = −
̄sI︸ ︷︷ ︸
T̄cs

+ 2ρ sym(�G
I,Bs

)Bs
︸ ︷︷ ︸

T̄es

+ ρ�G
I,Z̄s

(Φ̄s),Ds |E
︸ ︷︷ ︸

T̄fric

(23)

requires further modelling. Let us make the constitutive relations for T̄es and T̄fric more specific. To this end,
we assume the ‘inner’ free energy to have the form

�G
I =

∑
�G

α = �̃G
s

(
νs, Bs, Z̄s

)+ �̃G
f ((1 − νs), Bf) . (24)
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By prescribing this representation for �G
s and �G

f we have used the principle of phase separation. 3 We remark
that for single-material bodies the ‘principle of phase separation’ reduces to the well known principle of equi-
presence, Truesdell and Noll [42] . We further notice that the principle must likely be wrong when exchange
processes between the constituents take place.

In order to specify the elastic parts, of the constituent Cauchy stress tensors we isolate the elastic and
frictional effects in �G

I separately by assuming (cf. Hutter et al. [19])

�G
I = �̂G

fric

(
νs, Z̄s

)+ �̂G
es (Bs) + �̂G

ef (Bf) . (25)

Here, the indices ‘fric’, ‘es’ and ‘ef’ stand for ‘friction’, ‘elastic-solid’ and ‘elastic-fluid’, respectively. The last
two terms in (25) are thought to account for the elastic contributions of the solid and fluid, respectively. In �̂G

fric,
on the other hand, we have subsumed all other dependencies of �G

I . It is believed that the representation of
�̂G

fric in (25) is able to describe all effects of the visco-elasto-plastic binary mixture, except those of elasticity.

3.1 Elastic stress for the solid (and the fluid)

We know from the representation theory of isotropic functions, that isotropic scalar-valued functions of a
single symmetric tensor, such as �̂G

es and �̂G
ef , can only depend on the invariants of this tensor (cf. Ogden [33]).

Consequently, those two functions exhibit the following dependencies

�G
es = �̌G

es

(
IBs, IIBs, IIIBs

)
, �G

ef = �̌G
ef

(
IBf , IIBf , IIIBf

)
, (26)

where the invariants for a general symmetric second-order tensor, A, are defined as

IA = tr(A), IIA = 1
2

(
(IA)2 − IA2

)
, IIIA = det(A) . (27)

With these results in mind, we can now turn the attention to the contributions of �G
I in the elastic parts of the

constituent Cauchy stress tensors. If we, first, ignore the arguments for πf (see (17)) for a moment, the elastic
part of the fluid Cauchy stress tensor,

(
T̄f
)

ef , can be written in the forms

(
T̄f
)

ef = 2ρ sym
(

(�G
I ),Bf

)
Bf

(25)= 2ρ sym
(

(�̂G
ef ),Bf

)
Bf

= 2ρ sym

(
∂�̌G

ef

∂IBf

∂IBf

∂Bf
+ ∂�̌G

ef

∂IIBf

∂IIBf

∂Bf
+ ∂�̌G

ef

∂IIIBf

∂IIIBf

∂Bf

)

Bf ,

= 2ρ

(
∂�̌G

ef

∂IBf

I + ∂�̌G
ef

∂IIBf

(
IBf I − Bf

)+ ∂�̌G
ef

∂IIIBf

IIIBf B
−1
f

)

Bf , (28)

where the chain rule of differentiation has been used. For a general second-rank tensor A, the above derivatives
take the forms (cf. Hutter and Jöhnk [18])

∂IA

∂A
= I,

∂IIA

∂A
= (IAI − A) ,

∂IIIA

∂A
= IIIAA−1 . (29)

If we apply these results with A = Bf in (28), we see that the term in parentheses is already symmetric, which
justifies the last line in (28).

In thermodynamic equilibrium, fluids can only sustain spherical stresses. Consequently, only those deriv-
atives of the invariants are to be considered which allow (T̄f)ef to become proportional to the unit tensor, I.
This situation can only be reached if we require

∂�̌G
ef

∂IBf

= ∂�̌G
ef

∂IIBf

= 0 . (30)

3 The ‘Principle of phase separation’ introduced by Passman et al. [35], requires the ‘material-specific’ constitutive quantities
for constituent Kα , to depend only on those constitutive variables that belong to the same constituent. This principle does not
apply to the remaining quantities, e.g. those for the whole mixture or those describing interactions between the constituents. The
principle was introduced into the literature much earlier by Morland [28], however, by not declaring it a ‘principle’. In Morland
[29] and subsequent articles [30], [31] it was re-iterated on and the poor terminology ‘effective’ was changed to ‘intrinsic’ which
we call ‘true’.
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It follows that �̌G
ef cannot depend on IBf and IIBf . Furthermore, only for mixtures with non-vanishing mass

interactions, i.e. cα �= 0, the variables Bα and ρα (α = 1, . . . , m) are independent of one another (see Schneider
and Hutter [38]). Thus, in the present model for which cα = 0 the assumption of constant true mass density
allows the conclusion 4

det(Bf) = IIIBf = const. , det(Bs) = IIIBs = const. (31)

and, therefore, �̌G
ef cannot depend on IIIBf either, i.e.,

∂�̌G
ef

∂IIIBf

= 0 . (32)

We obtain from (30) and (32) that

∂�̂G
ef

∂Bf

(25)= ∂�G
I

∂Bf
= 0 . (33)

Thus, �G
I cannot be a function of Bf . This implies that πf vanishes, see (17).

The elastic part of the solid Cauchy stress tensor, on the other hand, becomes4

T̄es = 2ρ

(
∂�̌G

es

∂IBs

+ IBs

∂�̌G
es

∂IIBs

)

Bs − 2ρ
∂�̌G

es

∂IIBs

B2
s . (34)

With this relation we have reached the point, where, except for the postulate of an explicit representation for
the elastic part of the solid free energy, �G

es , no other simplification can be performed. The simple choice

ρ�̌G
es = C1

(
IBs − 3

)+ C2
(
IIBs − 3

)
,

C1 = 1
2μ
( 1

2 + β
) = const., C2 = 1

2μ
( 1

2 − β
) = const. , (35)

which is attributed to Mooney and Rivlin (cf. Rivlin and Saunders [37]), leads to

T̄es = 2
(
C1 + C2IBs

)
Bs − 2C2B2

s . (36)

In (35), μ can be interpreted as the shear modulus of the solid grains and β as a modelling parameter. For the
special case of β = 1

2 , we attain a fairly simple representation, namely

T̄es = μBs , (37)

which is denoted Neo-Hookean behaviour. An alternative, physically linear relation would be

T̄es = μ̌Es , Es := 1
2 (Bs − I) . (38)

This choice has the advantage that T̄es = 0 when the elastic strain Es vanishes.

4 The density-preserving assumption for a constituent Kα whose mass production rate is not present, cα = 0, implies that it
also preserves its volume along its own trajectory. Hence, cα = 0 also means detFα = constant. Otherwise stated, the constituent
motion is isochoric, and Fα and Bα are unimodular. Therefore, the elastic stress T̄es cannot depend on IIIBs .
If cα were not zero, then Bα would not be unimodular and density-preserving could not imply volume-preserving of constituent
Kα . Insensitivity of T̄es to solid volume changes would then require that (34) holds true if Bs is replaced by

Bunimod
s := (detBs)

−1/3Bs .

This then simply would mean that there is no bulk elastic response, for details see Schneider and Hutter [38].
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3.2 Frictional part of the solid stress

The frictional part of the solid stress (23),

T̄fric = ρ�G
I,Z̄s

(Φ̄s),Ds |E = ρ�G
fric,Z̄s

(Φ̄s),Ds |E, (39)

is still an unknown function of the equilibrium quantities, since so far no representation has been given for �G
fric

and Φ̄s. We follow the argumentation of Teufel [41] who formulated the following postulate: the frictional
stress T̄fric is collinear to Z̄s, i.e.

T̄fric = ρδZ̄s, δ = constant . (40)

With the choice (40) a special functional relation has been chosen for the solid frictional stress. Substi-
tuting (40) into (39) allows by way of integration an explicit determination of �G

fric; therefore, (40) is not a
genuine assumption but rather a convenient choice by which hypo-plastic behaviour can be demonstrated.5

Using assumption (40), i.e. substituting Z̄s = T̄fric/(ρδ) into the evolution equation for Z̄s,

◦
Z̄s := ´̄Zs − [Ωs, Z̄s

] = Φ̄s, Ωs = −ΩT
s , ´(·) := ds(·)

dt
(42)

yields

1

ρδ

◦
T̄fric − 1

ρ2δ

dsρ

dt
T̄fric

= 1

ρδ

{
ds T̄fric

dt
− [Ωs, T̄fric] − 1

ρ

dsρ

dt
T̄fric

}

= Φ̄s

(
1

ρδ
T̄fric, ·

)
, (43)

where the dot in the argument indicates additional dependencies, say on νs and Ds. The choice of Ωs specifies
the objective time derivative

◦
(·). No unique selection is possible, but the most obvious choice is Ωs = Ws,

where Ws is the vorticity tensor Ws = skw Ls. If we use in addition

dsρ

dt
= ρs

dsνs

dt
+ ρf

ds(1 − νs)

dt

= (ρs − ρf)

(
∂νs

∂t
+ ∇(νs)vs

)

= −νs(ρs − ρf)∇ · vs , (44)

which is obtained from (4) and the saturation condition, (43) reduces to

1

ρδ

{ ◦
T̄fric + νs

ρs − ρf

ρ
(∇ · vs) T̄fric

}
= Φ̄s

(
1

ρδ
T̄fric, ·

)
. (45)

So far, we are dealing with a general constitutive quantity, Φ̄s, for which the hypo-plastic behaviour has not
been, but could be explicitly described. We note that to model hypo-elastic behaviour, Φ̄s must be linear in
Ds; however, proposed hypo-elastic constitutive proposals cannot capture the fact that the material behaviour
of debris in slow or rapid flows is, in general, different in extension from compression (cf. Kolymbas [24]). In

5 This substitution yields the differential equation

δZ̄s =
(
�G

fric,Z̄s

)
(Φ̄s),Ds |E (41)

which for given Φ̄s may be regarded as a differential equation for �G
fric. The existence of a solution is tacitly assumed. This

may not be the case so the assumption of this existence is quite a ‘courageous’ statement. Yet, it is no more courageous than the
assumption that the field equations (i.e., the union of the balance laws and the constitutive equations together) possess a solution.
Such an assumption is needed when exploiting the entropy principle.
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order to incorporate this property, we prescribe Φ̄s to have a hypo-plastic structure. Such a procedure promises
success, so we require

Φ̄s = Φ̂s
(·, Z̄s, Ds

)
(46)

to be positively homogenous of the first degree in Z̄s and Ds. We also decompose Φ̄s into an operator which
is linear in Ds and another one which is non-linear in Ds, i.e.

Φ̄s = L (·, Z̄s, Ds
)+ N (·, Z̄s, Ds

)
. (47)

Following standard hypoplasticity, we now assume the representation

Φ̄s = f1(·)
(
L
(
Z̄s
)

Ds + f2(·)N
(
Z̄s
) |Ds|

)
, (48)

where the norm of Ds is defined as

|Ds| :=
√

tr(D2
s ) , (49)

and f1 and f2 are the coefficients of barotropy and pyknotropy, which may depend on the variables S. The
tensors L and N are of fourth and second order, respectively. Representation (48) satisfies automatically the
requirement of positive homogeneity in Ds. If we require homogeneity of Φ̄s with respect to Z̄s, (45) can be
reduced to the form

◦
T̄fric + νs

ρs − ρf

ρ
(∇ · vs) T̄fric

= f1(·)
(
L
(
T̄fric

)
Ds + f2(·)N

(
T̄fric

) |Ds|
)
. (50)

This representation of our hypo-plastic evolution law is close to that postulated by Wu and Kolymbas [46].
The differences are due to the binary mixture, and an additional term bilinear in ∇ · vs and T̄fric. However,
for ρf = 0, agreeing with the dry granular case, (50) reduces to the form previously derived by Svendsen
et al. [40]. With the result (50), we could be satisfied and state that thermodynamic considerations suggest
that the evolution equation for the frictional stress of classical hypoplasticity must be changed by adding on
the left-hand side the second term on the left-hand side of (50). However, this is not the only way to resolve
the difference with classical hypoplasticity. By using an idea of Teufel [41], we define the new objective time
derivative

�
Z̄s:= ds Z̄s

dt
− [Ω , Z̄s

]− νs
(ρs − ρf)

ρ
(∇ · vs)Z̄s , (51)

which in view of (40) immediately leads to a form of the hypo-plastic stress evolution equation agreeing with
that of Wu and Kolymbas [46], i.e.

◦
T̄fric= f1(·)

(
L
(
T̄fric

)
Ds + f2(·)N

(
T̄fric

) |Ds|
)

. (52)

Obviously, and importantly to recognize, the new objective time derivative does change the above ther-
modynamic analysis, but only the result for the solid equilibrium Cauchy stress tensor is affected by these
changes. The incorporation of

�
Z̄s = Φ̄s , (53)

instead of (42), into the inequality (63) of Part I leads to

T̄s|E = −
̄sI + 2ρ sym(�G
I,Bs

)Bs + ρ�G
I,Z̄s

(Φ̄s),Ds |E + νs(ρs − ρf)
(
�G

I,Z̄s
· Z̄s

)
I (54)

rather than (19). The fact that the last term in (54) is spherical allows its incorporation into 
̄s, which, therefore,
has the form


̄s = νs

(
βs − ρf�

G
I + ς

)
− νs(ρs − ρf)

(
�G

I,Z̄s
· Z̄s

)
− θkv

s . (55)
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Thus, by changing
◦
Z̄s to

�
Z̄s an additional contribution to the solid pressure arises. This pressure contains

contributions from the configration pressure, saturation pressure, the free energy �G
I and extra entropy flux k.

The obvious drawback of this hypo-plastic approach is the lack of differentiability of Φ̄s at Ds = 0
and, therefore, the singularity of T̄fric in thermodynamic equilibrium (see (23)). To circumvent this situation,
Svendsen et al. [40] proposed a so-called non-standard analysis which for the purpose here is too complicated.
We may try to regularize the problem by replacing (Ds/ |Ds|) which arises in (Φ̄s),Ds by6

Ds

ε + |Ds| , 0 < ε � 1 . (56)

Regularizing the problem in such a way has the advantage that the limit

lim
Ds→0

Ds

ε + |Ds| = 0 (57)

is finite, in fact zero, but, on the other hand, this procedure contradicts the requirement that Φ̄s is positively
homogenous of first order in Ds and consequently, T̄fric does not have a rate-independent part. Nevertheless,
we are convinced that for very small values of ε the term {Ds/(ε + |Ds|)} is only affected by ε in the vicinity
of Ds = 0. For rapid motions, i.e. steep velocity gradients and thus large values of |Ds|, ε is negligibly small.
However, with the introduction of (56) the equilibrium stress (54) of the solid no longer contains the frictional
contribution, because this term now vanishes in equilibrium. This means that the equilibrium stresses will
now have to be carried by the pressure like contributions and, above these, the elastic stresses. This may be
somewhat unrealistic, but it is so only in a very small regime.

As an alternative method of regularization, we may apply the following approach: when starting from a state
of rest, at which the strains and stresses must first be determined, an initial value problem of the quasi-static
equations using the stress representation (54) without the original frictional term replaced by the frictional
term with the regularization (56) is integrated in time. As soon as |Ds| has reached the value 10n × ε, where
n can be selected (1 < n � 2), the actual value of (Ds/ |Ds|) is assigned to the equilibrium frictional stress
in (54). Computations are then continued with the classical hypo-plastic equations. On the other hand, for a
decelerating phase of the motion, the regularization (56) does not need to be introduced at all. If |Ds| reaches
the value ε from above, we then may simply maintain this limiting value (Ds/ |Ds|) also for smaller values of
|Ds| down to |Ds| = 0 (essentially locking it to the equilibrium). This then defines the equilibrium value for
the stress according to (54).7 Reloading phases of a dynamical process can then be started from this ‘frozen’
equilibrium state. This procedure corresponds to the approach of non-standard analysis. Another method is
based on convex analysis and the calculus of variations as briefly outlined by Svendsen in Schneider and Hutter
[38].

For the modelling of T̄fric there still remains the specification of L and N. In general, both tensors are
allowed to depend on the following set of constitutive variables

{
νs, ∇νs, vfs, Bs, Bf , Wfs, Df , Z̄s

}
, (58)

but considering all these variables leads to very complex isotropic representations of L and N. Therefore,
we here adopt the ‘principle of phase separation’, and abandon those quantities which are related, (i) to the
interaction of the constituents, (ii) to the mixture and (iii) to the fluid constituent, i.e. vfs, Wfs, Bf and Df .
In the hypo-plastic single-material theory of Svendsen et al. [40], Φ is assumed to depend only on the set
{B, Z, D}. In the present model we are left with the equivalent quantities Bs, Z̄s and Ds, but owing to the
mixture character of the model the quantities νs and ∇νs should also arise. To disregard the latter contributions
is hardly feasible and, therefore, if we want to use the representations for L and N proposed in the literature
for single-body hypo-plasticity,8 their adaption is necessary. The existing recent literature on hypo-plastic
constitutive modelling and parameter identification for special choices of the operators L and N clearly point
at a dominant role played by the void ratio e = (1 − νs)/νs.

As we are presently not dealing with specific problems, we leave the choice of L and N open, but draw the
reader’s attention to the footnote below.

6 Cf. Fang, Wang, Hutter [15,14], however, the regularization proposal (56) is well known in the rheological literature.
7 This procedure is obviously ‘mesh’ dependent, the mesh being given by ε.
8 Cf. Svendsen et al. [40], Kolymbas [23]–[24], Niemunis [32], von Wolffersdorff [43], Bauer [3,4], Masin [26], Wu [45], Wu

and Kolymbas [46], Chambon [7]–[6], Darve [9,10].
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3.3 Final equilibrium constitutive laws

We now substitute the representations found for the solid elastic stress (37), for the frictional stress (40) and
the expressions (15), (16) for the solid and fluid pressures into (12), (13) and (14). The result of this process
may be written as follows:

T̄s|E = −
̄sI + μBs + ρδZ̄s ,

T̄f |E = −
̄fI ,

m̄i
s|E =

{
βG

s

(
1 − ξ̄s

)− ρf�
G
I + ς − θ

(
kv

s

)
,νs

}
∇νs

+ρ
(
�G

I

)
,Z̄s

(
Φ̄s
)
,vs |E

= −m̄i
f |E , (59)

with


̄s = νs

(
βG

s − ρf�
G
I + ς

)
− θkv

s − νs(ρs − ρf)
(
�G

I,Z̄s
· Z̄s

)
,


̄f = (1 − νs)
(
−ρf�

G
I + ς

)
− θkv

f . (60)

Here, Z̄s satisfies the evolution equation (53). We remark that with (53), (59) and (60), classical hypoplasticity
is still not exactly recovered, because of the additional frictional pressure in (60). Presently it is still not clear,
which of the two slightly different versions of hypoplasticity are to be preferred. Formula (60) is interesting
by the fact how friction contributes to the total pressure. If the solid and fluid densities are the same (ρf = ρs),
then the last term of (60)1 obviously vanishes. In this case the solid is completely buoyant in the fluid and
friction is expected to be minimal—in the equation (60) zero. In a dry granular material (ρf = 0), rubbing
friction operates and the frictional pressure contribution is proportional to the partial density ρ̄s = νsρs. This
form is adequate for a solid body with voids, (νs < 1), or without voids (νs = 1). These results appear to be
reasonable.

4 Non-equilibrium contributions

So far, the findings were based on rather strong assumptions. Unfortunately, only a few rational arguments
exist that allow the construction of reasonable constitutive laws for the quantities 9 T̄s|N, T̄f |N and m̄i

s|N.

4.1 Non-linear viscous solid and fluid stresses

We recall the dependencies of the constitutive quantities C = {T̄s , T̄f , m̄i
s} as listed in (8). Applying, now, the

‘principle of phase separation’, to T̄s|N and T̄f |N, these dependencies reduce to

T̄s|N =
∧
T̄s |N

(
νs, ∇νs, Bs, Ds, Z̄s

)
, (61)

T̄f |N =
∧
T̄f |N (νf , Bf , Df) . (62)

The isotropic representations for T̄s|N and T̄f |N are still very complex and, therefore, we shall neglect depen-
dencies on Bs, Z̄s and Bf . Doing so, we are indeed loosing information, but as Bs and Z̄s affect the ‘equilibrium’
constitutive laws, their information is automatically carried over to non-equilibrium processes. The ‘principle
of phase separation’ makes only sense in connection with constituent-specific constitutive quantities. Interac-
tion supply rate densities, such as that for the solid momentum interaction term m̄i

s, are by definition excluded

9 Note the subscript (·)|N denotes non-equilibrium contributions, whilst the superscript (·)N indicates a general non-linear
expression.
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from the application of this principle. Under these restrictive assumptions, the isotropic representations of the
two non-equilibrium Cauchy stress tensors (61) and (62) take the forms

T̄s|N = κs
1IDs I + κs

2Ds + κs
3D2

s

+κs
4Ms + κs

5 sym (MsDs) + κs
6 sym

(
MsD2

s

)
, (63)

T̄f |N = κ
f

1 IDf I + κ
f

2 Df + κ
f

3 D2
f , (64)

where

Ms := ∇νs ⊗ ∇νs . (65)

The coefficients κs
1−6 are functions of νs, IDs , IIDs , IIIDs , IMs , IMsDs and IMsD2

s
. Moreover, (63), (64) are com-

plete isotropic representations of (61) and (62); for a proof see Schneider and Hutter [38]. Now, from the
definition of thermodynamic equilibrium we have

lim
n→0

T̄s|N = 0 , (66)

and the fact that ∇νs is a quantity which does not necessarily vanish in equilibrium, implies

κs
4 |E = 0 → κs

4 = κs
4 |N (67)

The above representations (63–67) are due to Hutter and Rajagopal [20].
We now introduce simplifications:

Following Hutter et al. [19] we assume, that m̄i
s|N and T̄f |N can be adequately modelled by their strict linear

forms and T̄s|N by its quasi-linear form. In addition, we adopt the assumption that T̄s|N and m̄i
s|N are inde-

pendent of the variable ∇νs. From a mathematical point of view there is no obvious reason for this assumption
but at least for m̄i

s the information contained in ∇νs is not entirely lost because its equilibrium part depends
linearly on ∇νs. The equations that evolve from these considerations read as follows

T̄s|N = κs
1IDsI + κs

2Ds , T̄f |N = κ
f

1 IDf I + κ
f

2 Df , m̄i
s|N = mDvfs , (68)

where κs
1 and κs

2 are, in general, functions of νs, IDs , IIDs and IIIDs , whilst κ
f

1 and κ
f

2 depend on νf = (1 − νs),
and mD is a function of νs. An explicit dependence on Ms has dropped out entirely from (68).

The quasi-linearity of the solid Cauchy stress tensor which is expressed through the non-linear dependence
of κs

1 and κs
2 on Ds reflects the strong non-linear stress-stretching behaviour that arises during creep or rapid

shear of the granular part of the debris flow (cf. Hutter et al. [19]). By excluding the dependence upon D2, the
proposal (68) is not capable of modelling normal stress effects. These effects are not likely important in rapid
granular flows and only come to bear when strong decelerations in the approach to the deposition are active.
However, the above model properties for T̄s|N are in agreement with Bagnold’s experiments (cf. Hutter and
Rajagopal [20]).

Rheologically, the solid and fluid stresses (68)1,2 are better written as

T̄f |N = κf IDf I + 2μfD′
f ,

κf := κ
f

1 + 1
3κ

f
2 , μf := 1

2κ
f

2 , (69)

T̄s|N = κsIDsI + 2μsD′
s ,

κs := κs
1 + 1

3κs
2 , μs := 1

2κs
2 , (70)

where

D′
f = {Df − 1

3 IDf I
}
, D′

s = {Ds − 1
3 IDsI

}
(71)

or alternatively for the solid

Ds = KsITs|N I + Bs
(
T̄s|N

)′
,

with
(
T̄s|N

)′ =
{

T̄s − 1
3 IT̄s

I
}

|N . (72)

The coefficients κf,s, μf,s are reminiscent of bulk and shear viscosities, Ks and Bs of bulk and shear fluidities.
They are, in general functions of νs and the invariants IDs,f , IIDs,f and IIIDs,f (respectively, IT̄s|N , IIT̄s|N and
IIIT̄s|N ). We now introduce
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Postulate 1 The constitutive parameters in the viscous laws (69), (70), (72) obey the principle of phase sepa-
ration. Moreover,

• the bulk quantities κf,s, Ks depend on νf,s and only the first invariants IDf,s , IT̄s|N ;
• the shearing coefficients μf,s and Bs depend on νs and the deviator invariants IID′

s,f
, II(T̄f,s|N)′ , IIID′

s,f
,

III(T̄f,s|N)′ , respectively.

Hence,

κf,s = κ̂f,s(νs, IDf,s) , μf,s = μ̂f,s(νs, IID′
f,s

, IIID′
f,s

) ,

Ks = K̂s(νs, ITs|N) , Bs = B̂s(νs, IIT̄′
s|N , IIIT̄′

s|N) ,
(73)

�
It can be shown that full triaxial experiments are needed in order that a dependence of the parameters

(73) on the second and third invariants can be experimentally identified. Such identifications have so far not
been done for soil. Simpler propositions for the above viscosity coefficients can be made with the following
viscometric gedanken experiments.

4.2 Viscous stress parameterization based on viscometric considerations

(i) Isotropic extension-compression In the laboratory such an experiment is not difficult to perform, but it
may be very hard to deduce inferences for the identification of the bulk viscosities κs,f . Therefore, this case is
rather treated as a Gedanken experiment. We shall treat the fluid as volume (and density) preserving and set
κf ≡ 0. For the solid a drained compression experiment is thought to be conducted. With

Ds = ε̇1, D′
s = 0, IDs = 3ε̇, IID′

s
= 0, IIID′

s
= 0 , (74)

and T̄s|N = σ1, one deduces from (70) that

σ = κs (νs, 3ε̇) 3ε̇ , (75)

or with ε̇vol := 3ε̇,

κs (νs, ε̇vol) = σ

ε̇vol
. (76)

It should be clear that in the performance of this isotropic compression experiment νs cannot be assumed to
remain constant. As (−ε̇vol) increases in a compression experiment, the compaction of the grains will also
increase. It follows that equation (76) is only meaningful as long as volumetric strains remain small. We now
introduce10

Postulate 2 (i) κs does not depend on ε̇vol,
(ii) at densest packing, νs = νs max,

(iii) when νs � νs crit, κs = κs.
�

With this postulate and the assumption that κ is monotonically decreasing with growing νs reading the zero
value at νs max, we may parameterize κs as follows:

κs = κsf
(κs)
s (νscale) , νscale =

(
νs − νs crit

νs max − νs

)
, (77)

where the shape of the function f(κs)
s is given in Fig. 1. According to this graph, the bulk viscosity vanishes

at densest packing and assumes the value κs at the critical packing and beyond, when νs � νs crit. It is further
assumed that the value of κs stays constant for dilute concentrations. Apart from these assumptions the graph

10 νs crit is the solid volume fraction at which the nominal particle distance is larger than, or equal to, the distance at which the
particle contact ceases to exist. νs = νs max is the maximum solid volume fraction
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(a)

(b)

Fig. 1 a Dependence of the scaled solid bulk viscosity as a function of the solid volume fraction and b as parameterizated in (78)
with σscale = (1/ln2)(1/2) = 1.2011

in Fig. 1a simply connects these limiting stages with a smooth curve. The function f(κs)
s is of sigmoidal type,

and may, for instance, be written as

f(κs)
s =

⎧
⎨

⎩

1 , − νs crit
νs max

� νscale � 0 ,

exp

[
−
(

νscale
σscale

)2
]

, 0 � νscale � ∞.
(78)

If the value of f(κs)
s (νscale = 1) is given by fmean, then

σscale =
( −1

ln(fmean)

)1/2

. (79)

A concrete identification would consist in matching the graph of Fig. 1 with experimental results. As far as
relations (77) and (78) are concerned, νs max and νs crit must be identified, which is not difficult, and κs must
be determined, which may be more difficult and may require (semi) inverse modelling. The following first
estimates are suggested:

νs max = 0.75
νs crit = 0.20
κs = 10−3 Pa s

⎫
⎬

⎭
only first estimates.

σscale = 1.20 (80)

The reader may question the choice that f(κs)
s vanishes for νs = νs max. The idea behind this limiting value is

the recognition that the deformation is strongly decelerating as νs is approaching νs max and frictional stress
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is becoming dominant in the regime of maximum solid contact. Of course, the above parameterization leaves
room also for e.g. a generalization

f(κs)
s =

{

exp

[

−
(

νscale

σscale

)2
]

+ κ0

}

for 0 ≤ νscale ≤ ∞ (81)

(ii) Simple shearing The rheologically most popular and probably simplest experiment is viscometric shear-
ing e.g. in an axi-symmetric cone-plate viscometer. We consider an experiment being conducted for the fluid
11 and solid in isolation. With

Df,s = D′
f,s =

⎛

⎝
0 1

2 γ̇ 0
1
2 γ̇ 0 0
0 0 0

⎞

⎠ , (82)

for the fluid and the solid, one deduces

IDf,s = 0, IID′
f,s

= γ̇ 2

4
, IIID′

f,s
≡ 0 , (83)

and then obtains with

T̄f,s|N =
⎛

⎝
0 τ 0
τ 0 0
0 0 0

⎞

⎠ , (84)

and (69), (70)

μf,s(νs,
γ̇ 2

4
, 0) = τ

γ̇
. (85)

Monitoring τ and measuring γ̇ allows identification of the functions μf,s in (85). It is obvious from the above
formulae (83)3 and (85) that simple shearing experiments cannot identify a IIIDs,f -dependence of the viscosity
functions μs,f(·). Applied rheologists, therefore, generally omit the third variable, IIID′

s,f
, and also do not make

the νs dependence explicit. Instead, we shall use the following

Postulate 3 (i) The shear viscosity functions μf,s(νs, IID′
f,s

, IIID′
f,s

) allow the product decomposition

μf,s = Mf,s(IIID′
f,s

)η̄f,s(νs, IID′
f,s

) , (86)

with a first estimate Mf,s(IIID′
f,s

) = 1.
(ii) The solid volume fraction as a variable enters only the functions η̄f,s(·). This dependence may again be

separated from that of IID′
f,s

as follows

η̄f,s = gf,s(νs)
=
ηf,s(IID′

f,s
) , (87)

or the coefficients in the parameterizations may be assumed to be νs-dependent.
�

With this postulate, we may identify the functions ηf,s(·) for a fixed solid volume fraction, formally treated
to have a reference value.

The literature dealing with shear viscosity functions (they will be called here simply ‘viscosity functions’)
is abundant; justification for all the proposals is not possible. Therefore, we restrict here considerations to what
is referred to as viscometry of fluids with yield stress. These have been in the past few years the concern of
many rheologists. Our attention here is to propose formulae, which embrace possibly all cases that may occur

11 Most likely, the fluid in a debris flow will be loaded with silt to clay components of the debris that extends over a large range
of particle diameters. Therefore, the fluid is not pure water, but a slurry with a certain concentration of the fine particles.
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in debris flow modelling, so that only the identification of the parameters in specific situations is left to the
user. With the above postulate, and in order to be in conformity with the rheological literature, we shall write

τ ∗
f,s = =

ηf,s

(
γ̇ 2

4

)
γ̇ = ηf,s (γ̇ ) γ̇ , (88)

where,

τ ∗
f,s = τ

Mf,s

(
IIID′

f,s

)
gf,s(νs)

(89)

is an appropriately scaled stress, i.e., Mf,s and gf,s are dimensionless so that =
ηf,s or ηf,s has dimension [Pa s].

Popular viscous shear parameterizations are by Bingham [5] or Herschel and Bulkley [16], viz.,
{

γ̇ = 0, if τ � τ0 ,

τ =
(

k + τ0
γ̇

)
γ̇ , if τ � τ0 ,

Bingham (90a)

{
γ̇ = 0, if τ � τ0 ,

τ =
(

k γ̇ λ−1 + τ0
γ̇

)
γ̇ , if τ � τ0 ,

Herschel and Bulkley (90b)

but they have singular behaviour at γ̇ → 0. Other parameterizations are reviewed by Mendes and Dutra [27]
and Ancey [1]. Luca et al [25] proposed the shear viscosity function

η(γ̇ ) = η1 exp (−t1γ̇ ) + 2

π
η2

(
γ̇

γ̇r

)λ−1

arctan

(

t2

(
γ̇

γ̇r

)β
)

τ0

γ̇
(1 − exp(−mγ̇ )) , (91)

in which η1 and η2 are constant reference viscosities [Pa s], γ̇r is a constant stretching [s−1], τ0 is the yield
stress [Pa], t1 and m are reference times [s] and λ, β and t2 are dimensionless constants, for which numbers
must be given subject to the following constraints:

η1 > 0, η2 > 0, τ0 � 0, λ ∈ (0, 1) ,

t1 > 0, t2, m > 0, β + λ − 2 > 0. (92)

These guarantee the limits

lim
γ̇→0

η(γ̇ ) = η1 + τ0m �= ∞ ,

lim
γ̇→0

η′(γ̇ ) = −η1t1 − 1
2τ0m2 = finite ,

lim
γ̇→∞ η(γ̇ ) ≈ η2

(
γ̇

γ̇r

)λ−1

, (93)

and the shear thinning properties prevail for at least large stretchings.12 Model (91) includes the Bingham–
Papanastasiou fluid [34], if t0 = 0, η2 = 0, τ0 �= 0 and the model introduced by Zhu et al. [47] (η2 = 0) as an
extension of the De Kee and Turcotte [11] proposal.

In the above, we started from the Bingham and Herschel–Bulkley models as two popular models describ-
ing the stress-deformation response of a large class of visco-plastic fluids. The behaviour in these formulae
is described by the yield stress, but this feature led to stress-stretching relations with slope discontinuities at
zero stretching. They become manifest in the formulae as an infinite viscosity at zero stretching. A similar
singularity also arises for the power law fluid (τ0 = 0) when λ ∈ (0, 1). For a fluid with yield stress this
singularity becomes physically apparent as an abrupt transition from the viscous fluid to rigid solid behav-
iour, which generates mathematical-numerical complexities which one wishes to avoid. The intention in the

12 From a purely practical point of view, it could also be criticized that the regularized final formulae (91–93) are overly com-
plicated, and identification of the many parameters by experiments must be very difficult, if not impossible. However, since many
parameters in the model (91) are introduced for regularization purposes, they need not be ‘accurately’ determined. Values can
be estimated such that regularity is established and the graphs of the functions η(γ̇ ) still mimic the experiments, which anyhow
never allows inferences without errors, reasonably well.
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improved viscosity proposal (91) is to smooth-out these singularities. However, in doing so, the plastic, rate-
independent response is formally replaced by a viscous, rate-dependent response. In the context of the model
equations in these articles, Parts I and II, such a ‘viscofaction’ is even a mandatory smoothing operation, since
the non-equilibrium stresses for which the above parameterizations are presented must necessarily vanish in
thermodynamic equilibrium. As we know from the modelling of the hypo-plastic stress parameterization, the
rate independent parts do not vanish in thermodynamic equilibrium.

In the above formulae, a dependence of the viscosity parameters on solid volume fraction has not been
made explicit, but there are indications that such dependencies exist. For instance, Ancey [1] reports work
of Husband et al. [17] and others, who identified clear yielding behaviour in suspensions with solid-volume
fractions νs � 0.47. They observed that this yield stress increased dramatically when the solid concentration
approached its densest packing. Ancey [1] mentions other supporting evidences for such a yield stress and
quotes Wildemuth and Williams’ [44] yield stress formula

τ0 =
[

A
νs/ν0 − 1

1 − νs/ν∞

]1/m

, (94)

in which A, ν0, ν∞ and m are parameters fitting their data. This demonstrates that yielding is associated with
a size range νs ∈ (ν0, ν∞) of solid volume fraction.

In slurries at moderate to small solid volume fraction, theoretical models predict Newtonian behaviour
with viscosities whose value depends on the viscosity of the pure fluid, η

pure
f , and the solid volume fraction

νs; this function is increasing with growing νs. Two famous formulae are
{

ηf = η
pure
f (1 − 2.5νs), Einstein [12,13],

ηf = η
pure
f (1 − 2.5νs − 7.6ν2

s ), Batchelor and Green [2] .
(95)

Ancey [1] quotes a general formula supposed to be adequate beyond small ν2
s -terms,

ηf = η
pure
f

(
1 − νs

νs max

)−2.5νs max

. (96)

Relation (96) matches the Einstein [12,13] relation at small νs. It becomes singular when νs → νs max which
is certainly unphysical. Therefore, it can be only valid for νs sufficiently below νs max. For values of νs close
to νs max, the yield stress will become important and the parameterization (91) should be used. For the latter,
however, dependencies on the solid volume fraction have to our knowledge not been suggested.

Finally, it is emphasized that the parameterizations as suggested by rheometry are based on the relatively
simple formulae (69), (70) and the application of these formulae to only two very special processes of isotropic
extension/compression and simple shear. This does not permit identification of a third invariant dependence,
as we have seen. In order to identify such possible dependencies, compound deformations consisting of shear
and normal strains are needed. To conduct such experiments for dynamic situations must be very difficult.
Moreover, it is also clear that (69), (70) do not include dynamic normal stress effects for which the qua-
dratic Df,s-dependences in (63), (64) must not be dropped. Such arguments explain that non-equilibrium stress
parameterizations of the class (63), (64) will keep debris flow modellers busy for a long time until a complete
satisfactory parameterization is known.

5 Final constitutive laws

The reduced forms of the constitutive laws for the solid and fluid Cauchy stress tensors and the interaction
supply rate density for the solid momentum now read

T̄s = −
̄sI + T̄es(Bs) + ρδZ̄s + λsIDsI + 2μsD′
s ,

Φ̄s = f1
(
L
(
Z̄s
)

Ds + f2N
(
Z̄s
) |Ds|

)
,

T̄f = −
̄fI + κf IDf I + 2μfD′
f ,

m̄i
s =

{
βG

s

(
1 − ξ̄s

)− ρf�
G
I + ς − θ

(
kv

s

)
,νs

}
∇νs

+ρ
(
�G

I

)
,Z̄s

(
Φ̄s
)
,vs |E + mDvfs

= −m̄i
f , (97)
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with


̄s = νs

(
βG

s − ρf�
G
I + ς

)
− θkv

s − νs(ρs − ρf)
(
�G

I,Z̄s
· Z̄s

)
,


̄f = (1 − νs)
(
−ρf�

G
I + ς

)
− θkv

f , (98)

and


 = 
̄s + 
̄f = νsβ
G
s +

(
−ρf�

G
I + ς

)
− νs(ρs − ρf)

(
�G

I,Z̄s
· Z̄s

)
(99)

for the spherical contribution to the mixture Cauchy stress tensor. T̄es follows from any elastic potential �̄G
es ,

see (35), ff.

6 An alternative to the assumption of ‘Pressure Equilibrium’

In order to analyse the assumption of ‘pressure equilibrium’, we start with the collection of balance equations
for the reduced model. For isothermal conditions, density-preserving constituents, saturation and vanishing
interaction supply rate densities for mass, these equations are

∂νs + ∇ · (νsvs) = 0 ,

∂νs − ∇ · vf + ∇ · (νsvf) = 0 ,

νsρs (∂vs + (∇vs)vs) = ∇ · T̄s + b̄s + m̄i
s ,

(1 − νs)ρf (∂vf + (∇vf)vf) = ∇ · T̄f + b̄f + m̄i
f ,

�
Z̄s = Φ̄s . (100)

Together with the constitutive laws for T̄s, T̄f , m̄i
s, m̄i

f and Φ̄s, given in (97) and (98), a set of field equations can
be constructed. For the solvability of this set we have to ensure that the number of equations is in conformity
with the number of unknown variables arising in the field equations.

6.1 Pressure equilibrium

From (97) and (98) we observe that, besides mD, κf , μf , κs, μs, L and N, we are still missing explicit expressions
for �G

I and kv
α (α = s, f ) which are necessary for the description of the evolution of βG

s , �G
I,Z̄s

, 
̄s and 
̄f ,

respectively. To avoid postulating representations for �G
I and kv

α (α = s, f ) and to facilitate the construction
of solutions of the field equations, in the literature on multiphase mixtures (cf. [22] and [36]), the assumption
of ‘pressure equilibrium’ is usually made. This assumption is not based on any physical principle, but rather
on surmised ‘feelings of adequacy’. For the model it reads


s = 
f = π. (101)

Proposition 1 In view of (98) the assumption of pressure equilibrium expressed as (101) can only hold if

(i) any hypo-plastic effect from the model is abandoned, i.e. if

�G
I,Z̄s

= 0 , (102)

(ii) if

kv
α = 0 (α = s, f ), (103)

which follows from (101) and
(iii) if the Helmholtz free energy is such that

βG
s = ρ(�G

I ),νs = 0 , (104)

implying that �G
I cannot be a function of νs. �
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The assumption states ‘physically’ that the spherical contribution to the mixture Cauchy stress is distributed
among the constituents according to their volume fractions. With (101–104) the constitutive laws (97) reduce
to

T̄s = −νsπI + T̄es(Bs) + T̄s|N,

T̄f = −(1 − νs)πI + T̄f |N, (105)

m̄i
s = −m̄i

f = π∇νs + mDvfs

where, obviously, no frictional stress, T̄fric and no implicit volume fraction dependence arise, because

�G
I �= �̂G(νs, Z̄s) . (106)

Therefore, the hypo-plastic balance law (100)5 is no longer of interest, and the dependence of �G
I reduces to

�G
I = �̂G

I (Bs) . (107)

For ‘pressure equilibrium’ the field equations read

∂νs + ∇ · (νsvs) = 0 ,

∂νs − ∇ · vf + ∇ · (νsvf) = 0 ,

νsρs (∂vs + (∇vs)vs) = −∇(νsπ) + ∇ · (T̄es(Bs) + T̄s|N
)

+π∇νs + b̄s + mDvfs ,

(1 − νs)ρf (∂vf + (∇vf)vf) = −∇((1 − νs)π) + ∇ · (T̄f |N
)

−π∇νs + b̄f − mDvfs . (108)

In order to solve these equations in a well-posed initial boundary value problem, they must be complemented
by an evolution equation for Bs. This equation follows from the definition of Bs = FsFT

s as13

B′
s := ∂Bs + (∇Bs)vs = LsBs + BsLT

s . (109)

If adequate initial values for νs, vf,s, Bs, π are prescribed and there exist boundary conditions such that the
resulting initial boundary value problem (IBVP) is not ill-posed,14 we can, in principle, solve (108) and (109)
for νs, vs, vf , Bs and π . Although this procedure seems convenient, we observe (see items (i) to (iii)) that
‘pressure equilibrium’ is a rough ad hoc assumption which destroys the structure of hypo-plasticity and that of
configuration pressures; moreover, it rules out the linear dependence of k on vs and vf . We conclude that the
assumption of ‘pressure equilibrium’ is based on unnecessary restrictions and thus in general not appropriate
for the modelling of debris flows. These unnecessary restrictions prevent first, the description of frictional
stresses in thermodynamic equilibrium by means of a hypo-plastic stress contribution and second, eliminate
consideration of the configuration pressure, βG

s , which represents the driving force between the grains and
between the fluid and the grains (cf. Passman et al. [35]) and thus might be necessary for the description of
particle size segregation in debris flows. Thus, we reject the pressure equilibrium assumption as a physically
acceptable assumption; this is also confirmed by Passman et al. [35]. In spite of this, the assumption is still
popular and often used, see e.g. Pitman and Le [36], Iverson and Denlinger [22]. It is pleasing, however, that
the thermodynamic approach has proved the assumption to be superfluous, or replaceable by a more useful
alternative.

13 If the elastic strain, used in T̄es, is not Bs but another strain measure, then the evolution equation for that variable must be
used, e.g. for Es = 1

2 (Bs − I), E′
s := ∂Es + (∇Es)vs = LsEs + EsLT

s + Ds.
14 As pointed out by Passman et al. [35] well-posedness is not always the case.
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6.2 Thermodynamic closure assumption

A less restrictive assumption which replaces ‘pressure equilibrium’ was proposed by Hutter et al. [19] who
simply suppose that

kv
α = 0 (α = s, f ) . (110)

This assumption fixes the extra entropy flux without making it collinear with the mixture heat flux. Obvi-
ously, it is an ad hoc assumption, too, but does not eliminate the possibility of modelling frictional effects by
hypo-plasticity and maintains a possible dependence of �G

I on νs. With the above assumption we obtain


f = −ρf�
G
I + ς , 
s = βG

s + 
f − (ρs − ρf)
(
�G

I,Z̄s
· Z̄s

)
. (111)

If we, therefore, regard 
f as an independent field, rather than ς , we obtain the following set of field equations:
The constitutive laws are expressed as

T̄s = −νs

{
βG

s + 
f − (ρs − ρf)
(
�G

I,Z̄s
· Z̄s

)}
I + T̄es(Bs) + ρδZ̄s + T̄s|N ,

T̄f = −(1 − νs)
fI + T̄f |N ,

m̄i
s =

{
βG

s (1 − ξ̄s) + 
f

}
∇νs + ρ

(
�G

I

)
,Z̄s

|E
(
Φ̄s
)
,vs |E + mDvfs

= −m̄i
f ,

Φ̄s = f1
(
L
(
Z̄s
)

Ds + f2N
(
Z̄s
) |Ds|

)
, (112)

and the corresponding balance laws (see(100)) have the form

∂νs + ∇ · (νsvs) = 0 ,

∂νs − ∇ · vf + ∇ · (νsvf) = 0 ,

νsρs (∂vs + (∇vs)vs) = ∇ · T̄s + b̄s + m̄i
s ,

(1 − νs)ρf (∂vf + (∇vf)vf) = ∇ · T̄f + b̄f + m̄i
f ,

ds Z̄s

dt
− [Ωs, Z̄s] − νs

(ρs − ρf)

ρ
Z̄s(∇ · vs) = Φ̄s ,

B′
s := ∂Bs + (∇Bs)vs = LsBs + BsLT

s , (113)

in which we have chosen Ωs = Ws. If T̄es is given as T̄es(Es), where Es = 1
2 (Bs − I), then the evolution

equation for Es is given by

E′
s := ∂Es + (∇Es)vs = LsEs + EsLT

s + Ds . (114)

Remarks • One of the equations (113)1,2 could be replaced by the mixture volume balance

∇ · vvol = ∇ · (νsvs + (1 − νs)vf) = 0 . (115)

Similarly, (113)3 or (113)4 could be replaced by the momentum balance relation for the mixture as a whole,
but this equation does not offer computational advantages.

• The above field equations have to be complemented by appropriate functions for the non-elastic part of the
‘inner’ free energy, �̂G

fric

(
νs, Z̄s

)
, for the tensors L̂

(
νs, ∇νs, Bs, Z̄s

)
and N̂

(
νs, ∇νs, Bs, Z̄s

)
and for the

coefficients mD(νs), λs(νs) and μs(νs), κf(νs), μf(νs), f1 and f2. Suppose that these functions are known
and initial and boundary conditions are proposed such that the resulting IBVP is well-posed; then we are,
in principle, in the position to solve the field equations for the variables {νs, vs, vf }.
Obviously, (110) is a weaker assumption than that of ‘pressure equilibrium’, because it does not rule out
hypo-plasticity and the configuration pressure βG

s . The price we have to pay for the gain of sensitivity of
the model, is the need of an additional postulate for �G

I and, presumably, the increased complexity of the
resulting IBVP.

• According to (112)1,2, ‘pressure equilibrium’ is recovered in this formulation only when
(i) ρs = ρf and βG

s = 0,
(ii) for ρs �= ρf when �G

I �= �̂G(νs, Z̄s, ·) .
The second case is equivalent to (105), the first is not realistic for soil.
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7 Discussion and conclusions

In this article, a binary solid–fluid mixture model was presented which is thought to mathematically describe
the deformation and motion of a soil mass, which is saturated with water, and moves down any arbitrary terrain
topography. The basis for the model equations in the thermodynamic theory of Part I (Hutter and Schneider
[21]) in which the material model assumptions were so constrained that the requirements posed by the second
law of thermodynamics are fulfilled. The special feature of the mixture model in Part I is its validity for any
number of solid and fluid constituents, the allowance of mass and volume fraction production rate densities as
well as the consideration of an internal second order tensor variable by which frictional heat effects such as
hypoplastic behaviour can be modelled. In this article, a restricted class of material behaviour was looked at,
namely a density preserving elastic-hypoplastic-viscous solid–fluid compound, in which no mass and volume
fraction production rate densities were considered and processes were assumed to be isothermal.

One particular feature of the thermodynamic model derived in Part I and employed here, is that the equilib-
rium stresses, pressures, interaction forces etc., are determined once and for all when the Helmholtz free energy
is prescribed as a function of its variables, and when the production rate density of the frictional symmetric
stress-like variable is equally given.

On the assumption that the frictional and the solid and fluid elasticity effects are describable additively by
separate contributions to the Helmholtz free energy (see (25)), it was shown that only the solid stress exhibits
elastic constitutive behaviour of which the physically linear behaviour was illustrated as a simple case. On
the other hand, the frictional behaviour was shown to nearly reproduce hypoplastic behaviour, if the frictional
stress was set proportional to the tensor valued internal variable Z̄s (see (40)) and its production rate density
was identified with the classical hypoplastic constitutive proposal. The resulting frictional model agreed with
the classical hypoplastic constitutive model only approximately, the difference essentially being an additional
frictional pressure (see (55)). The solid and fluid pressures, given in (60), do not satisfy the assumption of
pressure equilibrium; (60)1,2 differ from this assumption and the configuration solid pressure. If pressure
equilibrium is any useful concept at all within this theory, then it can only be applied to the saturation pressure.

Several forms of the non-equilibrium stress and interaction force parameterizations are of viscous nature
are proposed, but eventually attention is restricted to the quasi-linear relations (68), and identification of solid
bulk and shear viscosities (fluidities) by viscometric (gedanken) experiments. Solid bulk viscosity is suggested
as a strongly non-linear function of the solid volume fraction (see (77) and (78)), and the solid shear viscosity
is given by expression (91), which is regularized for of a viscous fluid, possibly with yield surface. The fluid
constituent is treated as a slurry with volume fraction dependent viscosity, motivated by Einstein’s formula.

We, finally, close with a suggestion of the replacement of the assumption of pressure equilibrium by the
requirement that the extra entropy flux vector k is set to zero.

In summary, the general theory presented in Part I and its specialization to a density preserving binary fluid-
solid mixture in this article, have clearly demonstrated that physically fairly complex granular fluid flows with
elasto-visco-hypoplastic constitutive behaviour can describe many thermodynamic flows with the potential to
cover from quasi-static to rapid deformations with closure conditions which are thermodynamically consistent
with the second law.
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