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Abstract. One way of making activity-based travel analysis operational for transport plan-

ning is multi-agent micro-simulation. Modelling activity and trip generation based on indi-

vidual and social characteristics are central steps in this method. The model presented here

generates complete daily activity schedules based on the structure of a household and its

members� activity calendars. The model assumes that the household is another basic decision-

making unit for travel demand aside from individual mobility needs. Results of the model are

schedules containing complete information about activity type and sequence, locations, and

means of transportation, as well as activity start times and durations. The generated

schedules are the outcome of a probabilistic optimisation using genetic algorithms. This

iterative method improves solutions found in a random search according to the specification

of a fitness criterion, which equals utility here. It contains behavioural assumptions about

individuals as well as the household level. Individual utility is derived from the number of

activities and their respective durations. It is reduced by costs of travelling and penalties for

late, respectively early arrival. The household level is represented directly by the utility of

joint activities, and indirectly by allocation of activities and means of transportation to

household members. The paper presents initial tests with a three-person household, detailing

resulting schedules, and discussing run-time experiences. A sensitivity analysis of the joint

utility parameter impact is also included.

1. Scheduling households

The study of activities generation and associated trips has often been some-

what neglected in travel behaviour research. This is not surprising; the com-

parison of static (one-day) cross-sections was the traditional focus of analysis.

The two most relevant recent advances were the idea of homogeneous groups

of travellers and their associated activity chain distributions (Poeck and Zum-

keller 1976; Axhausen 1990; Fellendorf et al. 1997) and the successful integra-

tion of the activity pattern choice into random utility models (Bowman 1998;

Bowman et al. 1998). The first approach allows the representation of overall

activity patterns variability in a simulation, but does not provide for a mecha-

nism to change either the activity patterns themselves, or their distributions
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for the particular homogeneous group. The patterns and generalized costs are

linked in the model structures of the second approach, but their effects tend

to be small and dominated by the effects of the socio-demographic variables,

which often reduce the models to sophisticated cross-classifications. In addi-

tion, as utility maximizing approaches, one must impose the assumption that

the daily pattern is planned in one step at one point in time. It is obvious

using introspection and well known from empirical work since the late 1970s,

that this assumption is unrealistic, even if computationally and econometri-

cally necessary (Jones et al. 1983). In particular, Doherty’s work with his

activity scheduling surveys has shown that a large share of activities under-

taken is planned during the day or even started at short notice, i.e. spontane-

ously (Doherty and Miller 2000; Rindsfüser et al. 2003 and references therein).

Two developments have now increased the focus on trip generation

again: first, the interest in household interaction and the resulting allocation

of tasks to different household members; second, the interest in responses to

real time traveller information and traffic management systems, including

tolling. Both are critical to activity scheduling, i.e. the determination of tim-

ing and duration of an activity and its associated characteristics (location,

mode, group size, expenditure), either as a bargaining process within the

household or as a response to information or pricing signals. This process of

activity scheduling involves the identification of activity needs, instances of

activity suppression, and activity scheduling and re-scheduling over arbitrary

time horizons and is therefore inherently dynamic.

The concept of scheduling has thus become central to the current work in

activity-based analysis (Damn 1983; Jones et al. 1990; Kitamura 1996; Pas

and Harvey 1997). Four lines of work can be identified:

• empirical work observing the scheduling process through tracking plans

and realized behaviour (see above),

• stated-response work which attempts to understand the scheduling pro-

cess as it happens (Ettema et al. 1997),

• econometric estimates of utility functions and other attempts to repro-

duce and predict activity patterns (Recker 1999; Arentze and Timmer-

mans 2000; Glibe and Koppelman 2002; Joh 2004; Zhang et al. 2004)

• conceptual and simulation models of the activity scheduling process (e.g.

Gärling et al. 1989; Axhausen and Goodwin 1991; Gärling et al. 1994;

Doherty and Axhausen 1998; Gärling et al. 1998; Charypar and Nagel

2003; Roorda and Miller 2004).

In addition, the work on departure time choice is related to this material

through implied trade-offs between the two activities at the start and the end

of the trip (see Noland and Small 1995 and references therein).
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This paper will contribute to the fourth stream of work by presenting a

scheduler based on genetic algorithms that can accommodate an arbitrary

number of household members. Processes modelled at the household level

are: division of work, joint activity participation, and allocation of means of

transportation to household members. Considering these factors, the sched-

uler creates individual daily activity schedules. This study attempts to make

the point that social networks (in general) and households (in particular)

have a significant influence on travel activity scheduling.

The paper is structured as follows. Before describing the scheduler and

proposed solution for household interactions, the next section places the

model into a dynamic framework to sketch the current limitations of the

approach. After the description of the model and its capabilities, the paper

will discuss the results for an example household with three members. An

extra-section is devoted to the sensitivity analysis of the parameter rewarding

additional utility of joint activities. The final section discusses run-time expe-

riences and future research needs.

2. A dynamic framework

The individual’s position in space at any one time is the product of his or

her biography. In a first step, it is useful to concentrate on activity schedul-

ing for normal, daily tasks. We assume that longer-term choices, such as

partnership, children, home and work locations, but also the available set of

mobility tools (motorized vehicles, bicycles, public transport season and dis-

count tickets) are fixed in the short term. The elements forming one’s per-

sonal knowledge of the world can be approached in two ways, each stressing

a different facet of that knowledge: On one hand, the mental map describes

locations, their relative positions, and networks and routes linking them with

associated generalized costs reflecting the person’s experiences and expecta-

tions (Lynch 1960; Stern 1990). On the other hand, the activity repertoire

consists of locations and types of activity which can be performed there for

given generalized costs and which return a particular level of satisfaction. It

is worth pointing out that the number of locations included in the mental

map/repertoire is substantially larger than the observed set of locations for a

given time period, which constitute the activity space (see Schönfelder and

Axhausen 2003). A further element of the personal world is the set of expec-

tations that the traveller has formed about the world based on his/her expe-

riences. These assumptions determine his/her assessment of parts of the

network, which he/she has not visited so far. Parts of these expectations are

search rules and methods, which are available to answer questions about

daily activities, their locations, costs, and expected satisfaction levels.
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The performance of everyday life is limited by the personal world, which

is continuously evolving (see Figure 1). Physiological needs, higher level

needs, commitments accepted, but also the seasons activate elements in the

activity repertoire, which in turn could satisfy these needs or allow the trav-

eller to fulfill his/her obligations. These activated elements constitute the

activity calendar, which evolves in response to needs, desires, and activity

execution, but also in response to unforeseen opportunities. The entries in

the calendar have priorities, which respond to the level of need or commit-

ment to the activity (type). As a rule, there is no one-to-one match between

an activity type and need, or even commitment. The substitutability should

be lower for commitments, such as work or the care of a person, as commit-

ments are more specific in their description of the necessary activities than

the need for relaxation, which can be achieved in many ways. Entries in the

‘things-to-do’-calendar, in general, will involve more than can be accommo-

dated during the next day or generally, short-term planning period. It is

important to note that the traveller’s commitments and projects provide

activities for some time into the future (Axhausen 1996). The activity

calendar will therefore contain certain activities that need not to be started

until well after the next day. Survey work is now only started to provide

empirical evidence on the frequency, duration, and effort involved in the

various projects that persons and households undertake at any one time. A

project is a set of activities linked through a common goal. It can be trivial,

such as preparing dinner, or non-trivial, such as buying a new house and

moving. The concept of the project is important, as it links various disparate

Figure 1. Daily scheduling within a dynamic framework. Source: (Kitamura R 1996).
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activities into a coherent whole and provides the time frames for subsidiary

activities.

Through organizing and planning, travellers create schedules to guide a

given day. Scheduling must provide time for high priority activities in the

calendar, fill any remaining gaps, and satisfy commitments on the basis of a

person’s knowledge of his environment or what he/she can find out about it

in reasonable time. It is the central management process of everyday life and

its dynamics.

The conceptual framework of Figure 1 sees scheduling taking place at the

start of the day, but continuing throughout the day, when parts of the sche-

dule have been addressed. Changes might be necessary because the transport

system has been unreliable, an event was cancelled, a store did not have the

desired item, etc.

At the end of the day/planning period, the traveller is left with unexe-

cuted activities, which he/she needs to carry over into the next day, cancel

(suppress), or reshape. In addition, the traveller has updated the mental

map against current experiences, and incorporates innovations, which he/

she might have developed during the day or participated in on the sugges-

tion of a third party: a new restaurant, new public transport connection,

new parking garage, etc.

This conceptualization does not specify what form scheduling takes.

Rather, it assumes that scheduling is not, strictly speaking, optimal, but that

it is heuristic and preliminary, accounting for the ‘expected unexpected’. In

line with Doherty’s and others’ results, one would assume that the schedul-

ing traveller leaves empty spaces in his plans and cannot achieve the equilib-

rium conditions of time-use economics (Becker 1965; Deserpa 1971; Jara-

Diaz and Farah 1988; Bates et al. 1996).

3. Model structure

Most schedulers implemented in software so far have, in spite of the appar-

ent flaws in this assumption, enforced the equilibrium condition on the mar-

ginal utilities of activity participation (see Charypar and Nagel 2003; Joh

2004). The computational advantages of the assumption argue for this. Ran-

dom utility choice models, which impose the same assumption in the estima-

tion of the parameters of utility functions, suggest it as well. The model

presented here follows this tradition. According to the conceptual scheme of

Figure 1, the model has to select activities from the calendar and schedule

them completely (timing, duration, mode, location and joint participation of

other household members). It is consistent with the concept, when not every

activity present in the calendar is scheduled for the day in question.
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The model presented here is an extension of an existing genetic algorithm

(GA) scheduler developed by D. Charypar at ETH (Charypar and Nagel

2003). This further development attempts to overcome the limitation of

Charypar’s model to separate individuals by allowing household members’

schedules to interact and to synchronize to some degree. At first, we assume

that household members like to do things together. The basic instrument is

to extend the individual utility function to account for additional utility

derived from joint participation in certain activities. Furthermore, activities

can be allocated to household members to represent division of work. A

third intra-household interaction concerns transport: availability of transpor-

tation alternatives for household members, specifically their varying users

during the day. Some new dimensions of individual choice are added to the

scheduler. The model will be referred to as ‘the household scheduler’.

To deal with the complexity of the resulting household utility function,

the household scheduler employs the GA approach to search for good solu-

tions (Goldberg 1989). The GA’s basic objective is to iteratively improve an

initially random set of individuals, in our case household schedules. The

instruments for this search are the cross-breeding of selected good schedules

(cross-over) and their further, slow, random mutation. In a constant-size

population of schedules, only those individuals with high fitness are selected,

while bad schedules are dropped. Experience has shown that a GA is able to

find near optimal solutions after a sufficient number of iterative applications

of these two instruments, even for very badly behaved utility surfaces.

The model has to specify the coding of the schedules, describe the ele-

ments (activities) of the calendar, and define a suitable utility function.

Please refer to the study of the previous model (Charypar and Nagel 2003)

for comparison as it served as a starting point for the work presented here.

3.1. Model input

The main input variable to the household scheduler is the household mem-

bers’ activity calendar. Table 1 shows two example activities and their dimen-

sions. Most of the variables are used in the utility function described later.

The reference to a basic need is a new element here. Certain activities

have clear rhythms over time, such as sleeping or eating. The utility function

cannot assure this spacing in its naı̈ve form. Therefore, the scheduler dis-

counts the utility of such an activity with a logit curve, if it occurs too

quickly after a previous activity satisfying the same need. Over longer time

horizons, these rhythms are also evident for other activity types Schönfelder
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and Axhausen 2001; Bhat et al. 2004 The household activity pattern prob-

lem: General et al. 1999). In this stage of development, only hunger is imple-

mented in the model.

Table 1. Activities and their dimensions in the activity calendar.

Variable name/unit Description Example 1 Example 2

Purpose Activity (mandatory) Breakfast Soccer

Type Activity type: Individual,

allocated (to one person)

or joint activity (mandatory)

Joint Individual

Participants Possible participants in the

activity specified as a list of

the relevant household members

A, B, C,...(mandatory for joint

and allocated activities)

ABC –

Priority Pi [] The higher the priority, the

higher the utility level of the

activity, and the higher its

probability to be scheduled.

Values are 1, 2, 3,...with 1

being the highest priority

(mandatory)

2 3

tw. i [h] Working point of activity i.

All activities have the same

marginal utility at their

working points. The closer

the durations of all scheduled

activities are to their working

points, the better the schedule

(mandatory)

1 2

tlate. ar. i [time] Latest arrival (start) time

for the activity (optional)

8:00 –

tearly. dp. i [time] Earliest departure (end) time

of the activity (optional)

10:00 –

tshort, i [h] Minimum duration (optional) 0.75 1

bjoint, i [Arentze and

Timmermans 2000]

Parameter of the utility of joint

activity performance (mandatory

for joint activities)

0.2 –

Need Association of the activity

with a basic need (optional)

Hunger –

Facility Facility type suitable for

the activity. There are many

locations for one facility.

It is possible to specify if an

activity type can only

be undertaken at a particular

location, such as home or

a pre-allocated work place

or kindergarten (mandatory)

Home Leisure
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The variable Participants allows the modeller to describe allocations of an

activity to persons, or their participation in joint activities. For allocated

activities, only one of the possible participants may perform a scheduled

activity. For a possible joint activity, the modeller specifies which household

members may participate. Both types of activities are listed in the household

part of the calendar, while each household member has his/her own calendar

with individual activities.

The household description also contains a list of means of transportation

available. The scheduler does not incorporate mode choice as a separate mod-

el. The idea is to impose constraints on household members’ scheduling oppor-

tunities by defining cars or bikes as ‘tied vehicles’. If one household member

plans to use a tied vehicle, it will not be available to others. The dynamics of

mode choice within the household are determined by their generalized costs,

their average speeds, and availability. Every mode tied to a vehicle has an

additional constant to generally represent access time. This approach reflects

the fact that decisions about possession and usage of mobility tools are in gen-

eral made at the household level. Since mode choice is an element of the activ-

ity encoding, it is part of the optimization with the GA (described later).

A further critical input to the scheduler is a map describing where the

agents’ daily lives take place. As shown in Figure 4, the environment is loose-

ly modelled on Karlsruhe, as found in the Mobidrive survey (Axhausen et al.

2002), which is intended to serve as the validation data source in later stages

of this work. The size of the environment determines the size of the choice set

for location choice of secondary activities: Each agent has on the one hand,

fixed locations for long-term commitments, so-called primary activities,

including home, work, school, etc. On the other hand, secondary activities

may be performed in different locations of a certain facility type. The setup

described in the Results section has 30 locations for each shops and leisure

facilities. There is no utility connected to them, so their choice still happens

completely randomly. On the presented map, 160 households could be placed

and scheduled. All distances are calculated crow-fly, since the scheduler is not

yet integrated into a transportation network model.

3.2. Utility function

The fitness F to be maximized by the GA is defined as the household utility

function HUF. It is the unweighted sum of the household members’ individ-

ual utilities:

F ¼ HUF ¼
X

m

Utotal;m

There is little empirical guidance for the formulation of the utility function
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of an activity (see Axhausen 1990 or Joh 2004 for reviews). Reflecting cur-

rent assumptions, the model includes the following elements:

• Positive utility Udur;i, derived from performing an activity i.

• Travel, late arrival, early departure and the violation of the minimum

time constraint are penalized linearly as function of their respective

durations ttravel, tlate.ar, tearly.dp and tshort.

• Opportunity costs arise by waiting periods, e.g. for a shop or a leisure

facility to open.

See Table 2 for values of the respective parameters. So the total utility of

household member m planning to perform k activities is

�
Utotal;m ¼

Xk

i¼1
Udur;i � ðbtravelttravel þ ctravelÞ

� blate:artlate:ar;i � bearly:dptearly:dp;i � bshorttshort;i:

The contribution of the performance of activity is logarithmic to the ratio

of its actual duration tdur and the break-even duration t0, which is scaled to

reflect its priority Pi:

Udur;i ¼ bdur;itW lnðtdur;i
t0
Þ

t0 ¼ tWe
ð �cipitW

Þ

Table 2. Utility function parameters.

Utility element Symbol Value Effective disutilitya

Activity

performance

bdur 20 e/hb –

Waiting bwait 0 e/h )20 e/h

Travel costs btravel 20 e/h )40 e/h

Late arrival blate. ar 60 e/h )60 e/h

Early departure bearly. dip 20 e/h )20 e/h

Violation of minimum duration constraint bshort bearly. dip )20 e/h

Joint performance bjoint 0.1 –

Fixed access costs for tied vehicles ctravel Car: 1.50 e Car: 1.50 e
Bike: 0.15 e Bike: 0.15 e

Source: Similar to the utility concept described in [Schönfelder and Axhausen 2003).
a At the working point, travelling and waiting create additional opportunity costs of bdur = 20 e/

h. Late arrival, early departure and the violation of minimum duration constraints are penalized

directly, therefore not discounted with bdur.
b This is the approximate average Swiss wage after taxes and health insurance.
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This basic formulation is extended in two ways. At first, joint perfor-

mance of joint-type activities increases the utility. The more a person m is

synchronized with other household members in n such an activity, that is the

closer sm;ni is to 1, the higher the additional utility:

Udur;i ¼ Udur;i � ð1þ bjoint;i

X

8n6¼m
Sm;n
i Þ; Sm;n

i 2 0; 1½ �

Given current knowledge about the effects of such joint performance, we

have assumed a simple linear impact. Other forms (log, logit, etc.) are possible,

even likely (Zhang et al. 1971). The second modification reflects the urgency

for performing an activity derived from the current level ni(t) of its associated

need:

Udur;i ¼ Udur;i � niðtÞ; niðtÞ 2 0; 1½ �

The more activities the algorithm is able to schedule, the higher the fitness

will be. This must not be misunderstood as ‘‘The more packed my day, the

better’’, since sleep or relaxation are possible activities, too. There is no pen-

alty for not including all activities present in the calendar. Allocated type

activities do not explicitly occur in the utility equations. The algorithm sim-

ply checks that not more than one household member performs such an

activity. Its utility is calculated as described.

4. GA details

4.1. Encoding

For the GA, each household member’s activities are encoded with the

following five elements:

• Scheduled (binary): This information defines whether an activity will be

a part of the schedule or not. In the latter case, it is ignored during util-

ity calculations.

• Sequence (integer): Here, the order of activities in the schedule is

encoded. Purpose is known from the description in the calendar.

• Location (integer): There are potential multiple locations for each facil-

ity. For daily activities’ location choice, a new location is chosen for

every new schedule. Primary activities have fixed locations.

• Time allocation (real double): What share of a 24-hour-day is reserved

for this activity? The algorithm divides the allocated time for the activity

between travel time, possible waiting periods, and performance of the

activity. For this, it considers distance, chosen mode of transport, and

environmental constraints, e.g. opening times.
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• Mode (integer): For each activity, a mode of transportation is chosen. If

a trip is necessary to that activity, the mode choice is considered in util-

ity calculation.

For a two-person-household, a complete schedule with eight activities

each on the calendar is thus a vector of up to (2 personsÆ8 activities/personÆ5
variables/activity) 80 variables. When creating the initial population, all of

these variables are set randomly. Therefore, an initial population will mainly

consist of nonsense schedules. During evolution, their values depend on the

previous schedules, except for mutations taking place during the iterations.

The population of schedules was classified by three of the five variables

(sequence, location and mode for all household members and scheduled

activities). If a second schedule of the same class is generated, the one with

higher fitness is kept in the population, while the other one is deleted. If a

second schedule with almost the same fitness is generated, it is also deleted.

By ignoring timing information in schedule classification, the population var-

iance is increased. This reduces the ability of the GA to optimize departure

times and activity durations, but also minimizes the danger of getting stuck

in a local optimum. In this implementation, this trade-off was accepted, as it

was felt that it was more important to cover the solution space with a small

number (50) of schedules.

4.2. Parameters

Table 3 gives a brief overview of the various GA parameters that have to be

configured. All these parameters have to be chosen, according to the nature

of the problem to be solved, which is often done on a gut level, so in this

case. A necessary step to be done is to determine their sensitivity to the

results using an exact method, e.g. a Monte Carlo procedure or another

GA.

5. Results

5.1. Example scenario

In this development phase, the scheduler was applied to a number of house-

hold types and related activity calendars. As an example, the schedule of a

three-person household on a working day is presented here. The respective

activity calendars reflect their socio-demographic status:
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• Joint activities include mealtimes (‘‘breakfast’’, ‘‘lunch’’, ‘‘dinner’’) and a

leisure activity (‘‘chillout/relaxing’’). All joint household activities take

place at home.

• Shopping is the only allocated activity considered for execution on that

day.

• The first person (‘‘academic’’) is an academic employed in the city center

of the synthetic region. He has to complete a full workday, with the pos-

sibility of a leisure activity should be there in the remaining time. Fur-

thermore, he has the opportunity to have his lunch and dinner in the

cafeteria which is located right at his workplace.

• His wife (‘‘housewife’’) is not employed and stays at home during most

of the day. Her individual activity calendar also includes a leisure activ-

ity out of home.

• Their child (‘‘young pupil’’) who has a high-priority school attendance in

the morning. Other possible activities are homework and soccer. The

modelled family lives in a small village about 12 km away from the city,

and owns one car, which must be shared between the two adult

household members.

Table 3. GA parameters.

Parameter

name

Description Value

Popsize Constant population size. 50

Ngen Number of generations. It

may be used as the maximum

number of generated individuals. Here, it

serves as a reference point to the stop

criterion described below.

100,000

Stop

criterion

Some boolean expression. If it

becomes true,

the GA will stop to evolve

the population, and will output

the final result.

Here, the GA stops when

average fitness didnot

increase more than 1% during the

last 10,000 iterations.

Pmut, smut Probability that one part

of a new schedules’ encoding

will mutate according to its

respective mutation operator.

Each time a new individual was

inserted into the population,

Pmut is adapted. The higher smut, the

faster Pmut decreases.

Initial: 30%, exponentially

decreasing

to minimum 7%.

Mindiff Minimum fitness difference

between two individuals.

If a new schedule with almost the

same fitness is generated, it

will be dropped.

0.1
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The example results shown here will be discussed with respect to the per-

formance of the GA. They are visualized in three styles (see Figures 2–5):

• Time use by person, as pioneered by the Household Activity Travel Sim-

ulator (HATS), the survey tool of Jones (Jones 1979). It shows, in a

compact image, where each person is over the course of the day, in a

view that aggregates facility types (home, out-of-home, and travel),

• Time use by location for all household members as a group. This allows

easy detection of joint activities, but also indicates opening times of

facilities as environmental constraints on activity scheduling,

• Sequence of locations visited over the course of the day on a map of the

environment for each person. The legend appended explains the respec-

tive elements of the figures.

The three-person example was chosen because it contains each intra-

household interaction modelled:

• Joint activities: From the potentially three joint mealtimes, only the din-

ner could be scheduled as a joint activity for all three household mem-

bers. The housewife and her child share time at home in the afternoon.

The academic takes his lunch at work, because it would take too much

time to go home for it.

• Division of work: The algorithm assigns the shopping task to the house-

wife who accomplishes it around noon before attending her leisure activ-

ity.

• Allocation of means of transportation: The respective deterrence function

lets the algorithm to assign the family car to the person with longer trips

during the day. In this case, the employee who works in the city will use

it. It therefore is not available to his wife, who has to walk through the

village, where the family lives.

In this scenario, the activity calendars were of different size. For example,

the academic has 15 activities on his calendar, with 5 of them being opportu-

nities to have a meal: three at home, two in the cafeteria. Three of those

were scheduled. This is enough to survive, and shows the effect of the hun-

ger need associated with a mealtime activity. On the opposite, the other two

persons’ calendars are much smaller. This accelerates convergence, but

decreases behavioural diversity.

The performance of the algorithm is measured with two variables (see

Figure 6):

• Average fitness across entire population,

• Standard deviation of schedules’ marginal utilities. This captures how

optimal the simulated schedules are. As pointed out, a schedule can be
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called optimal, when the durations of the performed activities are close

to their working points tW, where all activities have the same marginal

utility bdur. Thus, good schedules have two main properties: many activi-

ties scheduled (high fitness) and optimal time allocation (low sd of mar-

ginal utilities of all performed activities). This measure is used to

evaluate the algorithm’s convergence. It shows a more detailed picture of

what happens inside the population, e.g. when new regions in the solu-

tion space are found.

The performance analysis shows the expected behaviour. Average utility

is by definition, a monotonically rising numerical series. Its gradient

decreases constantly until the stop criterion is reached after 170,000 genera-

tions (see GA parameter description). The differentiation described earlier,

which leaves out time information when calculating similarity, ensures that

variability will not disappear completely. The convergence measured as the

standard deviation of marginal utilities shows a quickly oscillating behaviour

at the beginning. Schedules that are not completely nonsense are found after

a third of the optimization. The optimality levels of the agents’ schedules

converge each other as expected, but they do not converge to zero. This is

Figure 2. Three-person household – time use by person.
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because of the GA selection criterion described which does not explicitly

optimize departure times and activity durations.

5.2. Sensitivity to joint activities’ valuation

Although the scheduler employs dozens of variables, we want to concentrate

on model response to systematic changes of the parameter rewarding joint

activity performance.

The introduction of bjoint, and therefore the explicit valuation of joint

activity, raises the question whether the schedules respond to its change in

the expected way. The expected increase in the joint time and in synchroni-

zation (not shown, as it is closely parallel) is observable (Figure 7). The

value of bjoint = 0.1 (as used in the example) more than doubles the joint

time in comparison to a zero valuation for joint time. While joint activity

durations rise with a higher value of bjoint, fitness starts to decrease, when

Figure 3. Three-person household – time use by facility.
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joint activities are overemphasized by the utility function. At this point,

high-utility individual activities are dropped from the schedule, which

returns in a lower fitness level. It is difficult to generalize from this one expe-

rience, as the content of the calendar is likely to influence the results, espe-

cially if the schedule has exhausted the joint activities at some point.

Nevertheless, this first experiment is reassuring, as it demonstrates that the

algorithm responds in the expected way.

6. Discussion and further work

The work reported here outlines a method to find near-optimal schedules for

households. It opens up new avenues for realizing the potential of activity-

based approach in understanding and forecasting individuals as well as

households. Obviously, many questions need to be addressed before this

potential can be fully realized.

Figure 4. Three-person household – spatial trace.
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Computational performance needs to be improved before the household

scheduler can be used in large-scale applications. On a Pentium IV 2.4 GHz

Xeon system, a model run for the presented three-person example takes

about 3 s per household member, which is acceptable for many purposes.

Required calculation time rises with the size of the activity calendar and the

number of generated trips. However, for iterative large-scale applications,

such as multi-agent micro simulation (Raney and Nagel 2005) involving 106

persons, it is too slow. Strategies must be found to improve calculation

speeds by at least a factor 100 to make integration possibly without produc-

ing excessive run times for the combined model. While brute power (faster

or more CPUs) helps, the solution has to be in smarter search strategies:

parameterized rules to limit the number of generations, optimized parame-

Figure 5. Three-person household – legend.
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ters of the GA itself, using more than just one schedule from the generated

populations, and/or recycling solutions as starting points for households fac-

ing only slightly different conditions (e.g. work place and home locations).

Figure 6. Development of results.

Figure 7. Shared time and fitness as a function of in the three-person household scenario.
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These steps must be taken to permit the estimation of the utility func-

tions. Three approaches are possible for this calibration:

• Implementation of a second GA (or other heuristic optimization algo-

rithm), which optimizes the parameters of the utility function for a given

set of schedules. This avoids generation of the schedules, but raises the

question whether these parameters could produce realistic new schedules.

• Generation of new schedules, comparison with a sample of observed

schedules, and optimization of the utility function to maximize the simi-

larity.

• Use of the household scheduler to generate good alternative schedules

and employ a discrete choice approach to estimate the parameters. As

the estimated parameters might be sensitive to the parameters chosen to

generate the alternatives, iterations might be necessary.

Speed is essential, as comprehensive measurement of the fit between

observed and simulated schedules requires substantial computing efforts in

itself (Joh 2004). Even for models without random parameters, the schedules

will have to be generated often before the parameter estimate converges.

High speeds will be required to allow extensive tests of the utility functions’

of different formulations.

At this point, the algorithm does not directly include monetary expendi-

tures of activities at all. It is clear that this is desirable in the long term,

especially if the model were to address scheduling over multiple days. Still,

before this can be achieved, there is a need to improve our empirical under-

standing of the link between activity costs and hedonic benefit gained (see

(Axhausen et al. 2002) for an example of relevant survey work).

Another important intra-household interaction can be seen in trips shared

by household members. In the Mobidrive dataset, 18% of all trips were

shared by at least two household members (Singhi 2001). The modelling of

joint activities as presented here is a first necessary step to capture joint trips

in activity-based analysis.
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