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Abstract The Benini distribution is a lognormal-like distribution generalizing the
Pareto distribution. Like the Pareto and the lognormal distributions it was originally
proposed for modeling economic size distributions, notably the size distribution of
personal income. This paper explores a probabilistic property of the Benini distribu-
tion, showing that it is not determined by the sequence of its moments although all the
moments are finite. It also provides explicit examples of distributions possessing the
same set of moments. Related distributions are briefly explored.
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1 Introduction

In the late 19th century, the eminent Italian economist Vilfredo Pareto observed that
empirical income distributions are well described by a straight line on a doubly log-
arithmic plot (Pareto 1895, 1896, 1897). Specifically, with F = 1 − F denoting the
survival function of an income distribution with c.d.f. F, Pareto observed that, to a
good degree of approximation,

ln F(x) = a0 − a1 ln x . (1)

The distribution implied by this equation is called the Pareto distribution.
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1122 C. Kleiber

Not much later, the Italian statistician and demographer Rodolfo Benini found that
a second-order polynomial

ln F(x) = a0 − a1 ln x − a2(ln x)2 (2)

sometimes provides a markedly better fit (Benini 1905, 1906). The distribution implied
by this equation is called the Benini distribution.

The present paper is concerned with a probabilistic property of the Benini dis-
tribution, namely whether it is possible to characterize this distribution in terms
of its moments. The moment problem asks, for a given distribution F with finite
moments μk ≡ E[Xk] = ∫ ∞

−∞ xkdF(x) of all orders k = 1, 2, . . ., whether or
not F is uniquely determined by the sequence of its moments. See, for example,
Shohat and Tamarkin (1950) for analytical or Stoyanov (2013, Sect. 11) for proba-
bilistic aspects of the moment problem. If a distribution is uniquely determined by
the sequence of its moments it is called moment-determinate, otherwise it is called
moment-indeterminate. Cases where the support of the distribution is the positive half-
axis R

+ = [0,∞) or an unbounded subset thereof are called Stieltjes-type moment
problems. The Benini distribution thus poses a Stieltjes-type moment problem. It is
shown below that the Benini moment problem is indeterminate. Drawing on a clas-
sical example going back to Stieltjes (1894/1895) explicit examples of distributions
possessing the same set of moments are constructed. Certain generalizations of the
Benini distribution are briefly explored, all of which are moment-indeterminate.

2 The Benini distribution

Pareto’s observation (1) leads to a distribution of the form

F(x) = 1 −
( x

σ

)−α
, x ≥ σ > 0,

where α > 0. Benini’s observation (2) leads to a distribution of the form

F(x) = 1 − exp

{

−α ln
x

σ
− β

(
ln

x

σ

)2
}

, x ≥ σ > 0, (3)

where α, β ≥ 0, with (α, β) �= (0, 0). Setting β = 0 gives the Pareto distribution.
For parsimony, Benini (1905) often worked with the special case where α = 0, i.e.,

with

F(x) = 1 − exp

{

−β
(

ln
x

σ

)2
}

= 1 −
( x

σ

)−β(ln x−ln σ)
, x ≥ σ > 0. (4)

Here σ > 0 is a scale and β > 0 is a shape parameter. This distribution will be
denoted as Ben(β, σ ). For the purposes of the present paper the scale parameter σ is
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immaterial. The object under study is, therefore, the Ben(β, 1) ≡ Ben(β) distribution
with

F(x) = 1 − exp
{
−β(ln x)2

}
, x ≥ 1. (5)

It may be worth noting that the Benini distributions are stochastically ordered w.r.t. β.
Specifically, it follows directly from (5) that

F(x;β1) ≤ F(x;β2) for all x ≥ 1 ⇐⇒ β1 ≤ β2, (6)

hence F(x;β1) is larger than F(x;β2) under this condition in the sense of the usual
stochastic order, often called first-order stochastic dominance in economics.

Noting further that the c.d.f. of a Weibull distribution is F(x)=1−exp(−xa), x > 0,
a > 0, it follows that Eq. (5) describes a log-Weibull distribution with a = 2. The
Weibull distribution with a = 2 is also known (up to scale) as the Rayleigh distribution,
especially in physics, and so the Benini distribution may be seen as the log-Rayleigh
distribution. It may also be seen as a log-chi distribution with two degrees of free-
dom (again up to scale); i.e., the logarithm of a Benini random variable follows the
distribution of the square root of a chi-square random variable with two degrees of
freedom.

The density implied by (5) is

f (x) = 2β ln x

x
exp

{
−β(ln x)2

}
, x ≥ 1, (7)

and hence is similar to the density of the more familiar lognormal distribution. The
lognormal distribution is perhaps the most widely known example of a distribution that
is not determined by its moments, although all its moments are finite (Heyde 1963).
The similarity of the lognormal and the Benini densities now suggests that the Benini
distribution might also possess this somewhat pathological property. The remainder
of the present paper explores this issue. Figure 1 depicts some two-parameter Benini
densities, showing that distributions with smaller values of β are associated with
heavier tails, as indicated by (6).

From a modeling point of view, the significance of the Benini distribution lies in
the fact that it generalizes the Pareto distribution while itself being ‘lognormal-like’.
It thus enables to discriminate between these two widely used distributions, at least
approximately. Further details on the Benini distribution, including an independent
rediscovery in actuarial science motivated by failure rate considerations (Shpilberg
1977), may be found in Kleiber and Kotz (2003, Ch. 7.1). The appendix of Kleiber
and Kotz (2003) also provides a brief biography of Rodolfo Benini.

3 The Benini distribution and the moment problem

The following proposition provides two basic properties of the Benini distribution that
are relevant in the context of the moment problem.
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Fig. 1 Some Benini densities; β = 2, 1, 0.5 (from left to right)

Proposition 1 (a) The moments μk, k ∈ N, of the Benini distribution Ben(β) are
given by

μk ≡ E[Xk] = 1 + k(2β)−(1/2)ek2/(8β)D−1

( −k√
2β

)

(8)

= 1 + k
√
π

2
√
β

ek2/(4β)
{

1 + erf

(
k

2
√
β

)}

. (9)

Here, D−1 is a parabolic cylinder function and erf denotes the error function.
(b) The moment generating function (m.g.f.) of the Benini distribution does not exist.

Proof (a) We have

μk ≡ E[Xk] = k

∞∫

0

xk−1 F(x) dx

= 1 + k

∞∫

1

xk−1 exp
{
−β(ln x)2

}
dx

= 1 + k

∞∫

0

ekx−βx2
dx

= 1 + k(2β)−(1/2)ek2/(8β)D−1

( −k√
2β

)

,

using Gradshteyn and Ryzhik (2007), no. 3.462, Eq. 1. This proves (8). The
alternative representation (9) is established via the relation (Olver et al. 2010,
§12.7.5)

D−1(x) =
√
π

2
ex2/4 erfc

(
x√
2

)

,
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Table 1 Lower-order moments
of Benini distributions E[X ] E[X2] E[X3] E[X4]

β = 2 1.98 4.48 11.81 37.20

β = 1 2.73 9.88 50.59 387.19

β = 0.5 4.48 37.20 677.00 29888.67

where erfc(·) is the complementary error function, together with erfc(x) =
1 − erf(x) and erf(−x) = −erf(x).

(b) The defining integral is

E[et X ] =
∞∫

1

etx 2β ln x

x
exp

{
−β(ln x)2

}
dx =:

∞∫

1

h(x) dx .

Now the leading term in

ln h(x) = t x + ln(2β ln x)− ln x − β(ln x)2

is the linear term, hence E[et X ] = ∞ for all t > 0. ��
The representation (9) can also be obtained using Mathematica (Wolfram

Research, Inc. 2013), version 9.0.1.0.
As an illustration, Table 1 provides the first four moments of selected Benini dis-

tributions, namely those from Fig. 1. These moments are rather large, especially for
small values of β.

Proposition 1 showed that the Benini distribution has moments of all orders, but
no m.g.f. Distributions possessing these properties are candidates for moment inde-
terminacy, although these facts alone are not conclusive. Unfortunately, no tractable
necessary and sufficient condition for moment indeterminacy is currently known.

For exploring determinacy, the Carleman criterion (e.g. Stoyanov 2013, Sect. 11)
sometimes provides an answer. In a Stieltjes-type problem, the condition

CS :=
∞∑

k=1

μ
− 1

2k
k = ∞

implies that the underlying distribution is characterized by its moments.
However, Proposition 1 indicates that the moments of the Benini distribution grow

rather rapidly. In view of erf(x) ≥ 0, for x ≥ 0, it follows from (9) that

E[Xk] ≥ k
√
π

2
√
β

ek2/(4β).

Using the ratio test this further implies that

CS =
∞∑

k=1

μ
− 1

2k
k ≤

∞∑

k=1

(
2
√
β

k
√
π

)2k

e−k/(8β) < ∞. (10)

So the Carleman condition cannot establish determinacy here.
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This suggests to explore indeterminacy instead. Indeed, Theorem 1 shows that all
Benini distributions are moment-indeterminate. Two proofs are given, one utilizing
a converse to the Carleman criterion due to Pakes (2001) and the other utilizing the
Krein criterion (Stoyanov 2000, 2013).

Theorem 1 The Benini distribution Ben(β) is moment-indeterminate for any β > 0.

Proof 1 Pakes (2001, Th. 3) showed that if there exists x0 ≥ 0 such that 0< f (x)<∞
for x > x0, the condition CS < ∞ together with the convexity of the function
ψ(x) := − ln f (ex ) on the interval (ln x0,∞) implies moment indeterminacy.
CS < ∞ was shown in (10). For the Benini distribution, the function

ψ(x) = − ln f (ex ) = − ln(2βx)+ x + βx2

is easily seen to be convex on the interval (0,∞) in view of β > 0. ��
Proof 2 In the case of a Stieltjes-type moment problem, the Krein criterion requires,
for a strictly positive density f and some c > 0, that the logarithmic integral

KS[ f ] =
∞∫

c

− ln f (x2)

1 + x2 dx (11)

is finite. For the Benini distribution this integral is, choosing c = e,

KS[ f ] = −
∞∫

e

ln(2β ln x2)− ln x2 − β(ln x2)2

1 + x2 dx .

This quantity is finite for all β > 0. ��

4 A Stieltjes class for the Benini distribution

The methods used in the proof of Theorem 1 only establish existence of further dis-
tributions possessing the same set of moments as the Benini distribution. It is known
from Berg and Christensen (1981) that if a distribution is moment-indeterminate, then
there exist infinitely many continuous and also infinitely many discrete distributions
possessing the same moments. It is, therefore, of interest to find explicit examples of
such objects.

A Stieltjes class (Stoyanov 2004) corresponding to a moment-indeterminate distri-
bution with density f is a set

S( f, p) = { fε(x)| fε(x) := f (x) [1 + εp(x)] , x ∈ supp( f )} ,
where p is a perturbation function satisfying E[Xk p(X)] = 0 for all k = 0, 1, 2, . . ..
If −1 ≤ p(x) ≤ 1 and ε ∈ [−1, 1], then S( f, p) is called a two-sided Stieltjes class.
Counterexamples to moment determinacy in the literature are typically of this type.
It is also possible to have one-sided Stieltjes classes, for which p only needs to be
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bounded from below, and ε ≥ 0. The following Theorem provides a one-sided Stieltjes
class for the Benini distribution.

Theorem 2 The distributions with densities fε, 0 ≤ ε ≤ 1,

fε(x) = f (x)

{

1 + ε
x exp

{−(x − 1)1/4 + β(ln x)2
}

sin
{
(x − 1)1/4

}

2Cβ ln x

}

, x ≥ 1,

all have the same moments as the Benini distribution Ben(β) with density f. Here
C > 0 is a normalizing constant defined in the proof.

Proof Consider the (unscaled) perturbation

p̃(x) = x exp
{−(x − 1)1/4 + β(ln x)2

}
sin{(x − 1)1/4}

2β ln x
, x ≥ 1.

This perturbation has the following properties:

(P1) limx→1+ p̃(x) = ∞.
(P2) Basic properties of the sine function imply that p̃(x) ≥ 0 on the interval (1, 2].
(P3) On the interval [2,∞), the function p̃ is continuous, with p̃(2) < ∞ and

limx→∞ p̃(x) = 0. Hence p̃(x) is bounded there.

Let C = supx∈[2,∞) | p̃(x)| and set p(x) = p̃(x)/C . It follows from (P1)–(P3) that
p is unbounded from above and bounded from below, specifically −1 ≤ p ≤ ∞. By
construction, fε ≥ 0. The moments of the corresponding random variable Xε with
density fε, 0 ≤ ε ≤ 1, are further given by

E[Xk
ε ] =

∞∫

1

xk fε(x) dx

=
∞∫

1

xk f (x) {1 + ε p(x)} dx

=
∞∫

1

xk f (x) dx + ε

C

∞∫

1

xk exp
{
−(x − 1)1/4

}
sin

{
(x − 1)1/4

}
dx

=: E[Xk] + J

It remains to show that J = 0. Now

∞∫

1

xk exp
{
−(x − 1)1/4

}
sin

{
(x − 1)1/4

}
dx

=
∞∫

0

(x + 1)k exp
{
−x1/4

}
sin

{
x1/4

}
dx
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=
k∑

j=0

(
k
j

) ∞∫

0

xk− j exp
{
−x1/4

}
sin

{
x1/4

}
dx

= 0

in view of

∞∫

0

xn exp
{
−x1/4

}
sin

{
x1/4

}
dx = 0 (12)

for all n ∈ N0. In particular,
∫ ∞

0 fε(x) dx = 1. ��
Note that Theorem 2 provides a further proof of the moment indeterminacy of the

Benini distribution.
Apart from the shifted argument, the perturbation employed here draws on the

pioneering work of Stieltjes (1894/1895). In modern terminology, Stieltjes showed
that the relation (12) leads to a family of distributions whose moments coincide with
those of a certain generalized gamma distribution, implying that the latter is moment-
indeterminate.

Stieltjes (1894/1895) has a further, and more widely known, example of a distri-
bution that is not determined by its moments, the lognormal distribution. The coun-
terexample he provides for that distribution employs the perturbation

p(x) = sin(2π ln x), x > 0, (13)

which was further developed by Heyde (1963). It can also lead to a Stieltjes class for
the Benini distribution. However, note that in view of the exponential term common
to both the lognormal and the Benini densities, the perturbation based on (13) only
works for small values ofβ, otherwise the resulting ratio diverges for x → ∞. Methods
outlined by Stoyanov and Tolmatz (2005) may help to construct Stieltjes classes based
on (13) and the lognormal density that cover the entire range of the shape parameter
β, at the price of somewhat greater analytical complexity.

5 Related distributions

It is natural to augment Pareto’s Eq. (1) by higher-order terms going beyond the
second-order term proposed by Benini (1905). Not surprisingly, curves of the form

ln F(x) = a0 − a1 ln x − a2(ln x)2 − . . .− ak(ln x)k (14)

soon began to appear in the subsequent Italian-language literature on economic sta-
tistics; see, e.g. Bresciani Turroni (1914) and Mortara (1917) for some early contri-
butions. Somewhat later, the Austrian statistician Winkler (1950) independently also
experimented with polynomials in ln x . Specifically, he fitted a quadratic—i.e., the
three-parameter Benini distribution (3)—to the U.S. income distribution of 1919.
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Dropping a scale parameter, i.e., setting a0 = 0, Eq. (14) gives the c.d.f.

F(x) = 1 − exp

⎧
⎨

⎩
−

k∑

j=1

a j (ln x) j

⎫
⎬

⎭
, x ≥ 1, (15)

where a1, . . . , ak ≥ 0, with corresponding density

f (x) = exp

⎧
⎨

⎩
−

k∑

j=1

a j (ln x) j

⎫
⎬

⎭

⎧
⎨

⎩

k∑

j=1

ja j (ln x) j−1

⎫
⎬

⎭
1

x
, x ≥ 1. (16)

Using the Krein criterion it is not difficult to see that these generalized Benini distri-
butions are moment-indeterminate, provided (a2, . . . , ak) �= (0, . . . , 0) as otherwise
not all moments exist.

A further generalization of the Benini distribution proceeds along different lines.
In Sect. 2 it was noted that the Benini distribution may be seen as the log-Rayleigh
distribution, up to scale. It is then natural to consider the log-Weibull family, with
c.d.f.

F(x) = 1 − exp
{−(ln x)a

}
, x ≥ 1,

where a > 0, and corresponding density

f (x) = a(ln x)a−1

x
exp

{−(ln x)a
}
, x ≥ 1.

Indeed, Benini (1905, p. 231) briefly discusses this model and reports that, for
his data, when a = 2.15 the fit is superior to the one using model (5). Again, the
Krein criterion may be used to show that the log-Weibull distributions are moment-
indeterminate for any a > 1.
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