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Abstract We study the geodesic exponential maps corresponding to Sobolev type
right-invariant (weak) Riemannian metrics μ(k) (k ≥ 0) on the Virasoro group Vir
and show that for k ≥ 2, but not for k = 0, 1, each of them defines a smooth Fréchet
chart of the unital element e ∈ Vir. In particular, the geodesic exponential map
corresponding to the Korteweg–de Vries (KdV) equation (k = 0) is not a local diffe-
omorphism near the origin.
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1 Introduction

The aim of this paper is to contribute towards a theory of Riemannian geometry for
infinite dimensional Lie groups which has attracted a lot of attention since Arnold’s
seminal paper [1] on hydrodynamics. As a case study, we consider the Virasoro group
Vir, a central extension D × R of the Fréchet Lie group D ≡ D(T) of orientation
preserving C∞-diffeomorphisms of the one-dimensional torus T = R/Z and thus a
Fréchet Lie group itself. Its Lie algebra vir can be identified with the Fréchet space
C∞(T) × R. The Virasoro group and its algebra come up in string theory [14] as
well as in hydrodynamics, playing the rôle of a configuration space for the celebrated
Korteweg–de Vries equation [22, 32]. For k ≥ 0 given, consider the scalar product
〈·, ·〉k: vir× vir → R

〈(u, a), (v, b)〉k :=
k∑

j=0

∫ 1

0
∂

j
xu · ∂ j

xv dx + ab.

It induces a weak right-invariant Riemannian metric μ(k) on Vir. The notion of a
weak metric, introduced in [15], means that the topology induced by μ(k) on any tan-
gent space T�Vir,� ∈ Vir, is weaker than the Fréchet topology on T�Vir. The aim
of this paper is to show that results of classical Riemannian geometry concerning the
geodesic exponential map induced by the metric μ(k) continue to hold in Vir if k ≥ 2.
Note that it has been shown by Kopell [23] (cf. also [17, 29]) that the Lie exponential
map of the diffeomorphism group of the circle is not a local diffeomorphism near the
origin. This fact can be used to show a similar result for the Virasoro group Vir—see
Sect. 5.

Theorem 1.1 For any of the right-invariant metrics μ(k), k ≥ 0, there exists a
neighborhood Uk of zero in vir such that for any initial vector ξ ∈ Uk there ex-
ists a unique geodesic γ (t; ξ) of μ(k) with γ |t=0 = e (e denotes the unital element in
Vir) and γ̇ |t=0 = ξ , defined on the interval t ∈ (−2, 2) and depending C1

F-smoothly�

on the initial data ξ ∈ Uk, i.e. (−2, 2)× Uk → Vir, (t, ξ) 	→ γ (t; ξ) is C1
F-smooth.

Theorem 1.1 allows to define, for any given k ≥ 0, on Uk ⊆ vir the geodesic
exponential map

expk: Uk → Vir, ξ 	→ γ (1; ξ).

The following two theorems show that there is a fundamental dichotomy between the
exponential maps expk for k = 0, 1 and k ≥ 2—see Remark 3.2 for an explanation of
this dichotomy.

Theorem 1.2 For any k ≥ 2 there exist a neighborhood Uk of zero in vir and a
neighborhood Vk of the unital element e in Vir such that the geodesic exponential map
expk |Uk: Uk → Vk is a C1

F-diffeomorphism.

� A map is Ck
F -smooth if it is k-times continuously differentiable in the sense of Fréchet calculus—see

Sect. 5.
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Theorem 1.3 For k = 0 and k = 1 there is no neighborhood Wk of zero in vir
so that the geodesic exponential map expk is a C1

F-diffeomorphism from Wk onto a
neighborhood of the unital element e in Vir.

Remark 1.4 Similar results as the one above have been established by Constantin
and Kolev [11] for the Fréchet Lie group D. Note however that the natural inclusion
D ↪→ Vir, φ 	→ (φ, 0) is not a subgroup of Vir and it turns out that the geodesic
exponential map expk on Virwhen projected to D is different from the corresponding
geodesic exponential map expD

k on D. In fact it has been proved in [11] that expD
k is a

local C1
F -diffeomorphism near the origin in TidD for any k ≥ 1. According to [10], this

is not true for k = 0. This fact reveals a difference between the Korteweg–de Vries
equation which by [22, 32] is the Euler equation corresponding to the metric μ(0)

on Vir and the Camassa–Holm equation which by [22, 24, 30] is the Euler equation
corresponding to the restriction of the metric μ(1) to D.

The paper is organized as follows: In Sect. 2 we fix notations and describe our set-up.
Theorems 1.1 and 1.3 are shown in Sect. 4, whereas Theorem 1.2 is proved in Sect. 3.
For the convenience of the reader, we have included at the end of the paper a section
on the calculus in Fréchet spaces (Sect. 5), on the Euler equations on vir (Sect. 6),
and on the Lie exponential map (Sect. 7).

2 Euler–Lagrange equations on the Virasoro group

Denote by D ≡ D(T) the group of C∞-smooth positively oriented diffeomorphisms
of the 1-dimensional torus T := R/Z. The topology on D is induced from the standard
Fréchet topology on C∞(T) corresponding to the countable system of Hk norms,

||u||2k :=
k∑

j=0

∫ 1

0
(∂

j
xu)2 dx, (2.1)

k ≥ 0 (cf. Sect. 5). The Fréchet manifold D is a Fréchet Lie group with
multiplication ◦ : D × D → D given by the composition of diffeomorphisms, i.e. if
(φ,ψ) ∈ D × D, then (φ ◦ ψ)(x) := φ(ψ(x)) (cf. [17]).�

Definition 2.1 The Virasoro group Vir is the Fréchet manifold D × R with
multiplication ◦ : Vir× Vir → Vir given by the formula

(φ,α) ◦ (ψ ,β) :=
(
φ ◦ ψ ,α + β − 1

2

∫ 1

0
log(φ(ψ(x)))x d logψx(x)

)
. (2.2)

The map B, given by B(φ,ψ) := − 1
2

∫ 1
0 log(φ ◦ ψ)x d logψx is sometimes referred to

as the Bott cocycle.

Remark 2.2 Passing to the universal cover R → R/Z of the torus T ≡ R/Z we
identify a diffeomorphism φ ∈ D with the set of its lifts φ̃: R → R, φ̃ ∈ C∞(R, R). Two

� Note that the composition on D is C∞
F -smooth.
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lifts φ̃1, φ̃2 of φ are related by φ̃2(x) = φ̃1(x + k)+ l for some k, l ∈ Z. It is readily seen
that the expression

−1
2

∫ 1

0
log(φ̃(ψ̃(x)))x d log ψ̃x(x)

in formula (2.2) is independent of the choice of the lifts φ̃, ψ̃ ∈ C∞(R, R) of φ and ψ .
Often we will choose a lift of an element φ in D of the form φ̃: R → R, φ̃(x) = x + v(x)
with 0 ≤ v(0) < 1 and v a smooth 1-periodic function. In the sequel we will not
distinguish between φ and its lifts to R.

One easily verifies that Vir is a Fréchet Lie group whose algebravir can be identified
with the Fréchet space C∞ × R with Lie bracket

[(u, a), (v, b)] =
(

uxv − vxu,
∫ 1

0
u(x)vxxx(x)dx

)
. (2.3)

The map C, given by C(u, v) := ∫ 1
0 u(x)vxxx(x)dx is often referred to as Gelfand–Fuchs

2-cocycle. The unital element in Vir is e := (id, 0) where id denotes the identity
in D.

Remark 2.3 Usually the coefficient in front of the integral in (2.2) is taken to be equal
to 1 instead of − 1

2 (cf. [2, 22]). In this case, one has to insert a factor −2 in front of the
integral in formula (2.3) for the Lie bracket.

For a given k ≥ 0 consider on vir = C∞ × R the Sobolev type scalar product
〈·, ·〉k: vir× vir → R

〈(u, a), (v, b)〉k :=
k∑

j=0

∫ 1

0
∂

j
xu · ∂ j

xv dx + ab, ∀(u, a), (v, b) ∈ vir. (2.4)

This scalar product induces a right-invariant (weak) Riemannian metric� μ(k) on Vir.
For any � ∈ Vir

μ
(k)
� (ξ , η) = 〈(deR�)−1ξ , (deR�)−1η〉k, ∀ξ , η ∈ T�Vir, (2.5)

where R�: Vir → Vir denotes the right translation 
 	→ 
 ◦ � in Vir. It follows
from its definition that μ(k) is a C∞

F -smooth�� weak Riemannian metric on Vir.
We define the geodesics with respect to a smooth (weak) Riemannian metric μ on

Vir in the classical way as the stationary points of the action functional corresponding
to μ.‡ The following definition makes sense on an arbitrary Fréchet manifold.

� The word weak means that the topology induced by μ(k) on any tangent space T�Vir,� ∈ Vir, is
weaker than the Fréchet topology on T�Vir.
�� The symbol Ck

F means that the corresponding map is k-times continuously differentiable in the

sense of Fréchet calculus (see Sect. 5). We reserve the symbol Ck for the standard notion of continuous
differentiability up to order k in Banach spaces.
‡ Another approach is to prove that there exists a Levi-Civita connection on Vir with respect to the
metric μ(k) and then to define the geodesics as the curves whose tangent vectors are parallel with
respect to the connection (cf. [11, 15]).
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Definition 2.4 A C2
F -smooth curve γ : [0, T] → Vir, T > 0, is called a geodesic of the

smooth (weak) Riemannian metric μ on Vir if for any C2
F -smooth variation (with s

denoting the variation parameter −ε < s < ε)

γ : (−ε, ε)× [0, T] → Vir, (s, t) 	→ γ (s, t) with γ (0, t) = γ (t) (2.6)

such that γ (s, 0) = γ (0) and γ (s, T) = γ (T) for any −ε < s < ε one has

d
ds

|s=0Eμ(γ (s, ·)) = 0. (2.7)

Here, Eμ denotes the action functional

Eμ(γ (s, ·)) := 1
2

∫ T

0
μ(γ̇ (s, t), γ̇ (s, t))dt

and γ̇ (s, t) := ∂γ
∂t (s, t). The variational equation (2.7) leads (cf. Sect. 6) to a partial

differential equation for γ (t), called the Euler–Lagrange equation. Note that the exis-
tence and the uniqueness of geodesics on Fréchet manifolds might not hold. Indeed,
the corresponding Euler–Lagrange equation can be viewed as a dynamical system
(ODE) on the tangent bundle which is a Fréchet manifold as well. But on Fréchet
manifolds, smooth ODE’s may have no or more than one solution (cf. [17], p. 129).

It turns out that a C2
F -smooth curve t 	→ �(t) = (φ(t),α(t)) ∈ Vir with

�|t=0 = e and
d�
dt

|t=0 = (u0, a0) ∈ vir

is a geodesic with respect to the metric μ(k) if and only if φ(t) and α(t) are solutions
of the ordinary differential equations

φ̇(t) = u(t,φ(t)), (2.8)

φ|t=0 = id (2.9)

and

α̇(t) = a(t)− 1
2

∫ 1

0
ux(t,φ(t, x)) d logφx(t, x), (2.10)

α(0) = 0, (2.11)

where (u(t), a(t)) ∈ vir satisfies the so-called Euler equation

Akut = −(2uxAku + uAkux)+ auxxx, (2.12)

ȧ = 0, (2.13)

with Ak := ∑k
j=0(−1)j∂2j

x and initial data

u(0, x) = u0(x) and a(0) = a0. (2.14)

We will derive the above system (2.8)–(2.13) in Sect. 6. Let us point out that unlike in
the case of the Lie group exponential map for Vir (see Sect. 7) the element u in (2.8)
generically depends on time.

Let t 	→ (φ(t; u0, a0),α(t; u0, a0)) ∈ Vir be a C2
F -smooth solution of (2.8)–(2.9) and

(2.10)–(2.11) where u(t, x) ≡ u(t, x; u0, a0) is a solution of the Euler equations (2.12)–
(2.14) that we assume is defined on an open set in R containing the interval [−1, 1].



160 Ann Glob Anal Geom (2007) 31:155–180

Then, the geodesic exponential map at (u0, a0) is defined by the formula

expk: (u0, a0) 	→ (φ(t, x; u0, a0),α(t; u0, a0))|t=1. (2.15)

Theorem 1.1 stated in the introduction and proved in Sect. 4 says that for any k ≥ 0
the geodesic exponential map expk is well-defined in a small open neighborhood of
zero in vir.

3 Proof of Theorem 1.2

We will prove Theorem 1.2 by applying, for any given k ≥ 2, Proposition 5.5 in Sect. 5
to the Hilbert approximation�

vir2k+1 ⊇ vir2k+2 ⊇ · · · ⊇ vir

of the Fréchet space vir = C∞ × R where virl := Hl × R and Hl ≡ Hl(T) is the
Sobloev space of real valued functions on T. Let Ds (s ≥ 2) denote the Hilbert
manifold, modeled on the Hilbert space Hs,

Ds := {φ ∈ Hs(T, T) | φ′(x) > 0 ∀x ∈ T}.

Representing an element φ ∈ Ds in the form φ(x) = x+ f (x) one can easily see that
a neighborhood of the identity id in Ds can be identified with an open neighborhood
of 0 ∈ Hs (cf. Sect. 5). The composition of mappings endows Ds with a topological Lie
group structure.��

The following result is the main ingredient in the proof of Theorem 1.2.

Proposition 3.1 For any k ≥ 2 given there exists a neighborhood U2k+1 of zero in
vir2k+1 such that for any l ≥ 2k + 1 and any initial data (u0, a0) ∈ Ul := U2k+1 ∩virl
there exists a unique solution �(t) = (φ(t),α(t)) ∈ C1((−2, 2), Dl × R) of (2.8)–(2.14)‡

which depends C1-smoothly on the initial data (u0, a0) ∈ Ul in the sense that� belongs
to C1((−2, 2)× Ul, Dl × R).

To prove Proposition 3.1, we need to establish first some auxiliary results. For a given
k ≥ 2 consider the pair of equations depending on the real parameter a = a0,

φ̇ = u(t,φ(t)), (3.1)

Akut = −(2uxAku + uAkux)+ auxxx, (3.2)

with initial data u|t=0 = u0 and φ|t=0 = id. Our first aim is to prove that for any a ∈ R

and any l ≥ 2k+1 there exist solutions φ ∈ C1((−T, T), Dl) and u ∈ C0((−T, T), Hl)∩
C1((−T, T), Hl−1) of the system (3.1)–(3.2) which are defined for some T > 0 (pos-
sibly depending on the initial data u0 ∈ Hl and a ∈ R). To this end note that for any
l ≥ 2k + 1 the system (3.1)–(3.2) can be transformed by a change of variables to a

� For any k ≥ 2 given, we choose vir2k+1 as the first approximation space of vir to insure that all
our calculations will take place in Hs with s ≥ 1. Note that Hs is a Banach algebra for s ≥ 1.
�� Unfortunately, the composition ◦: Ds × Ds → Ds and the inverse operation (·)−1: Ds → Ds are
not C∞. However, for any l ≥ 0, the composition ◦: Ds+l × Ds+l → Ds (l ≥ 0) is a Cl-smooth map
(see e.g. [15]).
‡ with u(t) = φt(t) ◦ φ(t)−1.
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parameter dependent ODE on the Hilbert manifold Dl × Hl. To see this note that for
u ∈ Hl one has

Ak(uux) = uAkux + Qk(u),

where Qk(u) is a polynomial in the variables u, ux, . . . , ∂2k
x u. As Hl−2k (l ≥ 2k + 1)

is a Banach algebra with respect to multiplication of functions� it follows that Qk ∈
C∞(Hl, Hl−2k). Using the identity displayed above, (3.2) can be rewritten in the form
Ak(ut + uux) = −2uxAku + Qk(u)+ auxxx or

ut + uux = A−1
k ◦ Bk(u; a),

where for any given a ∈ R,

u 	→ Bk(u; a) := −2uxAku + Qk(u)+ auxxx

is an element in C∞(Hl, Hl−2k). Note that Bk(0; a) = 0. In the sequel, we will some-
times write Bk(a) for Bk(·; a). Note also that Bk depends smoothly on the parameter
a ∈ R. More precisely

Hl × R → Hl−2k, (u, a) 	→ Bk(u; a),

is a C∞-map.

Remark 3.2 The term auxxx in the expression for Bk(u; a) belongs to Hl−3 which is
contained in Hl−2k when k ≥ 2. If k = 0 or k = 1 the latter inclusion does not hold.

Finally, the substitutions v(t) = u(t) ◦ φ(t) and φ̇ = v lead to the equation

φ̇ = v, (3.3)

v̇ = Fk(φ, v; a), (3.4)

where Fk(φ, v; a) := (A−1
k ◦ Bk(v ◦ φ−1; a)) ◦ φ. The right-hand side of (3.3)–(3.4) is

well defined for any (φ, v; a) ∈ Dl × Hl × R and belongs to the space Hl × Hl. In
particular, (3.3)–(3.4) defines a dynamical system (ODE) on Dl × Hl which depends
on the parameter a ∈ R. For s ≥ 1 given let Rφ: Ds → Ds denote the right-translation
in Ds by φ ∈ Ds for s ≥ 1. As

Fk(φ, v; a) = Rφ ◦ A−1
k ◦ Rφ−1 ◦ Rφ ◦ Bk(a) ◦ Rφ−1 v,

the mapping

Fk : (φ, v; a) 	→ (φ, Fk(φ, v; a))

can be written as a composition,

Fk = Ak ◦ Bk, (3.5)

where

Ak : (φ, v) 	→ (φ, Rφ ◦ A−1
k ◦ Rφ−1 v) (3.6)

and

Bk : (φ, v; a) 	→ (φ, Rφ ◦ Bk(a) ◦ Rφ−1 v). (3.7)

� In particular, the multiplication Hl−2k × Hl−2k → Hl−2k, (u, v) 	→ u · v, is a continuous bilinear
map.
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The following result will allow us to prove Proposition 3.1 with the help of the local
smoothness theorem for ODE’s in Banach spaces (cf. [25, Chapter IV]).

Lemma 3.3 Let k ≥ 2. Then for any l ≥ 2k + 1,

(i) Ak ∈ C1(Dl × Hl−2k, Dl × Hl) (3.8)

(ii) Bk ∈ C1(Dl × Hl × R, Dl × Hl−2k). (3.9)

As a consequence

(iii) Fk ∈ C1(Dl × Hl × R, Dl × Hl)

and therefore the mapping Dl × Hl × R → Hl × Hl, (φ, v; a) 	→ (v, Fk(φ, v; a)) is
C1-smooth.

To prove Lemma 3.3, we first need to establish two auxiliary lemmas. Note that
Ak: Dl × Hl−2k → Dl × Hl, defined by (3.6), is invertible and its inverse is given by

A−1
k : Dl × Hl → Dl × Hl−2k, (φ, v) 	→ (φ, Rφ ◦ Ak ◦ Rφ−1 v). (3.10)

Lemma 3.4 Let k ≥ 1 and l ≥ 2k + 1. Then for any φ ∈ Dl and v ∈ Hl the following
statements hold:

(i) For any 1 ≤ s ≤ 2k,

∂s
x(v ◦ φ−1) =

s∑

j=1

Ps,j(φ) · (∂ j
xv) ◦ φ−1, (3.11)

where Ps,j is a polynomial in ∂m
x (φ

−1) (1 ≤ m ≤ s) with integer coefficients.

(ii) For any 1 ≤ j ≤ 2k, ∂ j
x(φ

−1) = Sj(φ) where Sj(φ) is a polynomial in (φx)
−1 ◦ φ−1,

(∂m
x φ) ◦ φ−1 (1 ≤ m ≤ j) with integer coefficients.

Proof of Lemma 3.4 As the proofs of items (i) and (ii) are similar we will prove here
only (i). We argue by induction. For s = 1 one obtains by the chain rule that

(v ◦ φ−1)x = (φ−1)x · vx ◦ φ−1.

Assume that (3.11) is satisfied for s with 1 ≤ s ≤ 2k − 1. Differentiating both sides of
(3.11) with respect to x and using that ((∂ j

xv) ◦ φ−1)x = (∂
j+1
x v) ◦ φ−1 · (φ−1)x one gets

that (3.11) holds for s + 1. This completes the proof of (i). The proof of (ii) is similar.
�

The second lemma we need is the following one.

Lemma 3.5 Let s ≥ 2. Then the map, Ds → Hs−1, φ 	→ 1/φx, is C1-smooth.

Proof of Lemma 3.5 Take φ ∈ Ds and consider a neighborhood Uε(φ) = {φ −
f | ‖f‖Hs < ε} of φ in Ds with ε > 0 so small that

‖fx/φx‖Hs−1 < 1 . (3.12)

As Hs−1 is a Banach algebra ‖fx/φx‖Hs−1 ≤ C‖fx‖Hs−1‖1/φx‖Hs−1 and, hence, (3.12) is
satisfied for 0 < ε ≤ 1/(C ‖1/φx‖Hs−1). The lemma then follows from the expansion

1
(φ − f )x

= 1
φx

(
1 + fx

φx
+

( fx

φx

)2 + · · ·
)

which, by (3.12), converges in Hs−1 uniformly in Uε(φ). �
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Proof of Lemma 3.3 First we will show (3.8). Combining items (i) and (ii)
of Lemma 3.4 one concludes that

Rφ ◦ Ak ◦ Rφ−1 v =
2k∑

j=0

Pj(φ) · ∂ j
xv, (3.13)

where Pj(φ) is a polynomial in (φx)
−1 and ∂s

xφ (1 ≤ s ≤ 2k). It suffices to show that
Dl × Hl → Dl × Hl−2k, (φ, v) 	→ (φ, Rφ ◦ Ak ◦ Rφ−1 v) is a local C1-diffeomorphism.
Note that it follows from Lemma 3.5 that the map

(φ, v) 	→ ((φx)
−1,φx, . . . , ∂2k

x φ, v, vx, . . . , ∂2k
x v), Dl × Hl → (Hl−2k)4k+2

is C1. Using that the multiplication Hl−2k × Hl−2k → Hl−2k, (u, v) 	→ u · v, is a
bounded bilinear map, we conclude from (3.13) that the map (3.10) is C1. For any
(φ0, v0) ∈ Dl × Hl, the differential d(φ0,v0)A−1

k : Hl × Hl → Hl × Hl−2k is of the form

d(φ0,v0)A−1
k (δφ, δv) =

[
δφ 0

S(δφ) Rφ0 ◦ Ak ◦ R
φ−1

0
δv

]
, (3.14)

where S: Hl → Hl−2k and Rφ0 ◦ Ak ◦ R
φ−1

0
: Hl → Hl−2k are bounded linear maps. As

Rφ0 ◦ Ak ◦ R
φ−1

0
: Hl → Hl−2k is invertible, the open mapping theorem implies that it

is a linear isomorphism. Hence, d(φ0,v0)A−1
k is a linear isomorphism and by the inverse

function theorem, the map

A−1
k : Dl × Hl → Dl × Hl−2k, (φ, v) 	→ (φ, Rφ ◦ Ak ◦ Rφ−1 v)

is a local C1-diffeomorphism. This proves (i). Arguments similar to those used to
prove that (3.10) is smooth, involving Lemma 3.4 and Lemma 3.5, prove (ii). Item (iii)
is a direct consequence of (i), (ii), and (3.5). �

Fix l ≥ 2k+1 and assume that the C1-curve (−2, 2) → Dl ×Hl, t 	→ (φ(t), v(t)), is a
solution of (3.3)–(3.4) with initial data (φ0, v0). Our next goal is to establish a relation
between the regularity of the initial data (φ0, v0) and the regularity of φ(t)—see (3.16)
below. To this end note that the arguments in the proof of Lemma 6.2 in Sect. 6
show that

Ik(t) ≡ Ik(φ(t), u(t)) := φx(t)2 ·
(
(Aku(t)) ◦ φ(t)

)
− aS(φ(t)) ∈ Hl−2k (3.15)

is independent of t ∈ (−2, 2). Here u = v◦φ−1 and S(φ(t)) is the Schwarzian derivative
(φx(t)φxxx(t) − 3φ2

xx(t)/2)/φ
2
x(t). As u = φt ◦ φ−1 one has ux = (φtx ◦ φ−1) · (φ−1)x.

Using that (φ−1)x = 1/(φx ◦ φ−1) and hence (∂2k
x φ−1) ◦ φ = −∂2k

x φ/φ2k+1
x + · · · one

gets

(∂2k
x u) ◦ φ = (∂2k

x φt)/φ
2k
x − φtx · ∂2k

x φ/φ2k+1
x + · · · ,

where . . . stand for terms containing derivatives of φ or φt(=v) in x of order up to
2k − 1 and hence in Hl−2k+1. Together with (3.15) and the expression for Ak one then
obtains

(−1)kφ2k−1
x Ik(t) = φx · ∂2k

x φt − φtx · ∂2k
x φ + · · ·
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Hence, we have for any t ∈ (−2, 2)

φx(t) · ∂2k
x φt(t)− φtx(t) · ∂2k

x φ(t) = (−1)kφ2
x(t)

(
φ2k−3

x (t)Ik(t)+ Jk(φ(t), v(t); a)
)

where Jk(φ, v; a) = Pk(φ, v; a)/φ2
x and Pk is a polynomial in the variables φ, ∂xφ, . . . ,

∂2k−1
x φ, v, ∂xv, . . . , ∂2k−1

x v and a. As Ik(t) = Ik(0) we obtain that

(∂2k
x φ(t)
φx(t)

)

t
= (−1)k

(
φ2k−3

x (t)Ik(0)+ Jk(φ(t), v(t); a)
)

for any t ∈ (−2, 2), hence upon integrating in t

∂2k
x φ(t)
φx(t)

= ∂2k
x φ0

φ0x
+ (−1)k

∫ t

0

(
φ2k−3

x (s)Ik(0)+ Jk(φ(s), v(s); a)
)

ds. (3.16)

Proof of Proposition 3.1 By Lemma 3.3 we can apply the existence and unique-
ness theorem for ODE’s in Banach spaces (with parameter) to conclude that for any
0 < M < ∞ there exists a neighborhood W2k+1 = W2k+1,M of (id, 0) in D2k+1×H2k+1

such that for any initial data (φ0, v0) ∈ W2k+2 and any a ∈ (−M, M) the ordinary
differential equation (3.3)–(3.4) has a unique solution 
(t) = (φ(t), v(t)) defined for
t ∈ (−2, 2).� Moreover, the solution 
(t) depends C1 smoothly on the parameter
a ∈ (−M, M) and the initial data (φ0, v0) ∈ W2k+1.

Define for l ≥ 2k+1 the neighborhood Wl := W2k+1 ∩(Dl ×Hl) of the point (id, 0)
in Dl × Hl. We will prove that for any initial data (φ0, v0) ∈ Wl and any a ∈ (−M, M)

there exists a solution of (3.3)–(3.4) in Dl × Hl that is defined for t ∈ (−2, 2) and
depends C1 smoothly on the initial data (φ0, v0) ∈ Wl and the parameter a ∈ (−M, M).
To this end we use induction in l ≥ 2k + 1: For l = 2k + 1 the statement holds by
the construction of W2k+1. Now, take a ∈ (−M, M) and (φ0, v0) ∈ W2k+2. Denote by

(t) = (φ(t), v(t)) the corresponding solution in D2k+1 × H2k+1. As the right hand
side of (3.3)–(3.4) is a C1-smooth vector field on D2k+2 × H2k+2 there exists a unique
solution 
̃(t) = 
̃(t;φ0, v0, a) of (3.3)–(3.4) in D2k+2 × H2k+2 defined on some max-
imal interval of existence t ∈ (T1, T2) with T1 < 0 < T2 possibly depending on a
and (φ0, v0). We claim that T2 ≥ 2 and T1 ≤ −2. As the two statements are proved
similarly we concentrate on T2 only. Arguing by contradiction suppose that T2 < 2.
Considered as a curve in D2k+1 × H2k+1, the solution


̃(t) = (φ̃(t), ṽ(t)) (3.17)

solves (3.3)–(3.4) in D2k+1 × H2k+1 and therefore coincides with the solution 
 :
(−2, 2) → D2k+1 × H2k+1 of (3.3)–(3.4) on the interval t ∈ (max{−2, T1}, T2). For
t ∈ (max{−2, T1}, T2) and φ̃ defined by (3.17) equality (3.16) implies that

∂2k
x φ̃(t) = ∂2k

x φ0

∂xφ0
φx(t)+ (−1)kφx(t)

∫ t

0
(φ2k−3

x (s)Ik(0)+ Jk(φ(s), v(s); a))ds,

(3.18)

where Jk(φ, v; a) = Pk(φ, v; a)/φ2
x and Pk is a polynomial in the variables φ, ∂xφ, . . . ,

∂2k−1
x φ, v, ∂xv, . . . , ∂2k−1

x v and a. As (φ0, v0) ∈ W2k+2 we get from (3.15) that

� Note that for any a ∈ R, (id, 0) is a zero of the vector field defined by the r.h.s. of (3.3)–(3.4).
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Ik(0) ∈ H2. Then equality (3.18) implies that ∂2k
x φ̃(t) ∈ H2. Moreover, as T2 < 2

by assumption one gets from (3.18) that the limit

lim
t→T2−0

φ̃(t)

exists in D2k+2. As ṽ = φ̃t and ṽt = Fk(φ̃, ṽ; a) evolve both in H2k+2 for T1 < t < T2
and as T2 < 2 by assumption one concludes, by taking the t-derivatives of both sides
of the identity (3.18), that the limit

lim
t→T2−0

ṽ(t)

exists in H2k+2. Hence, there exists a limit

lim
t→T2−0

(φ̃(t), ṽ(t))

in D2k+2 ×H2k+2. This contradicts the fact that (T1, T2) is the maximal interval of exis-
tence of the solution 
̃(t). Hence, T2 ≥ 2. In the same way one proves that T1 ≤ −2.
As the vector field F is C1 on D2k+2 × H2k+2 × R the solution t 	→ 
̃(t;φ0, v0, a),
(−2, 2) → D2k+2 × H2k+2, depends C1-smoothly on (φ0, v0, a) ∈ W2k+2 × (−M, M).

The same arguments permit us to show that for any l ≥ 2k + 1 and for any
(φ0, v0) ∈ Wl and a ∈ (−M, M) there exists a solution of (3.3)–(3.4) in Dl × Hl which
is defined for t ∈ (−2, 2) and depends C1 smoothly on the parameter a ∈ (−M, M)

and the initial data (φ0, v0) ∈ Wl. Combining this with the formula (2.10) for α̇(t) one
gets that

α(t) = a · t − 1
2

∫ t

0

∫ 1

0
vx(τ )

φxx(τ )

φx(τ )2
dx dτ . (3.19)

Finally, by (3.19) and Lemma 3.5, α ∈ C1((−2, 2)× Wl × (−M, M), R). This completes
the proof of Proposition 3.1. �

It follows from Proposition 3.1 that for any given k ≥ 2 one can define the mapping

Ek: U2k+1 → D2k+1 × R, Ek(u0, a0) := �(t)|t=1,

where U2k+1 ⊆ vir2k+1 is given as in Proposition 3.1 and �(t) = (φ(t),α(t)) is the
solution of (2.8)–(2.14). According to Proposition 3.1 for any l ≥ 2k+1 the restriction

Ek|Ul: Ul → Dl × R

of Ek to Ul := U2k+1 ∩ virl is well-defined and C1-smooth.
It follows from (2.8) to (2.14) that Ek(tu0, ta0) = �(t). In particular, one gets that

d(id,0)Ek = idvir2k+1 and by the inverse function theorem the neighborhood U2k+1
can be chosen so that

Ek|U2k+1: U2k+1 → V2k+1

is a C1-diffeomorphism where V2k+1 is a neighborhood of (id, 0) in D2k+1 × R.

Lemma 3.6 If (u0, a0) ∈ U2k+1 and l ≥ 2k + 1, then

Ek(u0, a0) ∈ Dl × R iff u0 ∈ Hl.
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Proof of Lemma 3.6 First we prove the “only if” part of the lemma. By the defini-
tion of U2k+1, the statement is true for l = 2k + 1. Assume that it is true for any
2k + 1 ≤ j < l and let Ek(u0, a0) := �(1) = (φ(1),α(1)) ∈ Hl × R. By Proposition 3.1
and the induction hypothesis we have that (φ(t), v(t)) is in C1((−2, 2), Dl−1 × Hl−1).
According to (3.16) one has

Ik(0, u0, a0)

∫ 1

0
φ2k−3

x (s)ds = (−1)k

φx(1)

(
∂2k

x φ(1)−
∫ 1

0
Jk(φ(s), v(s); a)ds

)
. (3.20)

By assumption

∂2k
x φ(1)
φx(1)

∈ Hl−2k,
∫ 1

0
φ2k−3

x (s)ds ∈ Hl−2,

and

1
φx(1)

∫ 1

0
Jk(φ(s), v(s); a)ds ∈ Hl−2k.

Thus, one gets from (3.20) that Aku0 = Ik(0, u0, a0) ∈ Hl−2k. Hence, u0 ∈ Hl. The “if”
statement of the lemma follows from Proposition 3.1. �

Lemma 3.7 For any given (u0, a0) ∈ Ul, l ≥ 2k + 1,

(d(u0,a0)Ek)(u, a) ∈ virl\virl+1

for any (u, a) ∈ virl\virl+1.

Proof of Lemma 3.7 The lemma is proved by passing to the variations of (φ(t), v(t))
in (3.16) and then arguing as in the proof of the previous lemma. �

Proof of Theorem 1.2 Note that conditions (a), (b), and (c) of Proposition 5.5 in
Sect. 5 hold in view of Lemma 3.6, Proposition 3.1, and Lemma 3.7, respectively.
Hence, Proposition 5.5 can be applied and Theorem 1.2 is proved. �

4 Exponential maps corresponding to KdV and CH

If k = 0 the Euler equations (2.12) and (2.13) is the Korteweg–de Vries equation
(KdV) with parameter a0 ∈ R,

ut + 3uux − a0uxxx = 0 , (4.1)

u|t=0 = u0 (4.2)

and if k = 1 we get the following variant of the Camassa–Holm equation (CH)

(1 − ∂2
x )ut = −2ux(1 − ∂2

x )u − u(1 − ∂2
x )ux + a0uxxx, (4.3)

u|t=0 = u0, (4.4)

with a0 being again a real parameter. It is well known that both equations can be
viewed as integrable Hamiltonian systems and both are bi-Hamiltonian [5, 9, 16, 19].
Of all the Hamiltonian vector fields induced by the Hk inner products (k ≥ 0), only
the cases k = 0 and k = 1 are bi-Hamiltonian relative to the canonical Lie–Poisson
structure (cf. [12]).
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The KdV and the CH equations are closely related. In fact, there is a correspon-
dence between the so called KdV hierarchy and the one of (CH)—see [26, 27]. On the
other hand, the two equations have quite different features with regard to (global)
well-posedness—see, e.g., [6, 8, 13, 20, 31].

Denote by virl the space Hl × R.

Lemma 4.1 There exist a neighborhood U3 of the zero in vir3 and a time interval
(−T, T), T > 0, such that for any l ≥ 3 and any initial data (u0, a0) ∈ Ul := U3 ∩ virl
Eqs. (4.3) and (4.4) have a unique solution u ∈ C0((−T, T), Hl) ∩ C1((−T, T), Hl−1)

which depends C1-smoothly on the initial data (u0, a0) ∈ Ul in the sense that u ∈
C1((−T, T)× Ul, Hl−1).

Proof of Lemma 4.1 With the substitution

u(t, x) := v(t, x − 3a0t/2)+ a0/2, (4.5)

Eqs. (4.3)–(4.4) transforms into the standard form of the Camassa–Holm shallow
water equation (cf. [5, 7])

(1 − ∂2
x )vt = −2vx(1 − ∂2

x )v − v(1 − ∂2
x )vx, (4.6)

v|t=0 = u0 − a0/2 =: v0. (4.7)

Now, the statement of the lemma follows from the arguments used to prove Theorem
1.2. Indeed, according to [30] (see also [24]) the nonlinear equations (4.6) and (4.7)
is the Euler equation of the geodesic equations corresponding to the right-invari-
ant metric ν(1) on the diffeomorphism group D generated by the scalar product on
TidD ∼= C∞

〈u, v〉1 :=
∫ 1

0
(uv + uxvx)dx, u, v ∈ C∞.

Using the same arguments as in the proof of Proposition 3.1, one shows that the
geodesic equation on TD can be also considered as an ODE

(ψ̇ , ẇ) = (w, G(ψ , w)), (4.8)

(ψ , w)|t=0 = (ψ0, v0) (4.9)

on the tangent bundle TDl of the Hilbert manifold Dl (l ≥ 3) where the vector field
(ψ , w) 	→ (w, G(ψ , w)) is C1-smooth in a neighborhood of (id, 0) ∈ TDl (cf. [10]).
The local smoothness ODE theorem in Banach spaces [25, Chapter IV] then implies
that there exist T = Tl > 0 and a neighborhood Wl of (id, 0) in TDl such that
for any (ψ0, v0) ∈ Wl the nonlinear equations (4.8) and (4.9) has a unique solution
(ψ(t;ψ0, v0), w(t;ψ0, v0)) ∈ TDl for t ∈ (−T, T) with w(·; ·, ·) ∈ C1((−T, T) × Wl, Hl)

and ψ(·; ·, ·) ∈ C1((−T, T)× Wl, Dl). Then

v(t; v0) = w(t;id, v0) ◦ ψ(t;id, v0)
−1 (4.10)

is the unique solution of (4.6)–(4.7) and has the property

v(·; v0) ∈ C0((−T, T), Hl) ∩ C1((−T, T), Hl−1).

As the maps

Dl → Dl−1, ψ 	→ ψ−1
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and

Hl × Dl → Hl−1, (w,ψ) 	→ w ◦ ψ
are C1-smooth we conclude from (4.10) that

v ∈ C1((−T, T)× Vl, Hl−1) ,

where Vl = Wl ∩ TidD. Then, arguing as in the proof of Proposition 3.1 one proves
that Vl can be taken of the form

Vl = V3 ∩ Hl

and Tl can be chosen to be T3 and, hence, is independent of l ≥ 3. Using these prop-
erties of v, the properties of u stated in Lemma 4.1 follow from formula (4.5). �

The following remark will be of use in the proof of Theorem 1.3.

Remark 4.2 As the vector field (ψ , w) 	→ (w, Gk(ψ , w)) in (4.9) is of class C1 in
a neighborhood of (id, 0) ∈ TDl, l ≥ 3, the local smoothness theorem in [25,
Chapter IV] implies that the partial derivatives D1D3w(t;ψ0, v0) and D1D3ψ(t;ψ0, v0)

of w(t;ψ0, v0) and ψ(t;ψ0, v0) exist and, from the variational equation satisfied by
D3w(t;ψ0, v0),

D1D3w(t;ψ0, v0) = D3D1w(t;ψ0, v0)

and

D1D3ψ(t;ψ0, v0) = D3D1ψ(t;ψ0, v0).�

In particular, the same is true for the solution

v(t; v0) = w(t;id, v0) ◦ ψ(t;id, v0)
−1

of the Camassa–Holm equations (4.6) and (4.7) as well as for its parametrized version
(4.3)–(4.4).

Proof of Theorem 1.1 The case k = 1 follows from Lemma 4.1 and the existence of
solutions of the ordinary differential equations (2.8)–(2.11) (cf. Remark 4.3 below).
The case k = 0 follows for ξ = (u0, a0) with a0 �= 0 from the well-posedness results of
the KdV equation (cf., e.g., [3]) and for ξ with a0 = 0 from the ones of the Burgers
equation (cf., e.g., [4], [21]). The case k ≥ 2 follows from Proposition 3.1 proved in
Sect. 3. �

Proof of Theorem 1.3 As the statements for k = 0 and k = 1 are proved, similarly,
we concentrate on k = 1 only. Taking u0 = c = constant one obtains from (4.3)–
(4.4) that u(t, x; c, a0) ≡ c. Solving (2.8)–(2.9) and (2.10)–(2.11) we then find that
φ(t, x; c, a0) = x + ct and α(t; c, a0) = a0t. Hence,

exp1((c, a0)) = (τc, a0) ∈ Vir,

where τc denotes the translation x 	→ x + c on T.

� Let 1 ≤ j ≤ n. We denote by Djf (x1, . . . , xn) the partial derivative of f with respect to the jth
variable at the point (x1, . . . , xn).
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Our aim is to compute the Fréchet differential of the exponential map

(D exp1)|(c,a0): vir → T(τc,a0)Vir.

To this end denote by ξ := D2u(t; u0, a0)(w) the partial directional derivative of the
solution u(t; u0, a0) with respect to the second variable u0 in the direction w ∈ C∞
at the point (t; u0, a0) (cf. Sect. 5), i.e. ξ = lims→0(u(t; u0 + sw, a0) − u(t; u0, a0))/s.
Since the derivative D2u(t; u0, a0) is the restriction of the directional derivative of
u(t, ·, a0): Hl → Hl to C∞ where l ≥ 3 we compute ξ by working in the Hilbert space
Hl. As u(t; u0 + sw, a0) satisfies (4.3) with initial data u|t=0 = u0 + sw one obtains from
Remark 4.2 and a differentiation with respect to s that ξ(t, x) satisfies the linear PDE

A1ξt = −2uxA1ξ − 2ξxA1u − uA1ξx − ξA1ux + a0ξxxx, (4.11)

ξ |t=0 = w. (4.12)

Taking u0 = c and using that u(t, x; c, a0) ≡ c, we obtain from (4.11) to (4.12) that
ξ = ξ(t, x; c, a0, w) satisfies the linear PDE

A1ξt = −2cξx − cA1ξx + a0ξxxx, (4.13)

ξ |t=0 = w. (4.14)

If a0 = 2c the equation above becomes A1(ξt + 3cξx) = 0. As the operator A1 =
1−∂2

x : C∞ → C∞ is a continuous bijection we obtain that ξt +3cξx = 0 and ξ |t=0 = w.
Solving the latter equation one gets ξ(t, x) = w(x − 3ct), i.e.

D2u(t; c, 2c)(w) = w(x − 3ct). (4.15)

Our next goal is to compute the directional derivatives D2φ(t; c, a0)

(w) and D2α(t; c, a0)(w). Proceeding as above we linearize equations (2.8)–(2.11)
at u0 = c and then find the directional derivatives by solving the corresponding linear
equations.

Remark 4.3 Note that for any l ≥ 1 Eqs. (2.8) and (2.9) can be regarded as a dynam-
ical system (ODE) in the Hilbert space Hl depending on a parameter u from the
Banach space X := C1([−T, T], Hl+1)

φ̇ = F(t,φ; u), (4.16)

φ|t=0 = id, (4.17)

where F(t,φ; u) := u(t) ◦ φ. Since the composition Hl+1 × Hl → Hl, (u,φ) → u ◦ φ
is C1, it follows that F ∈ C1([−T, T] × Hl × X, Hl) and, hence, (4.16)–(4.17) has a
(unique) solution φ(t; u) in Hl that belongs to the space C1([−T, T] × X, Hl) (cf. [15,
Sect. 3]).

Let u(t; u0, a0) be the solution of (4.3)–(4.4). It follows from Lemma 4.1 and
Remark 4.3 that the directional derivative η := D2φ(t; u0, a0)(w) satisfies the vari-
ational equation

ηt = ux ◦ φ · η + D2u(t; u0, a0)(w) ◦ φ, (4.18)

η|t=0 = 0, (4.19)

where φ = φ(t; u0, a0) is the solution of (2.8)–(2.9) with u = u(t; u0, a0). Taking
u0 = c and a0 = 2c we have u ≡ c and φ(t; x) = x + ct and obtain from (4.15) that
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η = η|u0=c,a0=2c satisfies ηt = w((x + ct)− 3ct) = w(x − 2ct). Hence,

η = D2φ(t; c, 2c)(w) =
∫ t

0
w(x − 2cτ)dτ . (4.20)

As α(t; u0, a0) = a0t− 1
2

∫ t
0

∫ 1
0 ux(τ ,φ(τ , x)) d logφx(τ , x)dτ one concludes from ux = 0

and φx = 1 that

D2α(t; c, a0) = 0 . (4.21)

Taking c sufficiently small so that (u0, a0) = (c, 2c) is in the domain of definition of
exp1 we obtain from (4.15), (4.20) and (4.21) that

(D exp1)|(c,2c)(w, 0) =
( ∫ 1

0
w(x − 2cτ)dτ , 0

)
. (4.22)

Finally, taking c = cn := 1
n , w(x) = wn(x) := sin nπx and N > 0 sufficiently large one

obtains from the formula above that for any n ≥ N

(D exp1)|(cn,2cn)(wn, 0) =
( ∫ 1

0
wn(x − 2cnτ)dτ , 0

)
= 0. (4.23)

As (cn, 2cn) = (1/n, 2/n) → (0, 0) for n → 0 one then obtains from Remark 5.4 that
there is no neighborhood U of zero in vir so that exp1 is a C1

F -diffeomorphism from
U onto a neighborhood of the unital element e in Vir. �

5 Appendix A: Calculus on Fréchet spaces

In this appendix we collect some definitions and notions from the calculus in Fréchet
spaces. For more details we refer the reader to [17] (cf. also [24a]).

Fréchet spaces: Consider the pair (X, {|| · ||n}n∈Z≥0) where X is a real vector space
and {|| · ||n}n∈Z≥0 is a countable collection of seminorms. We define a topology on
X in the usual way using the collection of seminorms as follows: A basis of open
neighborhoods of 0 ∈ X is given by the sets

Uε,k1,...,ks := {x ∈ X | ||x||kj < ε ∀1 ≤ j ≤ s}
where s, k1, . . . , ks ∈ Z≥0 and ε > 0. Then the topology on X is defined as the set of
open sets generated by the sets x + Uε,k1,...,ks with x ∈ X, s, k1, . . . , ks ∈ Z≥0 and ε > 0
arbitrary. In this way X becomes a topological vector space. Note that a sequence xk
converges to x in X iff for any n ≥ 0, ||xk − x||n → 0 as k → ∞.

Let X be a topological vector space whose topology is induced from the countable
system of seminorms {|| · ||n}n∈Z≥0 . Then X is Hausdorff iff for any x ∈ X, ‖x‖n = 0
for any n ∈ Z≥0 implies x = 0. A sequence (xk)k∈N is called Cauchy iff it is a Cauchy
sequence with respect to any of the seminorms || · ||n, n ∈ Z≥0. By definition, X is
complete iff every Cauchy sequence converges in X.

Definition 5.1 A pair (X, {|| · ||n}n∈Z≥0) consisting of a topological vector space X and
a countable system of seminorms {||·||n}n∈Z≥0 is called a Fréchet space� iff the topology
of X is the one induced by {|| · ||n}n∈Z≥0 and X is Hausdorff and complete.

� Unlike for the standard notion of a Fréchet space, in this definition the countable system of semi-
norms defining the topology of X is a part of the structure of the space.



Ann Glob Anal Geom (2007) 31:155–180 171

C1
F-differentiability: Let f : U ⊆ X → Y be a map from an open set U of a Fréchet

space X to a Fréchet space Y.

Definition 5.2 The (directional) derivative of f at the point x ∈ U in the direction
h ∈ X is

Dxf (h) := lim
ε→0

(f (x + εh)− f (x))/ε ∈ Y (5.1)

where the limit is taken with respect to the Fréchet topology of Y.

If the directional derivative Dxf (h) exists then we say that f is differentiable at x in the
direction h.

Definition 5.3 If the directional derivative Dxf (h) exists for any x ∈ U and any h ∈ X
and the map

(x, h) 	→ Dxf (h), U × X → Y

is continuous with respect to the Fréchet topology on U × X and Y then f is called
continuously differentiable on U or C1

F-smooth. The space of all such maps is denoted
by C1

F(U, Y).� A map f : U → V from an open set U ⊆ X onto an open set V ⊆ Y
is called a C1

F-diffeomorphism if f is a homeomorphism and f as well as f −1 are
C1

F -smooth.

Remark 5.4 Using the chain rule one easily obtains that for any x ∈ U the directional
derivative Dxf: X → Y of a C1

F -diffeomorphism f: U → V is a linear isomorphism.

We refer to [17] for the definitions of the higher derivatives (k ≥ 2)

Dk•f: U × X × · · · × X︸ ︷︷ ︸
k

→ Y, (x, h1, . . . , hk) 	→ Dk
xf (h1, . . . , hk)

and the definition of the space Ck
F(U, Y). We only remark that as in the classical calcu-

lus in Banach spaces, f ∈ Ck
F(U, Y) implies that the kth derivative Dk

xf: X × · · · × X︸ ︷︷ ︸
k

→

Y is a symmetric, k-linear continuous map for any x ∈ U.
In this paper we consider mainly the following spaces:
Fréchet space C∞. The space C∞ ≡ C∞(T, R) denotes the real vector space of real-

valued C∞-smooth, 1-periodic functions u: R → R. The topology on C∞ is induced by

the countable system of Sobolev norms: ||u||n :=
(∑n

j=0
∫ 1

0 u(j)(x)2 dx
)1/2

with n ≥ 0.

Fréchet manifold D. By definition, D denotes the group of C∞-smooth positively
oriented diffeomorphisms of the torus T = R/Z. A Fréchet manifold structure on
D can be introduced as follows: Passing in domain and target to the universal cover
R → T, any element φ of D gives rise to a smooth diffeomorphism of R in C∞(R, R),
again denoted by φ, satisfying the normalization condition

− 1/2 < φ(0) < 1/2 (5.2)

� Note that even in the case where X and Y are Banach spaces this definition of continuous differ-
entiability is weaker than the usual one (cf. [17]). In order to distinguish it from the classical one we
write C1

F instead of C1. We refer to [17] for a discussion of the reasons to introduce the notion of

C1
F -differentiability.
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or

0 < φ(0) < 1. (5.3)

The function f (x) := φ(x) − x is 1-periodic and therefore lies in C∞. Moreover,
f ′(x) > −1 for any x ∈ R. The normalizations (5.2) and (5.3) give rise to two charts
U1, U2 of D with U1 ∪ U2 = D

Jj: Vj → Uj, f 	→ φ := id+ f ,

where

V1 := {f ∈ C∞ | |f (0)| < 1/2 and f ′ > −1} ⊆ C∞,

V2 := {f ∈ C∞ | 0 < f (0) < 1 and f ′ > −1} ⊆ C∞.

As V1, V2 are both open sets in the Fréchet space C∞, the construction above gives
an atlas of Fréchet charts of D. In this way, D is a Fréchet manifold modeled on C∞.

Hilbert manifold Ds (s ≥ 2). Ds denotes the group of positively oriented bijective
transformations of T of class Hs. By definition, a bijective transformation φ of T is of
class Hs iff the lift φ̃ : R → R of φ, determined by the normalization, 0 ≤ φ̃(0) < 1,
and its inverse φ̃−1 both lie in Hs

loc(R, R). As for D one can introduce an atlas for Ds

with two charts in Hs, making Ds a Hilbert manifold modeled on Hs.
Hilbert approximations. Assume that for a given Fréchet space X there is a sequence

of Hilbert spaces {(Xn, || · ||n)}n∈Z≥0 such that

X0 ⊇ X1 ⊇ X2 ⊇ · · · ⊇ X and X = ∩∞
n=0Xn,

where {|| · ||n}n∈Z≥0 is a sequence of norms inducing the topology on X so that ||x||0 ≤
||x||1 ≤ ||x||2 ≤ · · · ∀x ∈ X. Such a sequence of Hilbert spaces {(Xn, || · ||n)}n∈Z≥0 is
called a Hilbert approximation of the Fréchet space X. For Fréchet spaces admitting
Hilbert approximations one can prove the following version of the inverse function
theorem.

Proposition 5.5 Let X and Y be Fréchet spaces admitting the Hilbert approximations
{(Xn, || · ||n)}n∈Z≥0 and {(Yn, | · |n)}n∈Z≥0 respectively. Assume that f : U0 → V0 is a
C1-diffeomorphism between the open sets U0 ⊆ X0 and V0 ⊆ Y0 of the Hilbert spaces
X0 and Y0 respectively. Define the sets Un := U0 ∩ Xn and Vn := V0 ∩ Yn and assume
that the following properties are satisfied for any n ≥ 0:

(a) if x ∈ U0 then f (x) ∈ Vn iff x ∈ Xn;
(b) the restriction f |Un: Un → Yn is C1-smooth;
(c) for any x ∈ Un, dxf (Xn \ Xn+1) ⊆ Yn \ Yn+1.

Then U := U0∩X and V := V0∩Y are open sets in X and Y respectively with f (U) ⊆ V
and the mapping f∞ := f |U: U → V is a C1

F-diffeomorphism.

Remark 5.6 The same results hold for approximations of X and Y by Banach spaces
instead of Hilbert spaces.

Proof of Proposition 5.5 Note first that for any n ≥ 0, the set Un is open in Xn and
the set Vn is open in Yn. As f : U0 → V0 is bijective, (a) implies that f |Un: Un → Vn is
well defined and bijective as well. Indeed, the injectivity of f |Un follows from the injec-
tivity of f . As f is bijective, for any y ∈ Vn ⊂ V0 there exists a unique element x ∈ U0
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such that f (x) = y ∈ Vn. Then according to (a), x ∈ Xn, hence x ∈ Un = U0 ∩ Xn.
Thus for any n ≥ 0, f |Un: Un → Vn, and therefore f∞: U → V, are bijective.

For any n ∈ Z≥0, let fn := f |Un . According to (b), fn: Un → Vn is then a C1-smooth
bijective map. In order to prove that f −1

n : Vn → Un is C1-smooth as well we will
use the inverse function theorem in Hilbert spaces. Take x ∈ Un and consider the
differential dxfn: Xn → Yn. As

(dxf0)|Xn = dxfn

and f0 : U0 → V0 is a C1-diffeomorphism one concludes that dxfn is injective. We
prove by induction that dxfn : Xn → Yn is onto for any x ∈ Un. For n = 0 the
statement is true by assumption. Assume that it holds for any k ≤ n − 1. As for any
x ∈ Un, dxfn−1 is onto, it follows that for any η ∈ Yn ⊂ Yn−1 there exists ξ ∈ Xn−1
such that dxfn(ξ) = η ∈ Yn. Then (c) implies that ξ ∈ Xn. Hence, we have shown
that dxfn : Xn → Yn is bijective for any x ∈ Un. By the inverse function theorem for
Hilbert spaces, fn: Un → Vn is a C1-diffeomorphism. In particular, for any n ≥ 0 the
maps

Un × Xn → Yn, (x, ξ) 	→ dxfn(ξ) (5.4)

and

Vn × Yn → Xn, (y, η) 	→ dy(f −1
n )(η) (5.5)

are continuous. As for any x ∈ U and n ≥ 0,

Dxf∞ = (dxfn)|X ,

one gets from (5.4)–(5.5) that

U × X → Y, (x, ξ) 	→ Dxf∞(ξ) and V × Y → X, (y, η) 	→ Dy(f −1∞ )(η)

are continuous. In particular one concludes that

f∞: U → V

is a C1
F -diffeomorphism. �

6 Appendix B: Euler equation on vir

In this appendix we derive the Euler–Lagrange equations of geodesics of the right-
invariant weak Riemannian metrics μ(k) (cf. (2.5)) on the Virasoro group Vir given
by the action principle. The cases k = 0, 1 were considered in [22, 24, 30] in a some-
what formal way using a purely algebraic approach (cf. [1, 15, 18, 28]). At the end of
the appendix we derive for any k ≥ 0 a conservation law for the geodesic flow of the
metric μ(k).

Let γ (s, t) = (φ(s, t),α(s, t)) ∈ Vir be a C2
F -smooth variation (−ε < s < ε, 0 ≤

t ≤ T)

γ : (−ε, ε)× [0, T] → Vir (6.1)

of the C2
F -smooth curve γ (t) ≡ γ (0, t): [0, T] → Vir such that for any −ε < s < ε

γ (s, 0) ≡ e and γ (s, T) ≡ γ (T) (6.2)
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where e denotes the unital element in Vir, e = (id, 0). It follows from the multipli-
cation (2.2) on the Virasoro group Vir that the derivative deR(φ,α) of the
right-translation R(φ,α): Vir → Vir, (ψ ,β) 	→ (ψ ,β) ◦ (φ,α) at (ψ ,β) = e, deR(φ,α):
TeVir → T(φ,α)Vir, is given by

deR(φ,α)(u, a) =
(

u ◦ φ, a − 1
2

∫ 1

0
ux(φ(x))d logφx(x)

)
,

where (φ,α) ∈ Vir and (u, a) ∈ vir(∼=TeVir). In particular,

(deRγ (s,t))
−1(γ̇ (s, t)) =

(
φt(s, t) ◦ φ(s, t)−1, α̇(s, t)+ 1

2

∫ 1

0

φtx(s, t)
φx(s, t)

d logφx(s, t)
)

,

where γ̇ (s, t) = ∂γ (s,t)
∂t , ∂t ≡ ∂/∂t and ∂x ≡ ∂/∂x. Hence, for k ≥ 0

μ
(k)
γ (s,t)(γ̇ (s, t), γ̇ (s, t)) =

k∑

j=0

∫ 1

0
(∂

j
x(φt(s, t) ◦ φ(s, t)−1))2 dx

+
(
α̇(s, t)+ 1

2

∫ 1

0

φtx(s, t)
φx(s, t)

d logφx(s, t)
)2

and the action functional is given by

Eμ(k) (γ (s, ·)) :=
k∑

j=0

Ej(γ (s, ·))+ A(γ (s, ·)), (6.3)

where for 0 ≤ j ≤ k

Ej(γ (s, ·)) := 1
2

∫ T

0

∫ 1

0
(∂

j
x(φt(s, t) ◦ φ(s, t)−1))2 dx dt

and

A(γ (s, ·)) := 1
2

∫ T

0

(
α̇(s, t)+ 1

2

∫ 1

0

φtx(s, t)
φx(s, t)

d logφx(s, t)
)2

dt.

Denoting u(t) := φt(t) ◦ φ−1(t) where φ(t) = φ(0, t) we obtain

φt(t) = u(t) ◦ φ(t). (6.4)

Introduce the variations δEj(γ ) := d
ds

|s=0Ej(γ (s, ·)), δφ := d
ds

|s=0φ(s, t), and δα :=
d
ds

|s=0α(s, t).

Remark 6.1 As γ ∈ C2
F((−ε, ε) × [−T, T],Vir) it follows from the definition of the

space C2
F((−ε, ε) × [−T, T],Vir) that α = α(s, t) lies in C2((−ε, ε) × [−T, T]) and

φ(s, t) = φ(s, t, x) considered as a R-valued function of s, t and x is continuous and for
any j ≥ 0 the partial derivatives ∂s∂

j
xφ(s, t, x), ∂t∂

j
xφ(s, t, x), ∂2

s ∂
j
xφ(s, t, x), ∂2

t ∂
j
xφ(s, t, x)

and ∂s∂t∂
j
xφ(s, t, x) are continuous. Moreover, in the expressions above all the partial

derivative operators ∂s, ∂t, and ∂x commute.
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Using (6.4), φ(s, t) ◦ φ−1(s, t) = id and the change of variables y = φ(t)−1(x) one
obtains

δEj(γ ) =
∫ T

0

∫ 1

0
∂

j
xu · ∂ j

x

(
(δφ)t ◦ φ−1 − φtx ◦ φ−1 · δφ−1

)
dxdt

= (−1)j
∫ T

0

∫ 1

0
∂

2j
x u ·

(
(δφ)t ◦ φ−1 − φtx ◦ φ−1

φx ◦ φ−1
· (δφ) ◦ φ−1

)
dxdt

= (−1)j
∫ T

0

∫ 1

0
(∂

2j
x u) ◦ φ · φx · (δφ)t dx dt

+ (−1)j+1
∫ T

0

∫ 1

0
(∂

2j
x u) ◦ φ · φtx · δφ dx dt

= (−1)j+1
∫ T

0

∫ 1

0

δEj

δφ
· δφ dx dt, (6.5)

where

δEj

δφ
:= ((∂

2j
x u) ◦ φ · φx)t + (∂

2j
x u) ◦ φ · φtx

= (∂
2j
x ut) ◦ φ · φx + 2(∂2j

x u) ◦ φ · φtx

+ (∂2j
x ux) ◦ φ · φt · φx

=
(
(φx ◦ φ−1) · (∂2j

x ut + 2ux∂
2j
x u + u∂2j

x ux)
)

◦ φ . (6.6)

Here we have used that φt = u ◦ φ and thus ux ◦ φ = φtx
φx

. Analogously, one has

δA(γ ) =
∫ T

0

(
α̇(t)+ 1

2

∫ 1

0

φtx

φx
d logφx

)
·
(
(δα)t + 1

2
δ

∫ 1

0

φtx

φx
d logφx

)
dt

= −
∫ T

0

(
α̇(t)+ 1

2

∫ 1

0

φtx

φx
d logφx

)

t
· δα dt (6.7)

+ 1
2

∫ T

0

(
α̇(t)+ 1

2

∫ 1

0

φtx

φx
d logφx

)(
δ

∫ 1

0

φtx

φx
d logφx

)
dt. (6.8)

It follows from (6.3), (6.5), and (6.7) that for δφ = 0 and δα arbitrary

α̇(t)+ 1
2

∫ 1

0

φtx

φx
d logφx = a = const, (6.9)

where a = α̇(0). In particular,

α̇(t) = a − 1
2

∫ 1

0

φtx

φx
d logφx . (6.10)
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Provided (6.10) is satisfied

δA(γ ) = a
2
δ

∫ T

0

∫ 1

0

φtx

φx
d logφx dt

= a
2
δ

∫ T

0

∫ 1

0
(logφx)t(logφx)x dx dt

= a
2

∫ T

0

∫ 1

0

( (δφ)x
φx

)

t
(logφx)x dx dt

+ a
2

∫ T

0

∫ 1

0
(logφx)t

( (δφ)x
φx

)

x
dx dt

= −a
∫ T

0

∫ 1

0
(logφx)tx

( (δφ)x
φx

)
dx dt.

As ux ◦ φ = φtx
φx

= (logφx)t we get that uxx ◦ φ · φx = (logφx)tx and hence

δA(γ ) = −a
∫ T

0

∫ 1

0
uxx ◦ φ · (δφ)x dx dt

= a
∫ T

0

∫ 1

0
uxxx ◦ φ · φx · δφ dx dt. (6.11)

Finally, (6.3), (6.5) and (6.11) show that δE(γ ) = 0 iff γ : [−T, T] → Vir satisfies the
equations:

φt(t) = u(t) ◦ φ(t), (6.12)

α̇(t) = a − 1
2

∫ 1

0

φtx

φx
d logφx, (6.13)

Akut = −2uxAku − uAkux + auxxx, (6.14)

where Ak := ∑k
j=0(−1)j∂2j

x and a = α̇(0). The system (6.12)–(6.14) can be divided into
two parts: the Euler equation part which is the equation for the curve (u(t), a(t)) :=
(deRγ (t))−1(γ̇ (t)) in the Lie algebra vir,

Akut = −2uxAku − uAkux + auxxx,

ȧ = 0 (6.15)

and the translation part

φt(t) = u(t) ◦ φ(t), (6.16)

α̇(t) = a − 1
2

∫ 1

0

φtx

φx
d logφx, (6.17)

coming from the right-translation deRγ (t)(u(t), a(t)) = γ̇ (t). Hence we have derived
the system of Eqs. (2.8)–(2.13) stated in Sect. 2.

We end this section by deriving for any k ≥ 0 a conservation law for the geodesic
flow of the metric μ(k) on Vir. This conservation law corresponds to the Noether sym-
metries of the right-invariant metric μ(k) on Vir corresponding to the left-invariant
vector fields on Vir and can be formally obtained as follows: Given any geodesic
γ0: [0, T] → Vir and any element ξ ∈ vir, consider the 1-parameter family of curves
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γ : (−ε, ε)× [0, T] × R → Vir (ε > 0)

γ (s, t) := γ0(t) ◦ η(s)
where η(s) := expVirLie(sξ) denotes the Lie group exponential map on Vir (cf. Sect. 7).

Note that γ̇ (s, t) = d
dt

Rη(s)γ0(t) = dγ0(t)Rη(s)γ̇0(t). As μ(k) is a right invariant metric it
follows that

μ
(k)
γ (s,t)(γ̇ (s, t), γ̇ (s, t)) = μ

(k)
Rη(s)γ0(t)

(dγ0(t)Rη(s)γ̇0(t), dγ0(t)Rη(s)γ̇0(t))

= μ
(k)
γ0(t)

(γ̇0(t), γ̇0(t)) .

Hence the action functional

Eμ(k) (γ (s, ·)) :=
∫ T

0
μ
(k)
γ (s,t)(γ̇ (s, t), γ̇ (s, t))dt

is independent of s. In particular,

d
ds

|s=0Eμ(k) (γ (s, ·))

for any choice of ξ = (u, a) ∈ vir. Computing the above variation explicitly as above
but with varying endpoints (i.e. without assuming (6.2)) one formally obtains the
function (6.18) defined below.

Lemma 6.2 If γ : [−T, T] → Vir, γ (t) = (φ(t),α(t)) is a geodesic of the right-invariant
Riemannian metric μ(k) on the Virasoro group Vir (cf. Definition 2.4) then

Ik(γ̇ (t)) =
(
φx(t)2 · (Aku(t)) ◦ φ(t)

)
− aS(φ(t)) (6.18)

is independent of t where u(t) := φt(t) ◦ φ−1(t), a := α̇(0) and S(φ(t)) denotes the
Schwarzian derivative (φx(t)φxxx(t)− 3φ2

xx(t)/2)/φ
2
x(t).

Proof Using Eq. (6.14) and the identity φt(t) = u(t) ◦ φ(t) one obtains

Ik(γ̇ (t))t = 2φx · φtx · (Aku) ◦ φ + φ2
x · (Akut) ◦ φ

+φ2
x · (Akux) ◦ φ · φt − aS(φ)t

= 2φ2
x · ux ◦ φ · (Aku) ◦ φ + φ2

x · (−2uxAku − uAkux + auxxx) ◦ φ
+φ2

x · (Akux) ◦ φ · u ◦ φ − aS(φ)t
= a(uxxx ◦ φ · φ2

x − S(φ)t) . (6.19)

As φt = u ◦ φ one has ux ◦ φ = φtx
φx

= (logφx)t . Hence,

uxx ◦ φ · φx =
(φxx

φx

)

t
(6.20)

and

uxxx ◦ φ · φ2
x + uxx ◦ φ · φxx =

(φxx

φx

)

xt
. (6.21)
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Finally, (6.21) and (6.20) give

uxxx ◦ φ · φ2
x =

(φxx

φx

)

xt
− φxx

φx

(φxx

φx

)

t

=
((φxx

φx

)

x
− 1

2

(φxx

φx

)2)

t

= S(φ)t (6.22)

which together with (6.19) implies that (Ik(γ (t)))t = 0. �

7 Appendix C: Lie group exponential map for Vir

In this appendix we prove that the Lie group exponential map of Vir,

expVirLie : vir → Vir ,

is not locally onto near the unital element e of Vir, i.e. there are elements in Vir
arbitrarily close to e which are not in the image of expVirLie. The value of expVirLie at
(u, a) ∈ vir is defined as the time 1-map of the flow t 	→ (φ(t),α(t)) corresponding to
the right invariant vector field induced by (u, a) ∈ vir,

(φt,αt) = deR(φ,α)(u, a)

=
(

u ◦ φ, a − 1
2

∫ 1

0
ux ◦ φ d logφx

)
, (7.1)

(φ,α)|t=0 = (id, 0). (7.2)

Using the Hilbert approximation (virl)l≥1 of vir and the fact that D is the diffeo-
morphism group of the compact manifold T one concludes that there exists a unique
solution of the above initial value problem and that it is defined globally in time.
Hence, expVirLie is well defined and it turns out to be C∞

F -smooth. Kopell [23] (see also
[17] or [29]) proved that the Lie group exponential map expD

Lie of the diffeomorphism
group is not locally onto near the unital element of D. This result can be used to prove
a similar result for expVirLie.

Proposition 7.1 The map expVirLie : vir → Vir is not locally onto near the unital
element of Vir, i.e. there are elements arbitrarily close to e which are not in the image
of expVirLie.

Proof The Lie group exponential map expD
Lie : TidD → D for the diffeomorphism

group D is defined to be the time 1-map of the flow given by (u ∈ TidD ∼= C∞)

φt = didRφu = u ◦ φ,

φ|t=0 = id,

where here, Rφ: D → D denotes the right translation on D. It then follows that

expD
Lie = π ◦ expVirLie |TidD×{0} (7.3)

and

π ◦ expVirLie(vir) = expD
Lie(TidD), (7.4)
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where π: Vir = D × R → D is the projection onto the first component. By [23] (see
also [17, p. 123] or [29, p. 1018]) expD

Lie is not locally onto near the unital element of
D. We then conclude from (7.4) that expVirLie is not locally onto near the unital element
of Vir as well. �
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