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Abstract—Appropriate velocity boundary conditions are a
prerequisite in computational hemodynamics. A method for
mapping analytical or experimental velocity profiles on
anatomically realistic boundary cross-sections is presented.
Interpolation is required because the computational and
experimental domains are seldom aligned. In the absence of
velocity information one alternative is the adaptation of
analytical profiles based on volumetric flux constraints. The
presented algorithms are based on the Schwarz-Christoffel
(S-C) mapping of singly or doubly connected polygons to the
unit circle or an annulus with unary external radius. S-C
transformations are combined to construct a one-to-one
invertiblemapbetween the target surface and themeasurement
domain or the support of the source analytical profile. The
proposed technique permits us to segment each space sepa-
rately and map one onto the other in its entirety. Tests are
performed with normal velocity boundary conditions for
computational simulations of blood flow in the ascending
aorta and cerebrospinal fluid flow in the spinal cavity.
Mappings of axisymmetric velocity profiles of the Womersley
type through a simply connected circular pipe as well as
through a doubly connected circular annulus, and interpola-
tions from in-vivo phase-contrast magnetic resonance imaging
velocity measurements under instantaneous volumetric flux
constraints are considered.

Keywords—Schwarz-Christoffel mapping, Pulsatile flow,

Interpolation, Womersley, Annular domain, Hemodynamics.

INTRODUCTION

Atherosclerosis has initiated an ever-expanding
interest in arterial flow. Hemodynamics indices based
on Wall Shear Stress (WSS)8 have been proposed and
are calculated with the help of Computational Fluid
Dynamics (CFD) to pinpoint disease predilection sites.
The concurrent development of medical imaging in the
last decade has permitted the utilization of increasingly

realistic computational domains. Besides anatomical
fidelity, there are several prerequisites to render the
generated numerical results with sufficient accuracy.
Among them, the derivation and imposition of
numerically sound and at the same time physiologi-
cally relevant boundary conditions are of paramount
importance.

The development of computational simulations in
anatomically realistic models has been realized in recent
years. Several researchers produced numerical investi-
gations of pulsatile blood flow and/or fluid–solid
interactions within the arterial tree. Among them are
the studies of Jin et al.11 and Shahcheraghi et al.22 in the
ascending aorta and the aortic arch. Furthermore,
we can refer to fluid–solid interaction simulations
within patient-specific cases of abdominal aortic aneu-
rysms.4,14,28 The coronary arteries present the addi-
tional difficulties of embedment onto the moving
myocardium and of a continuously bifurcating mor-
phology. Zeng et al.31 studied the effects of cardiac
motion on WSS distributions along the right coronary
artery. Ramaswamy and co-workers20 incorporated the
combined effects of motion and compliance on WSS
along a diseased section of the left anterior descending
coronary artery. Boutsianis et al.3 studied the pulsatile
blood flow within the first few branches of an anatom-
ically accurate left porcine coronary. In these sample
studies, the computational domains were acquired
by segmentation and registration of sets of images
produced by modern medical imaging modalities, i.e.,
Magnetic Resonance Imaging (MRI), Computed
Tomography (CT), and bi-plane angiography. Hence,
the anatomical accuracy is sufficiently accounted for.

The issues of physiological accuracy and/or rele-
vance remain open and depend on appropriate velocity
and pressure boundary conditions as in most CFD
applications. This is a rather complicated task when
approached on a patient specific basis involving
technical, ethical, and practical concerns. Modern
medical imaging and in particular Phase Contrast MRI

Address correspondence to Dimos Poulikakos, Laboratory of

Thermodynamics in Emerging Technologies, ETH Zurich, ML J 36,

8092 Zurich, Switzerland. Electronic mail: dimos.poulikakos@

ethz.ch

Annals of Biomedical Engineering, Vol. 36, No. 12, December 2008 (� 2008) pp. 2068–2084

DOI: 10.1007/s10439-008-9571-3

0090-6964/08/1200-2068/0 � 2008 Biomedical Engineering Society

2068



(PC-MRI)15,23 has been used successfully to acquire
in-vivo volumetric flux and/or velocity data. Alterna-
tively, experimental fluid mechanics investigations with
solid glass or deformable silicone replicas of realistic
arterial geometry have provided another source of
information. A characteristic example is given by
Perktold et al.18 where Laser Doppler Velocimetry
(LDV) measurements are used both for validation of
computational results and the determination of inlet
boundary conditions. In both approaches, there is the
question of transferring these measurements to the
computational space. Measurement and computa-
tional domains are seldom aligned, e.g., in experi-
mental investigations with deformable models. While
anatomical and velocity MRI scans are performed
sequentially, the subject’s position may change during
the process. Discretization errors during segmentation
and/or smoothing often result in misalignment of the
respective boundary surfaces too. Finally, it is not
feasible to acquire MRI velocimetry on every case,
especially when another modality is the source of
anatomical information, e.g., CT.

Moreover, detailed velocities may not be available
at the particular sites of the computational boundary
surfaces. In such cases volumetric flux, e.g., acquired
with intravascular ultrasound measurements,12 and/or
prescribed mass discharge ratios can be used to pro-
duce approximations. It is customary to adapt existing
analytical solutions of the respective linearized prob-
lem to impose such conditions, like the pulsatile axi-
symmetric Womersley29 solutions. Apparently, shape
mismatch remains a problem since the targeted com-
putational boundary surfaces do not in general possess
the analytical forms defined by the existing analytical
solutions. A simple alternative is to extend the com-
putational domain upstream and impose a flat or
another ad hoc velocity profile21 with additional
computational cost. The side effects of such an im-
posed velocity profile depend primarily on the location
of this boundary. Even if the computational domain is
sufficiently extended to allow for the full development
of the flow before reaching the region of interest,
artifacts especially in a pulsatile case may still pollute
the resulting solution.21 On the other hand, the influ-
ence of this type of errors on targeted quantities of
interest, such as WSS distributions, has been shown to
be negligible.17 Other options include the geometrical
multiscale19 approach in which different physical
descriptions can be used for the various sections of the
computational domain, e.g., the coupling of the full
three dimensional Navier Stokes equations with a
surrounding one dimensional or lumped parameter
model. In this way, the boundaries of the original
region of interest become internal interfaces within a
larger computational domain. The new boundaries can

be strategically located at places where assumptions for
the required boundary conditions are easier to make.
Migliavacca et al.16 give an excellent example of this
technique in a pure application of surgical planning.
However, the quantification of realistic parameter
values for the one dimensional and/or lumped models
is not trivial. Additionally, conservation of mass and
momentum must be satisfied across those interfaces.
Sophisticated mathematical formulations based on
variational methods2,9 have been proposed for the
coupling of one and three dimensional descriptions.

In this study we focus our attention in cases when
the imposition of a given velocity profile, either from
experimental velocity measurements or by adapting
existing analytical solutions, is desirable. We propose
an interpolation algorithm based on the Schwarz-
Christoffel (S-C) transform7 to assist the imposition of
velocity boundary conditions in the above referenced
cases. Conformal mapping of the interior of the unit
circle to the interior of any bounded polygon provides
a convenient and reversible interpolation function that
is used to bridge the gap between simply connected
planar surfaces with conforming boundary contours.
Apparently, the presented technique has the ability to
transfer any axisymmetric analytical profile to the
irregular boundary cross-sections that occur in prac-
tice. An example application of the proposed algo-
rithm with PC-MRI measurements and the Womersley
approximation is presented in a patient-specific case of
hemodynamic calculations in the aorta. The S-C map
and therefore the proposed algorithm can be easily
generalized to doubly connected domains.10 The mo-
tion of the Cerebrospinal Fluid (CSF) in the spinal
cavity is an example of pulsatile flow through doubly
connected cross-sections, where clinical testing is
difficult. CFD investigations13 are used in conjunction
with MRI flow measurements to shed more light on
the environment of the CSF system. Similar to the
aortic case, we present examples of the adapted algo-
rithm with PC-MRI data and the analytical approxi-
mation to pulsatile flow through annular pipes,
proposed by Tsangaris.26

A strong incentive for the development of the
presented interpolation technique is the ability to
utilize the same set of boundary conditions, either
analytical or measured experimentally, in a 100%
repeatable manner on domains of different shape but
with identical topology. This approach can facilitate
comparisons in the hemodynamics of different
patient anatomies or intervention strategies. The
rationale for developing computational techniques
that allow for the simulation of the vascular hemo-
dynamics of patients lies on the capacity of such
tools for predictive diagnostics and simulation based
surgical planning.
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METHODS

Schwarz-Christoffel Formulas

In its first implementation, the Schwarz-Christoffel
formula represented the conformal map from the upper
half complex plane to the inner side of any bounded
polygon. The method has been extended to include
several other domains.7 In the present work, we need
the map from the inner side C of a unit (R = 1) circle to
the inner surface P of a bounded polygon C in the
complex space, shown in Fig. 1a. The polygon C con-
sists of N vertices, wk, arranged in counter-clockwise
order, is bounded and simply connected. The real
interior angles of this polygon are denoted by akp, with
ak2 (0,2). Themap is defined by the following equation.

fðzÞ ¼ bþ c �
Zz

z0

YN
k¼1

1� f
zk

� �ak�1
( )

� df; with

fðzkÞ ¼ wk; k ¼ 1; . . . ;N; ð1Þ

where, zk, denote the pre-vertices upon the unit circle
of the polygons’ vertices wk with interior angles akp. b,
c, and z0 are complex constants that need to be
determined. The lower integration limit, z0, is set to
zero, for it affects only the value of b. Determining the
values of b, c, and the pre-vertices for a given polygon
defines the Schwarz-Christoffel parameter problem.
The solution of the S-C parameter problem was based

on enforcing conditions involving the side lengths of
the target polygon C, as proposed by Trefethen.25

In case of a bounded and doubly connected polygon,
C0UC1 with an inner surfaceQ, the canonical domain is
presented by an annulus A with an outer radius R = 1
and an inner radius l < 1, Fig. 1b. The value l-1 is
known as the conformal modulus of Q. The S-C map
from A to Q in the complex space is given by Eq. (2).

gðzÞ ¼ bþ c �
Zz

z0

(YN
k¼1

h
f

l � z0k

� �� �a0k�1

�
YM
m¼1

h
l � f
z1m

� �� �a1m�1
)
� df

where hðzÞ ¼
Y1

d¼1;3;5;...
1� ld � z
� �

� 1� ld � z�1
� �

with gðz0kÞ ¼ w0k; k ¼ 1; . . . ;N and

gðz1mÞ ¼ w1m; m ¼ 1; . . . ;M; ð2Þ

where, z0k and z1m, denote the pre-vertices upon the
outer and inner circles of the annulus A of the poly-
gons’ vertices, w0k and w1m, respectively. The real
interior angles of the polygonal contours are denoted
by a0kp and a1mp, with a0kp and a1mp 2 (0,2). Simi-
larly, b, c, and z0 2 A are complex constants to be
determined. Once more b is the image of the base point
of the integral in Eq. (2) and therefore b = g(z0).
Determining the correct values of the pre-vertices, the
constants b and c and inner radius l for a given doubly
connected polygon defines again an S-C parameter
problem. The solution to this problem can be achieved
by numerical techniques.10

Analytical Velocity Profiles

To demonstrate that Eqs. (1) and (2) provide a
convenient way to map analytical velocity profiles to
realistic polygonal boundary cross-sections we focused
on axisymmetric solutions of the Navier–Stokes equa-
tions. To set an example for a simply connected polygon,
we refer to the Womersley29,30 approximation for
developed pulsatile flow in a straight circular cylinder
under the influence of a known periodic function for the
pressure gradient along the cylinder’s axis. Womersley
showed that by expanding the pressure gradient in
Fourier time series one can approximate the time
dependent flow rate as the sum of terms obtained for
steady and oscillating flows for each component of the
expansion. It is useful to invert this solution to the case
where the volumetric flow rate is known, as for example
in Tsangaris and Stergiopulos.27 As described by Taylor
et al.,24 a Fast Fourier Transform (FFT) can be used to
extract the frequency content of a given flux waveform
_QðtÞ with fundamental frequency x.

FIGURE 1. Notational convention for the Schwarz-Christof-
fel transformations: (a) from the inner of a unit circle to the
inner of a simply connected polygon and (b) from the inner of
a unit annulus to the inner of a doubly connected polygon.
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_QðtÞ �
XN
n¼0

Bn � einxt and Won ¼ Req �
ffiffiffiffiffiffiffiffiffiffi
x � n

m

r
; ð3Þ

where, m denotes kinematic viscosity and Req is the
circular cylinder’s radius. For n = 1, Wo1 is the known
Womersley dimensionless number. It quantifies the
relative strength between the transient inertial forces
and the viscous forces in the fluid. Instantaneous val-
ues of axial velocity are then given by the real part of
the following sum of Womersley solutions over the N
frequencies extracted in Eq. (3) for r 2 [0,Req].

uðr; tÞ ¼ 2B0

pR2
eq

� 1� r

Req

� �2
" #

þReal
XN
n¼1

Bn

pR2
eq

�
1�

J0 Won� r
Req
�i3=2

� 	
J0 Won�i3=2ð Þ

1� 2�J1 Won�i3=2ð Þ
Won�i3=2�J0 Won�i3=2ð Þ

2
66664

3
77775

8>>>><
>>>>:

9>>>>=
>>>>;
� einxt

8>>>><
>>>>:

9>>>>=
>>>>;
;

ð4Þ

where, J0 and J1 are Bessel functions of the first kind
and of order 0 and 1, respectively.

By adopting the variable change, y = r/Req, the
definition disk of Eq. (4) coincides with the canonical
domain of the S-C formula for simply connected
polygons. The inverse of map, Eq. (1), can transform
any internal point w of the polygonal cross-section P to
a complex point z = f-1(w), with |z| < 1 and w 2 P.
By setting, r = |z|ÆReq, a normal velocity value is then
calculated by Eq. (4) for point w.

Caution is needed when considering the area FP of
the target polygonal region P and the area of the cir-
cular cylinder where Eq. (4) is defined; termed herein
reference domain. It is advantageous to require that
both domains have equal areas.

Req ¼
ffiffiffiffiffiffi
FP

p

r
ð5Þ

In this way, we can preserve the Womersley number,
Eq. (3), between the two domains. The Reynolds
number, Rn in Eq. (6), is another important dimen-
sionless parameter quantifying the ratio of the con-
vective inertial forces to the viscous forces that are
exerted on the fluid’s elements. In unsteady cases, it is
common to consider an average Reynolds number,
which corresponds to the time-averaged volumetric
flux through the investigated cross-section.

Rn ¼ Uavg �Deq

m
¼ 2 � _Qavg

p �Req � m
with

Uavg ¼
_Qavg

FP

Deq ¼ 2 �Req;

8><
>: ð6Þ

where, Deq is the circular cylinder’s diameter and _Qavg

is the time-averaged value of the required volumetric
flux. These two dimensionless numbers characterize
the physics of this type of flow. Since our intention is to
utilize the analytical solution to provide boundary
conditions to another boundary cross-section, it is
necessary to maintain equality between these two
numbers. It can be seen by Eq. (6) that in order to
preserve the Reynolds number it suffices to maintain
the prescribed volumetric flow rate in Eq. (3).

The prescribed volumetric flux in Eq. (3) is not main-
tained per se. A correction is needed to ensure conser-
vation of instantaneous flux. In the current investigation,
we propose the addition of a constant velocity value, ucor,
defined upon P. The normal velocity values should be
given by the following sum in conjunction with Eq. (4).

utotðw; tÞ ¼ u zj j � Req;t
� �

þ ucorðtÞ with

ucorðtÞ ¼
1

FP
� _QðtÞ �

Z

P

Z
u � dS

2
4

3
5 ð7Þ

To present a corresponding case on a doubly con-
nected region we refer to the analytical solution of the
axisymmetric linearized Navier–Stokes equations for
fully developed pulsatile flow through an annular
straight pipe.26 We generalized this solution to the case
where the volumetric flow rate is known, as described
in detail in the ‘‘Appendix’’. An FFT can be used to
extract the frequency content of a given flux waveform
_QðtÞ with fundamental frequency x.

Won ¼ Rh �
ffiffiffiffiffiffiffiffiffiffi
x � n

m

r
Rn ¼ Uavg � Rh

m
with

Rh ¼ 2 � Reqo � Reqi

� �
; ð8Þ

where, Reqi and Reqo denote the inner and outer radii,
Rh the hydraulic diameter and m the kinematic viscos-
ity. The Womersley number is defined for n = 1, Wo1.
The Reynolds number, Rn in Eq. (8), is defined in
accordance to Eq. (6) above. Instantaneous values of
axial velocity are given by the following summation
within the reference domain, r 2 [Reqi, Reqo].

uðr; tÞ ¼ 2B0

k4
� R2

eqo � r2 þ R2
eqo � R2

eqi

� 	
�

ln r=Reqo

� �
ln Reqo=Reqi

� �
" #

þReal
XN
n¼1

Bn

2p
�

k1n � K0 i1=2 �Won � r
Rh

� 	
þ k2n � I0 i1=2 �Won � r

Rh

� 	
� 1

� 	

k3n

2
4

3
5 � einxt

8<
:

9=
;;

ð9Þ
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the various constants, k’s, are defined in the ‘‘Appen-
dix’’. I0 and K0 are the zeroth order modified Bessel
functions of the first and second kind.

To maintain equality between the Reynolds and
Womersley numbers between the reference and the
target polygonal cross-section it suffices to define the
radii Reqi and Reqo appropriately. We required that
both domains have equal areas by imposing the fol-
lowing definition.

Reqi ¼
ffiffiffiffiffiffiffi
Ain

p

r
Reqo ¼

ffiffiffiffiffiffiffiffiffi
Aout

p

r
; ð10Þ

where, Ain and Aout denote the areas enclosed by the
inner and outer contours of the target polygon. By
making the variable change, q = l + (1-l)/(Reqo-

Reqi)Æ(r-Reqi), the annulus of Eq. (9) coincides with the
canonical domain of the S-C transform for doubly
connected polygons. The inverse of function (2) maps
any internal pointwof the polygonal cross-sectionQ to a
complex point z = g-1(w), with l < |z| < 1 andw2Q.
By setting r = Reqi+(Reqo-Reqi)/(1-l)Æ(|z|-l), a nor-
mal velocity value is calculated by Eq. (9) for point w.

Analogously to the simply connected case, area and
volumetric flux preservation are sufficient to equalize
the Reynolds number. However, the intended volu-
metric flux, set in Eq. (8), is not maintained in this case
too. A correction is proposed below for the normal
velocity using formula (9).

utotðw; tÞ ¼ u zj j � Reqo; t
� �

þ ucorðtÞ

with ucorðtÞ ¼
1

FQ
� _QðtÞ �

Z

Q

Z
u � dS

2
64

3
75; ð11Þ

FQ, denotes the area of the target polygonQ in this case.

AN ALGORITHM FOR ANALYTICAL VELOCITY

PROFILES

In this section we summarize the steps for mapping
the analytical velocity profiles described above onto a
singly and a doubly connected boundary surface,
respectively. In each case, we distinguish among three
domains: the target polygon in complex space that rep-
resents the given boundary cross-section, the canonical
domain of the S-C transform and the reference domain
where the analytical normal velocity values are defined.
To establish an analogy between the boundary cross-
section and the complex plane, this surface cut must be
planar. The coordinates of the numerical mesh nodes
must be transformed to a local Cartesian system to
permit their conversion to complex numbers. Although
the origin of this system can be chosen arbitrarily, it is
convenient for the calculation of the S-Cmaps to place it

on the centroid of the boundary cross-section. Finally, it
is necessary to extract the mesh nodes that form the
bounding contour and arrange them in counterclock-
wise order. These nodes define then the target polygon,
P or Q, depicted in Fig. 1. In the algorithm described
below, we discern three stages: the initialization stage,
the mapping stage and the calculation stage.

Initialization Stage

� FFT of volumetric flux data (dQ/dt,x) fi Bn

� Set reference domain Req by Eq. (5) or (Reqi, Reqo)
by Eq. (10)
� Initialize analytical formula u = u(r,t) by Eq. (4) or

Eq. (9)

Mapping Stage

� Define target polygon P or Q
� Solve S-C parameter problem f(z) or g(z)
� Invert S-C mapping function f-1(w) or g-1(w)
� Map nodes to canonical domain z = f-1(w) or

z = g-1(w)

Calculation Stage

� Initialize velocity values u(w,t) = u(|z| ÆReq,t) by
Eq. (4) or u(w,t) = u(Reqi+(Reqo-Reqi)/(1-l) Æ
(|z|-l),t) by Eq. (9)
� Calculate velocity correction ucor(t) by Eqs. (7) or (11)
� Calculate total velocities utot(w,t) = u(|z| Æ Req,t)+

ucor(t) or utot(w,t) = u(Reqi+(Reqo-Reqi)/(1-l)Æ
(|z|-l),t) + ucor(t)

In the most general case, the last two stages should
be placed within a time loop to allow for cases with
moving and/or deforming boundaries.

NON ANALYTICAL VELOCITY PROFILES

We shift to the interpolation of velocimetry data that
are available at a mesh of pre-determined points. This is
the case of in-vivo PC-MRI as well as of other experi-
mental techniques, e.g., LDV. The reference domains
are now replaced by the measurement domains, namely
M*

SC and M*
DC. Let, MSC and MDC, represent the

corresponding bounded regions of interest within the
measurement domains for the singly and the doubly
connected case. The form of the canonical domains and
the target polygons in the complex space, P and Q,
remain as before. The link between the target polygon
and the measurement space is established by con-
structing an S-C function for each of these domains,
Fig. 2. The required interpolation function, TSC(w),
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can be defined by the composition of a direct and an
inverse S-C function. The following equation gives an
example for the simply connected case.

q ¼ TSCðwÞ ¼ f2 � f�11

� �
ðwÞ; with w 2 P and q 2MSC;

ð12Þ

where f1 denotes the S-C transform of the unit circle C
to P and f2 the map of C to MSC.

In the doubly connected case, the inner diameter of
the canonical domain is among the unknowns of the
S-C parameter problem. Therefore, we encounter two
unit annuli, A1 and A2 with inner diameters l and k.
Let g1 denote the map of A1 to Q and g2 the map from
A2 to MDC. The interpolating function, TDC(w), is
given by Eq. (13).

q ¼ TDCðwÞ ¼ g2 � h � g�11

� �
ðwÞ;

with w 2 Q and q 2MDC; ð13Þ

the intermediate function, h, is required to connect the
canonical domains A1 and A2. In this work, h is defined
by the following linear transformation for each pair of
intermediate points z1 2 A1 and z2 2 A2.

z2j j ¼ h z1j jð Þ ¼ kþ z1j j � lð Þ � 1� k
1� l

� �
;

with
l � z1j j � 1

k � z2j j � 1

(
and arg z2ð Þ ¼ arg z1ð Þ; ð14Þ

where, z1 = g1(w) with w 2 Q and q = g2
-1(z2) with q 2

MDC.
The main accomplishment of this process is that we

can construct a one to one relation between each point
w 2 P or Q with a corresponding point q 2 MSC or
MDC. We can define an interpolating function within
M*

SC or M*
DC without making any provision for the

shape of the target boundary cross-section. For
example, we could opt for a least-squares surface fit by
bicubic B-splines when M*

SC or M*
DC consists of a

rectangular grid of points with known normal velocity
values, as shown in Eq. (15).

upðq; tÞ ¼ up x; yð Þ; tð Þ ¼
X
k;l

cklp ðtÞ �Mk
pðxÞ �Nl

pðyÞ;

with
q ¼ xþ iy

q 2M�p; p ¼ fSC, DCg

(
; ð15Þ

where, ckl represents the interpolation coefficients
matrix and Mk(x) and Nl(y) the normalized cubic
B-splines for each direction. In the general case of
transient velocity fields and/or with a moving under-
lying grid, the coefficients matrix and the spline knot
distributions must be calculated for each time step.

It is noted that the volumetric flux is not preserved
between the target polygons and the measurements
domains unless they possess identical bounding con-
tours. Whenever we wish to impose the given volu-
metric flux time history, a simple correction can be
applied by Eq. (16).

up;totðw; tÞ ¼ upðq; tÞ þ ucorðtÞ

with ucorðtÞ ¼
1

FD
� _QðtÞ �

Z

D

Z
up � dS

2
4

3
5 and

D ¼ P;Qf g; p ¼ fSC, DCg; ð16Þ

where, FD, denotes the area of the target polygon and
_QðtÞ the instantaneous volumetric flux through the
corresponding measurements domain.

AN ALGORITHM FOR NON ANALYTICAL

VELOCITY PROFILES

The interpolation algorithm for analytical profiles
needs to be revamped to facilitate the adaptation of
velocimetry data known at a mesh of points. Let us
assume that this data refer again to the normal velocity
component at a predetermined number of time steps.
The main difference is that two S-C maps and a
function composition are now necessary. A pre-
requisite is that both the measurements domains and
the boundary cross-sections are planar in order to
convert their coordinates to complex numbers. Local
Cartesian systems are required for both spaces, while
the origins of these systems may again be placed
conveniently at the centroids. The canonical domain
for the S-C maps in the simply connected case is the
unit circle, whereas there are two unit annuli with
different inner diameters in the doubly connected case.
In addition to the extraction of the nodes that form the

FIGURE 2. Conceptual diagrams of the composite mapping
function for the transformation of non-analytical data to a
simply connected and a doubly connected polygon.
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bounding contours of the boundary cross-sections, we
must define the surrounding contours of the mesh of
measurement nodes to create the second target poly-
gons. The proposed algorithm is divided in the familiar
stages: the initialization stage, the mapping stage and
the calculation stage.

Initialization Stage

� Construct measurements interpolation up((x,y),t),
p = {SC, DC}, "t, in Eq. (15)

Mapping Stage

� Define target polygons (P, MSC) or (Q, MDC)
� Solve S-C parameter problems (f1(z), f2(z)) or

(g1(z1), g2(z2))
� Invert S-C mapping function f 1

-1(w) or g1
-1(w)

� Construct composition function (f2 s f 1
-1)(w) or

(g2 s h s g1
-1)(w)

� Map nodes to measurements domain q = (f2 s f 1
-1)

(w) or q = (g2 s h s g1
-1)(w)

Calculation Stage

� Initialize velocity values up(w,t) = up(q,t), p = {SC,
DC} by Eq. (15)
� Calculate velocity correction ucor(t) by Eq. (16)
� Calculate total velocities utot,p(w,t) = up(q,t) +

ucor(t), p = {SC, DC}

Note that since the measurements are available at all
time steps, the ‘‘initialization stage’’ can be performed
separately before all the time steps. The inclusion of
the mapping stage within the time loop is essential
when at least one of two conditions occur. That is
when the boundary surface moves and/or deforms or
when the region of interest in the measurements
domain, MSC or MDC, moves and/or deforms.

EXAMPLE APPLICATIONS

Target Boundary Surfaces and Required
Volumetric Flux

The algorithms were checked on two occasions.
Blood flow in the ascending aorta is a paradigm of flow
through an initially branchless, cylindrical domain
with simply connected cross-sections. Conversely, the
motion of the cerebrospinal fluid in the spinal cavity is
an example of pulsatile flow through a doubly con-
nected channel. MRI imaging was used to extract
anatomical data, which were segmented to produce
anatomically accurate surface reconstructions for both

cases. CFD volumetric meshes were built on top of
them after the introduction of planar cuts to permit the
imposition of boundary conditions. The ‘‘inlets’’ to
these meshes were the targeted boundary cross-sec-
tions, Figs. 3a and 3b. The inlet mesh to the ascending
aorta is unstructured and consists of 985 quadrilateral
faces and 1038 nodes. Its bounding contour has 104
vertices while the cross-sectional area is 6.54Æ10-4m2. A
structured quadrilateral grid having 900 faces and 950
nodes meshes the CSF inlet, which has a cross-sectional
area of 2.51Æ10-4m2. The inner and outer contours have
50 vertices each. We assumed that the boundary sur-
faces neither deformed nor moved.

FIGURE 3. Numerical meshes of the target boundary cross-
sections: (a) inlet to the ascending aorta and (b) inlet to the
spinal cavity at the base of the skull.
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In-vivo PC-MRI volumetric flux data were acquired
at geometrical planes with regions of interest that
matched with each inlet. The anatomical MRI and
PC-MRI scans in the ascending aorta and in the
spinal cavity belong to volunteers. The measurements
in the ascending aorta, Fig. 4a, revealed increased
cardiac output with average volumetric flow of
11.46 L/min. The heart rate was above physiological
resting conditions at 94 bpm resulting to a time-period
of 0.638 s. The measurements in the spinal cavity were
taken at the base of the skull with an average flux rate
of 5.8 L/min and time-period of 0.7685 s, Fig. 4b. Our
task is to impose the measured instantaneous volu-
metric fluxes, shown in Figs. 4a and 4b, through the
selected boundary cross-sections; firstly by transform-
ing the appropriate analytical velocity profile and

secondly by interpolating from the measurements
planes.

Maps of Analytical Velocity Profiles

The algorithm results for analytical velocity profiles
are presented in this section. For the aortic case, blood
was assumed to have a density of 1060 kg/m3 and
constant viscosity of 0.00345 Pa s. At the initialization
stage, an FFT transform of the flux history of Fig. 4a
produced the required Fourier coefficients with angu-
lar frequency 9.8483 s-1. The equivalent radius was
calculated as 1.44 cm by Eq. (5). These values result to
a Womersley number of 25.1 and an average Reynolds
number of 2606. The corresponding axisymmetric
velocity profile is shown in Fig. 4c. CSF density and

FIGURE 4. Measured volumetric fluxes and the corresponding axisymmetric pulsatile velocity profiles at several time instances
through the inlet to the ascending aorta (a, c) and the inlet to the spinal cavity (b, d).
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viscosity were set at 1000.58 kg/m3 and 6.9161Æ10-4

Pa s. Similarly, an FFT transform of the flux history of
Fig. 4b produced the Fourier coefficients with angular
frequency 8.1759 s-1. The equivalent inner and outer
radii of the reference annulus were calculated at 0.55
and 1.04 cm according to Eq. (10). The resulting axi-
symmetric profile is depicted in Fig. 4d at several time
instances. It corresponds to a Womersley number of 33
and an average Reynolds number of 8.23, based on a
hydraulic diameter of 0.98 cm by Eq. (8).

In the mapping stage, the numerical solution of the
S-C parameter problem for the aortic case was
obtained with the S-C MATLAB Toolbox (MATLAB
Central File Exchange, http://www.mathworks.com/
matlabcentral/) by Driscoll.5,6 The results of the
calculation stage are shown in Fig. 5a as carpet plots at
three time-steps. The carpet surface is colored by
velocity magnitude, while the locations of the faces
centers are overlaid as red spheres. A continuous red
line at zero velocity, best discerned in the third time-
step, denotes the target polygon. The resemblance be-
tween the analytical and the mapped velocity profiles is
readily apparent. The magnitude of the velocity cor-
rection averaged below 5% of the mean instantaneous
velocity. The discrepancy intensifies at those time-steps
that the velocity profile displays a steep gradient near
the wall.

The numerical solution of the S-C parameter
problem in the CSF domain was achieved by a soft-
ware package in FORTRAN 77, called DSCPACK
(ACM Digital Library, http://portal.acm.org/).10 The
conformal modulus of the target polygon was l-1 =

1.767. The corresponding set of velocity encoded
carpet plots is given in Fig. 5b. The continuous red
line contours at zero velocity denote the boundaries of
the target polygon. The average velocity correction
remained below 4% of the mean instantaneous veloc-
ity. A finer mesh in the near wall region would further
limit the required corrections in both domains.

Maps of Non Analytical Velocity Profiles

The results of direct interpolation between a mea-
surement plane and a target boundary cross-section
are presented in this section. We post-processed the
acquired PC-MRI scans and decoded the normal
velocity distributions. A non-moving rectangular
Cartesian plane formed the measurement domain. The
aortic data were acquired at a series of 20 256 9 256
16-bit gray scale images with uniform pixel spacing of
0.938 mm and slice thickness of 4 mm. The CSF series
contained 30 512 9 512 16-bit gray scale images with
uniform pixel spacing of 0.4 mm and slice thickness of
6 mm. The initialization stage was concluded by con-
structing a series of least-squares bi-cubic B-spline

surface fits with automatic knot sequence, defined by
Eq. (15), for each time-step and measurements plane.
The MATLAB NAG Foundation Toolbox (nag
Numerical Algorithms Group, http://www.nag.co.uk/
index.asp) was used for this purpose.

The target polygons in Fig. 3 did not move or
deform. The solutions to the S-C parameter problems
for the mapping functions, f1(z) and g1(z) and their
inversions, were identical to those of the previous
paragraph. The construction of f2(z) and g2(z), needed
for the composition mapping functions (f2 s f1

-1)(w)
and (g2 s h s g1

-1)(w), required the definition of the
bounding polygons MSC and MDC. This is a segmen-
tation problem within M*

SC and M*
DC for each

time-step. Specialized software for medical imaging
analysis, Amira v3.1 (Mercury Computer Systems
SAS, http://www.tgs.com/), was used for this task. The
lateral motion of the aortic wall within the measure-
ments plane is significant and the bounding polygonal
contour deforms. Separate f2(z) and (f2 s f1

-1)(w) were
calculated at each time step. Depictions of f1(z) and
f2(z) are given in Fig. 6a for the first time step. A series
of contour plots showing the evolution in time of the
interpolating surface fit, the bounding polygonal con-
tour and the mapped faces centers in the measurement
plane is given in Fig. 7a. The same task was performed
once for the case of the CSF flow because the region of
interest remained unchanged through time within
M*

DC. Figure 7b depicts three time instances of the
interpolating surface fit, the bounding polygonal con-
tour and the mapped faces centers in the measurements
plane of the CSF case. The shape of the interpolated
velocity contours reveals the presence of significant
noise. The conformal modulus of g2(z) was k-1 =

1.408 in this case. It can be seen that the conformal
moduli of g1(z) and g2(z), l-1 = 1.767 and k-1 =

1.408, differ significantly. This is caused by the dis-
similarity of the inner polygonal contours between the
target boundary cross-section and MDC due to seg-
mentation errors and smoothing. The functions g1(z)
and g2(z) are shown in Fig. 6b. The software tools
mentioned in the analytical profile cases were used for
the numerical solution of the S-C parameter problems.

The results of the calculation stage, at the time points
used in Fig. 5, are presented in Fig. 8a for the aortic
case and in Fig. 8b for the CSF case. The mapped
aortic profile retains both its inherent eccentricity
and its steepness in the vicinity of the wall. In this case
of increased cardiac output and large Reynolds num-
ber, the velocity profile is steeper than usually in the
near wall region. The mapped analytical profiles of the
Womersley solution cannot account for these charac-
teristics sufficiently. The dissimilarity between the tar-
get polygonal domain, which does not deform, and the
segmented moving aortic wall in the measurements
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plane is a source of additional deformation and offset
relative rotation. Nevertheless, these features do not
alter the main characteristics of the mapped profile.
Equally, the mapped profiles in the CSF case, Fig. 8b,
appear to be different from their analytical counter-

parts. This is caused by the fact that the PC-MRI
measurements show a radically different profile from
the analytical solution, Fig. 4d. Furthermore, the sig-
nificantly different inner polygonal contours between
the target and the experimental cross-sections introduce

FIGURE 5. Mapped axisymmetric velocity profiles at three time-steps onto: (a) the aortic inlet and (b) the CSF inlet.
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deformation and offset rotation from the experi-
mental velocity distribution in Fig. 7b. Hence, an
angular correction in Eq. (14) should be considered. In
all cases, the required velocity corrections fluctuated up
to 10% of the mean instantaneous mapped velocity
revealing the differences in the cross-sectional areas
between the measurements and the computational
domains.

DISCUSSION

A method for mapping analytical or experimentally
determined velocity profiles on realistic boundary

cross-sections has been outlined in the previous para-
graphs. The interpolation algorithms are based on the
S-C formulas for singly and doubly connected polyg-
onal domains. The applicability of the technique was
tested by producing velocity boundary conditions for
CFD simulations of blood flow in the ascending aorta
and CSF flow in the spinal cavity. On both occasions
we created mappings of axisymmetric velocity profiles
and interpolations from in-vivo PC-MRI velocity
measurements with given instantaneous volumetric
flux constraints. The target ‘‘inlet’’ surfaces remained
stationary in all cases. Nevertheless, we had to take
into account the lateral aortic motion in the measure-
ment plane. Both mapped profiles provide appropriate

FIGURE 6. Illustration of the conformal mapping functions at the initial time-step: (a) f1 and f2 for the aortic case and (b) g1 and g2

for the CSF case.
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FIGURE 7. Three time instances of the interpolating surface fits, the bounding polygonal contours and the mapped faces centers
in the measurements plane for: (a) the aortic case and (b) the CSF case.
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velocity boundary conditions for CFD applications.
The experimental mappings contain more physiologi-
cal characteristics, like eccentricity in the aortic case,
whereas the analytical maps are smoother and easier to
implement. In-vivo CSF MRI measurements are often

noisy and of insufficient resolution. Therefore, this
technique provides us with a viable alternative. We will
enhance the presented method to include the analytical
solution of oscillatory flow through elliptic annular
domains and the S-C map between a canonical elliptic

FIGURE 8. Mapped non-analytical velocity profiles at three time-steps onto: (a) the aortic inlet and (b) the CSF inlet.
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annulus to a doubly connected bounded polygon.
Apparently, this is a closer match to the realistic CSF
boundary cross-sections.

The S-C transformations facilitate the construction
of a one-to-one invertible correlation between the
boundary target surface and an arbitrary closed
domain. We may then build an interpolating function
within the measurement plane without making any
provisions for the shape of the target boundary cross-
section. Alternatively, one should overlap the two non-
matching spaces, a process susceptible to errors leading
to erroneous inclusion or exclusion of data. The pro-
posed technique permits us to segment each space
separately and map one onto the other in its entirety.
Another advantage arises from the fact that a con-
formal map preserves local angles. This property
becomes important when considering applications
where the computational domain moves and/or
deforms. Apart from providing the means to deform
the internal boundary grid when the motion of the
surrounding contour is given, this technique ensures
that the angular quality will not degrade. We intend to
expand on this aspect in future work.

Nonetheless, there are points that necessitate cau-
tion. The volumetric flux is not conserved intrinsically
when transferring an analytical profile or mapping
from a measurement domain. It is possible to scale the
reference domain by equating its cross-sectional area
to the corresponding values of the target boundary
surface. When the volumetric flux is given, this is the
only way to maintain the same Reynolds and
Womersley numbers between the two spaces. In the
latter case, there are no fine-tuning options. The dis-
crepancy in the acquired volumetric flux depends on
shape and area differences between the measurements
plane and the targeted boundary cross-section. A
velocity correction proportional to these differences is
needed. Apart from the preservation of volumetric
flux, additional constraints may be proposed such as
the conservation of kinetic energy or of spatial
moments between the original and the mapped velocity
profiles. In this first attempt, the presented study did
not address these issues. A possible solution is to
incorporate such constraints in the construction of the
S-C mapping functions themselves by quantifying
shape differences between the source and target
polygons.

Continuity is one more property that is not con-
served per se when mapping from an analytical or
experimental incompressible viscous flow field. In the
presented examples, the velocity field had a single non-
zero normal component. Hence, the issue of incom-
pressibility is not raised. If the technique is used to
project the tangential velocity components as well,

continuity will be violated within the target polygonal
domain. This is not true only within the limits of
potential flow theory. Another complication is the
possibility of relative rotation between the target
boundary surface and the measurements plane. The
substance of this technique is the interpolation between
the images of the respective spaces within the same or
similar canonical domains. In both cases, we presumed
that these images are aligned and therefore we did not
apply any angular corrections. This hypothesis is based
on the fact that similar polygons will produce similar
images in the canonical domains. However, this is not
true in cases when the two target polygons are very
different in shape and geometrical proportions and/or
have a very different number of vertices. The CSF case
provided such an example where the introduction of an
angular correction in the canonical space should be
considered.

In conclusion, the presented method is computa-
tionally inexpensive as far as the investigated examples
are concerned. The surrounding polygons possessed a
moderate number of nodes, 100 or less. Both DSC-
PACK and the S-C MATLAB Toolbox are inefficient
when dealing with polygons of a larger number of
vertices. An important improvement is presented in the
study of Banjai and Trefethen,1 which proposes a
multipole method for S-C mapping of singly connected
polygons with thousands of sides. Our investigation
was focused on computational hemodynamics. How-
ever, this technique can be used for the mapping of any
scalar or vector variable. Conformal mapping and the
S-C transform in particular is an accurate, elegant, but
also sophisticated mathematical tool and an overall
adoption of this technique cannot be suggested just
yet. In a follow up study, it would be interesting to
test the several existing techniques on a common set
of geometry and velocity data in order to quantify
algorithmic complexity, calculation times and accu-
racy of each method on equal grounds. We believe
that the presented interpolation method shall prove
particularly helpful in the imposition of boundary
conditions.

APPENDIX

Tsangaris26 has given the axisymmetric Navier–
Stokes solution for fully developed oscillatory flow
through an annular pipe. The flow is driven by a
harmonic pressure gradient along the pipe’s length
with a non-zero mean value and frequency x. Let the
axial pressure gradient and corresponding velocity be
defined by Eq. (17).
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where, Px
c is a constant denoting the mean value of the

pressure oscillation and Px
osc its amplitude. The veloc-

ity consists of a steady part, us(r), and an oscillating
part with complex amplitude, uosc(r), shown in Eqs.
(18) and (19), respectively.
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where, q is the fluid’s density and l and m the dynamic
and kinematic viscosity. I0 and K0 are the zeroth order
modified Bessel functions of the first and second kind.
The coefficients k1 and k2 are given below.
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The instantaneous volumetric flow rate can be ob-
tained by integrating the velocity field over the annular
cross-sectional area and in turn consists of two com-
ponents.
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where, I1 and K1 are the first order modified Bessel
functions of the first and the second kind. By elimi-
nating the pressure gradient from the previous equa-
tions we can express the instantaneous axisymmetric
velocity as a function of the instantaneous volumetric
flux.
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Finally, the solution given by Eqs. (24) and (25) can
be readily generalized to the case where the instanta-
neous flux has more than one harmonics and is given
by a Fourier series.

_QðtÞ �
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Then the axisymmetric velocity field is given by the
following formula for r 2 [Reqi, Reqo]:
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the coefficients k1n, k2n and k3n are derived from the
formulas for k1, k2 and k3 by substituting x with n Æ x
for each frequency.
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