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Abstract We present Monte Carlo simulations for the polarization of light reflected from

planetary atmospheres. We investigate dependencies of intensity and polarization on three

main parameters: single scattering albedo, optical depth of a scattering layer, and albedo of

a Lambert surface underneath. The main scattering process considered is Rayleigh scat-

tering, but isotropic scattering and enhanced forward scattering on haze particles are also

investigated. We discuss disk integrated results for all phase angles and radial profiles of

the limb polarization at opposition. These results are useful to interpret available limb

polarization measurements of solar system planets and to predict the polarization of extra-

solar planets as a preparation for VLT/SPHERE. Most favorable for a detection are planets

with an optically thick Rayleigh-scattering layer. The limb polarization of Uranus and

Neptune is especially sensitive to the vertically stratified methane mixing ratio. From limb

polarization measurements constraints on the polarization at large phase angles can be set.

Keywords Polarimetry � Planets � Atmospheres

1 Introduction

Light reflected from planetary atmospheres is generally polarized due to scattering on

different types of particles with characteristic polarization properties. Rayleigh scattering

on gas molecules produces 100% polarization for a single right angle scattering. Haze

particles in Titan’s or Jupiter’s atmosphere scatter light mainly in forward direction but

show Rayleigh-like polarization (Tomasko et al. 2008 and Braak et al. 2002). Reflection

from clouds typically produces only a small positive (perpendicular to scattering plane) or

even negative (parallel) polarization. Multiple scatterings randomize the polarization

direction of the single scatterings and lower the observable polarization.

E. Buenzli (&) � H. M. Schmid � F. Joos
Institute for Astronomy, ETH Zurich, 8093 Zurich, Switzerland
e-mail: ebuenzli@astro.phys.ethz.ch

123

Earth Moon Planet (2009) 105:153–157
DOI 10.1007/s11038-009-9312-0



For Jupiter, Saturn and Titan polarimetric data at large phase angles are available at few

wavelengths from spacecrafts (e.g. Smith et al. 1984; Tomasko et al. 1984; Tomasko et al.

1982). With earth-bound observations the giant planets are always near opposition. At such

small phase angles the disk integrated polarization is low because single back-scattering is

unpolarized and the multiple scattering polarization cancels for a symmetric planet.

However a second order scattering effect produces a measurable limb polarization in radial

direction. Uranus and Neptune display a limb polarization of *1-3% along the entire

limb which is enhanced in methane absorption bands and decreases in the visible towards

longer wavlengths (Schmid et al. 2006; Joos et al. 2007). Jupiter and Saturn show a similar

behavior only at the poles (Joos et al. 2005), where the polarization is also high at large

phase angles.

Measurements of the polarized light from close-in extra-solar planets have been

attempted but so far no convincing detection has been made (e.g. Lucas et al. 2009). Upper

limits indicate that these objects are not covered with a well reflecting Rayleigh scattering

layer.

The future VLT planet finder SPHERE will be equipped with a polarimetric mode

(ZIMPOL) for the search and characterization of extra-solar planets around nearby stars

that are resolved from their central star (Beuzit et al. 2008). To prepare for the SPHERE

observations and to interpret the available limb polarization data we have calculated a

model grid to explore the parameter space in a systematic way. Here we present selected

model results for Rayleigh scattering atmospheres and discuss how they fit the available

data.

2 Model Description

Our simulations were made with a Monte Carlo code which calculates the intensity and

polarization of the reflected light, described by the Stokes vector I = (I, Q, U, V) and the

fractional polarization Q/I and U/I, for all phase angles a (the angle Star-Planet-Earth). Our

planet model consists of a spherically symmetric body of radius R illuminated by a parallel

beam. Each surface element is approximated by a plane parallel atmosphere consisting of

one or multiple homogeneous scattering layers above a Lambert surface.

The basic model atmospheres are described by three parameters: the single scattering

albedo x, the (vertical) optical depth for scattering ssc of the scattering layer, and the

albedo AS of the Lambert surface. The single scattering albedo x describes the ratio of

scattering to absorption plus scattering. The basic models only include Rayleigh scattering.

Extensions also consider isotropic scattering or enhanced forward scattering by haze

particles as well as multiple layers. We treat absorption like an addition of absorbing

particles to a layer with a given scattering optical depth ssc. This approach is suited for

discussing the reflected intensity and polarization inside and outside of absorption features

like CH4 or H2O-bands. The total optical depth s of the layer is given by s = ssc/x.

For extra-solar planets it will not be possible to resolve the disk in the near future. We

concentrate on disk-integrated results, where Q is defined positive (negative) for a

polarization perpendicular (parallel) to the scattering plane (star-planet-observer). For the

study of the limb polarization in resolved planets at opposition we use the radial Stokes

parameter Qr, which is positive for an orientation of the polarization parallel to the radius

vector r (see e.g. Schmid et al. 2006). The Stokes U or Ur parameters have to be zero for a

spherically symmetric planet.
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3 Results

Figure 1 shows the intensity I, polarization fraction Q/I or Qr/I and polarized intensity Q or

Qr as a function of phase angle and as function of radius at opposition for selected

examples. The maximum Q = 0.081 is reached for a semi-infinite conservatively scat-

tering atmosphere at a = 65� where I(a) = 0.35 and Q/I(a) = 23%. The maximum of Q/I
is generally near 90� but shifts towards large phase angles for models with thin scattering

layers and large surface albedos. For the limb polarization the maximum is reached at

r J 0:95.

General dependencies on the main parameters for a Rayleigh scattering layer are:

– lowering the Rayleigh single scattering albedo x (more absorption) results in a lower I,
Q and Qr and in a higher polarization Q/I at large phase angles. Contrary to this at

opposition Qr/I is reduced for smaller x,

– lowering the optical depth ssc results in a strong reduction in Q or Qr in the optically

thin case (s.1Þ and causes essentially no change in Q or Qr for sJ1;
– lowering AS lowers I and enhances Q/I or Qr/I, but Q or Qr are unaffected.

The polarization Q mainly probes the atmosphere to an optical depth of *2. Below this

depth polarization is washed out due to multiple scatterings. For the intensity and fractional

polarization, an absorbing surface under a scattering layer can be noticed even at sJ10:
A main difference between the limb polarization Qr/I and the disk-averaged polarization

Q/I(a) is their opposite dependence on x. This occurs because absorption reduces multiple

scatterings more strongly than single scatterings, but the limb polarization at opposition is

mainly due to photons undergoing two to about six scatterings rather than one. However,

observations of the solar system gas giants show that within methane bands the limb

polarization is enhanced (Joos et al. 2007). Models with more than one scattering layer

Fig. 1 Left: Intensity, polarization fraction and polarized intensity as a function of phase angle a for
Rayleigh scattering atmospheres: Semi-infinite atmosphere with single scattering albedo x = 1 (solid
black), 0.4 (dashed red), finite atmosphere (ssc = 0.3) with x = 1 and surface albedo AS = 1 (dash-dot
green), 0 (dash-dot-dot blue). Right: Radial dependence at opposition for the same atmosphere models
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achieve this if absorption mainly occurs in the lower layer. The maximum possible limb

polarization with Rayleigh scattering is 9.5% near the limb or 5.25% disk integrated for a

scattering layer with ssc = 0.8, x = 1 above a completely dark surface. Enhanced forward

scattering by haze particles can result in a much higher limb polarization (up to &20% at

peak), but the intensity is much lower than for Rayleigh scattering as soon as some

absorbers are present.

At large phase angles, the maximum polarization for a fixed intensity is given by the

model with a conservative (x = 1) scattering layer over a dark (AS = 0) surface. This limit

is lower for brighter planets due to multiple scatterings. The radial (limb) polarized

intensity Qr(0�) constrains the polarized intensity Q(a) at large phase angles, even if the

detailed atmospheric structure is unknown (Fig. 2).

4 Conclusions

Simple Rayleigh scattering models are a good first approximation to the polarization of

light reflected from planetary atmospheres. For extra-solar planets future measurements

will mainly provide the polarimetric contrast: C(a) = R2/D2 �Q(a), where R is the radius of

the planet, D the distance from its central star and a the phase angle. Q(a) is maximal for

the semi-infinite, non-absorbing atmosphere, such as a deep cloudless H2/He atmosphere.

Absorption bands are less favorable despite the higher polarization, because the intensity is

reduced more than the polarization is enhanced. High altitude clouds give a high albedo but

low polarization. Forward scattering and polarizing haze particles as seen on Titan or

Jupiter’s poles result in a lower Q than a pure H2/He atmosphere but could be favorable

above absorbing layers.

For the interpretation of the limb polarization data the single layer models are not

sufficient. Spectropolarimetric observations appear to be particularly sensitive to the ver-

tical abundance stratification of absorbers (e.g. CH4), which are not well constrained from

albedo spectra alone (e.g. Sromovsky et al. 2007). A fit of more sophisticated models to

limb polarization data of Uranus and Neptune will be attempted in a forthcoming paper.

Fig. 2 Polarized intensity at quadrature vs radial polarized intensity at opposition. Dark shaded is the
parameter space covered by Rayleigh scattering models, the total shaded area includes isotropic scattering.
Indicated is a limb polarization measurement of Neptune (Schmid et al. 2006)
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