
Int J Softw Tools Technol Transfer (2011) 13:181–200
DOI 10.1007/s10009-010-0171-9

WSE 2009

On porting software visualization tools to the web

Marco D’Ambros · Michele Lanza · Mircea Lungu ·
Romain Robbes

Published online: 25 September 2010
© Springer-Verlag 2010

Abstract Software systems are hard to understand due to
the complexity and the sheer size of the data to be analyzed.
Software visualization tools are a great help as they can sum
up large quantities of data in dense, meaningful pictures.
Traditionally, such tools come in the form of desktop appli-
cations. Modern web frameworks are about to change this
status quo, as building software visualization tools as web
applications can help in making them available to a larger
audience in a collaborative setting. Such a migration comes
with a number of promises, perils, and technical implica-
tions that must be considered before starting any migration
process. In this paper, we share our experiences in porting
two such tools to the web and provide guidelines about the
porting. In particular, we discuss promises and perils that go
hand in hand with such an endeavor and present a number
of technological alternatives that are available to implement
web-based visualizations.

Keywords Software visualization · Software analysis
tools · Web applications

M. D’Ambros (B) · M. Lanza
REVEAL @ Faculty of Informatics, University of Lugano,
Lugano, Switzerland
e-mail: marco.dambros@usi.ch

M. Lanza
e-mail: michele.lanza@usi.ch

M. Lungu
Software Composition Group (SCG), University of Bern,
Bern, Switzerland
e-mail: lungu@iam.unibe.ch

R. Robbes
PLEIAD Lab, Computer Science Department (DCC),
University of Chile, Santiago, Chile
e-mail: rrobbes@dcc.uchile.cl

1 Introduction

Developing tools is an important part of software engineering
research as they provide a proof-of-concept for an approach.
Further, the tool itself can be considered a research contri-
bution. However, tools remain often at the stage of proto-
types, not maintained anymore after the corresponding
article is published. Little effort is spent in making tools
long-lived and used in an industrial context, with a number
of notable exceptions such as the Moose reverse engineering
framework [13], visualization tools such as Rigi [1,44], and
recommender systems like Mylyn [28].

The vast majority of tools do not survive after research
has been published and concluded. One of the reasons is
that, unlike in the industry, there is little incentive to keep
tools running as most of the times there are few users. In his
keynote address at the 31st International Conference on Soft-
ware Engineering, Carlo Ghezzi stated that a survey of all the
papers that appeared in ACM Transactions on Software Engi-
neering and Methodology between 2000 and 2008 showed
that 60% of them dealt directly or indirectly with tools. Of
those only 20% were actually installable, let alone functional.

In the past years, we have developed a number of software
visualizations tools, such as CodeCrawler [31], Softwarenaut
[36], BugCrawler [8], Evolution Radar [10], Bug’s Life [11],
CodeCity [60], Churrasco [7], The Small Project Observatory
[38], and Spyware [48]. Many of these tools are available,
but some effort from accidental users to make them work is
required, decreasing their adoption and impact. A solution
is to exploit the web and the available modern technologies.
We see the web as an opportunity to improve the accessibility
and adoption of research prototypes, since the cost for people
to “give it a try” is minimal.

Developing web-based software visualization tools is not
easy, and comes with a number of promises to embrace and

123

182 M. D’Ambros et al.

Fig. 1 The architecture of
Churrasco

External
components

Target System

MOOSE
Reengineering
Environment

Churrasco core

Database

Visualization
Module

Annotation
Module

1

4

5

3

System
Complexity

Evolution Radar

Correlation View

Web Portal

VisualizerImporter

Mondrian

Users

Churrasco

Evolution
Radar

SVN
Repository

Bugzilla
Repository

Source Code

SVN Module

Bugzilla
Module

2

Bugzilla bugs &
activities

SVN

perils to avoid. In this paper, we discuss our experience in
building two web-based software visualization tools and dis-
till a number of considerations that need to be made if one
wants to port such tools to the web. We present available
technologies to develop web-based visualizations, discuss-
ing their benefits and limitations. The goal is to provide guid-
ance to researchers who want to move their (visualization)
tools to the web, or want to create new web-based tools from
scratch.

Contributions. The main contributions of this paper are:

– The identification, via our empirical experience build-
ing two large-scale, web-based software visualization
tools, of eight promises and seven perils to be aware
of when designing and implementing web-based visual-
ization tools.

– The evaluation of a subset of the perils as they hold in
practice, based on two usability studies of our web-based
visualization tools.

– An overall discussion of the promises and perils, fol-
lowed by a detailed survey at the current and incoming
technologies in web software development, in order to
provide guidance over one of the most important perils,
the peril of rapidly changing technologies.

Structure of the paper. In Sect. 2 we introduce two web-
based software visualization tools that we have developed:
Churrasco and the Small Project Observatory, and distill a
number of promises and perils for porting such tools to the
web in Sect. 3. We report on two small-scale experiments
involving our web-based tools, highlighting the impact of
some of the promises and perils in practice Sect. 4. We sum-
marize the lessons learned in developing our tools in Sect. 5.
In Sect. 6 we present the technologies one can use to imple-
ment a web-based visual application. We then look at related
work on software visualization tools in and out of the web
(Sect. 7) and conclude in Sect. 8.

2 Churrasco and SPO

In the past years, we have developed two web-based software
visualization tools: Churrasco and the Small Project Obser-
vatory), available, respectively, at http://churrasco.inf.usi.ch
and http://spo.inf.usi.ch.

2.1 Churrasco

Churrasco [7] is a web platform for collaborative software
analysis with the following characteristics:

– It provides a web interface to create models of software
systems and of their evolution, and to store them in a
database for subsequent analysis.

– It provides a set of visual analyses and supports collab-
oration by allowing several users to annotate the shared
analyzed data.

– It stores the findings into a central database to create an
incrementally enriched body of knowledge about a sys-
tem, which can be exploited by subsequent users.

2.1.1 Architecture

Figure 1 depicts Churrasco’s architecture, consisting of1:

1. The core connects the various modules of Churrasco and
external components. It includes the internal represen-
tation of a software system’s evolution and manages the
connection with the database to write models imported
from the web interface and to read models to be visual-
ized in the web portal.

2. The Bugzilla and SVN modules retrieve and process the
data from SVN and Bugzilla repositories.

3. The Web portal represents the front-end of the frame-
work (developed using the Seaside framework [12])

1 Churrasco itself, without the external components, is made of 259
classes.

123

http://churrasco.inf.usi.ch
http://spo.inf.usi.ch

On porting software visualization tools to the web 183

accessible through a web browser. It allows users to cre-
ate the models and to analyze them by means of different
web-based visualizations.

4. The Visualization module supports software evolution
analysis by creating and exporting interactive Scalable
Vector Graphics (SVG) visualizations. The visualiza-
tions are created by two external tools: Mondrian [42]
and the Evolution Radar [10]. The visualization
module converts these visualization to SVG graphics. To
make them interactive within the web portal, Churras-
co attaches Asynchronous Javascript And XML (AJAX)
callbacks to the figures, allowing server-side code to be
executed when the user selects a figure.

5. The Annotation module supports collaborative analysis
by enriching any entity in the system with annotations.
It communicates with the web visualizations to integrate
the annotations within the visualizations.

2.1.2 Visualizations

Churrasco offers the following interactive visualizations to
support software evolution analysis:

– The Evolution Radar [6,9] supports software evolution
analysis by depicting change coupling information.
Change coupling is the implicit dependency between two
or more software artifacts that have been observed to fre-
quently change together.

– The System Complexity [31] view supports the under-
standing of object-oriented systems, by enriching a sim-
ple two-dimensional depiction of classes and inheritance
relationships with software metrics.

– The Correlation View shows all classes of a software
system using a scatterplot layout and mapping up to five
software metrics on them: on the vertical and horizontal
position, on the size, and on the color.

Recent annotations
added

People participating
to the collaboration

gure
information

Metrics mapping
gurator

Package selector

Regular expression
matcher

Report generator

SVG Interactive
Visualization

gure

User

Context menu

Fig. 2 A screenshot of the Churrasco web portal showing a System Complexity visualization of ArgoUML (http://argouml.tigris.org)

123

http://argouml.tigris.org

184 M. D’Ambros et al.

Figure 2 shows an example of a System Complexity visu-
alization [31] rendered in the Churrasco web portal. The main
panel is the view where all the figures are rendered as SVG
graphics. The figures are interactive: clicking on one of them
will highlight the figure (red boundary), generate a context
menu, and show the figure details (the name, type and metrics
values) in the figure information panel on the left.

Under the information panel Churrasco provides three
other panels useful to configure and interact with the visual-
ization:

1. The metrics mapping configurator to customize the view
by changing the metrics mapping.

2. The package selector to select, and then visualize, mul-
tiple packages or the entire system.

3. The regular expression matcher with which the user can
select entities in the visualization.

2.1.3 Collaboration support

A key idea behind Churrasco is collaboration: each model
entity can be enriched with annotations to (1) store findings
and results incrementally into the model, and to (2) let dif-
ferent users collaborate in the analysis of a system.

Annotations can be attached to any visualized model
entity, and each entity can have several annotations. An anno-
tation is composed of the author who wrote it, the creation
timestamp, and the text. Since the annotations are stored in
a central database, any new annotation is immediately visi-
ble to all the people using Churrasco, thus allowing different
users to collaborate in the analysis. Churrasco features three
panels aimed at supporting collaboration:

1. The “Recent annotations” panel displays the most recent
annotations added, together with the name of the anno-
tated entity. By clicking on it the user can highlight the
corresponding figure in the visualization.

2. The “Participants” panel lists all the people who anno-
tated the visualizations. When one of these names is
selected, all figures annotated by the corresponding per-
son are highlighted in the view, to see which part of the
system that person is working on.

3. The “Create pdf report” panel generates a pdf docu-
ment containing the visualization and all the annotations
referring to the visualized entities.

2.2 The small project observatory

The Small Project Observatory (SPO from hereafter) is an
interactive web application targeted at the visualization and
analysis of entire software ecosystems.

Software ecosystems. Software systems are seldom devel-
oped in isolation. On the contrary, many companies, research
institutions, and open-source communities deal with soft-
ware projects developed in parallel and depending on one
another. Such collections of projects represent assets and ana-
lyzing them as a whole can provide useful insights into the
structure of the organization and its projects. We define a
software ecosystem as a collection of software projects which
are developed and evolved together in the same environment.

The large amounts of code that are developed in an eco-
system makes it hard, if not impossible for a single person to
keep track of the complete picture. Many times, even if there
exists documentation to describe the inter-dependencies
between the projects and the way the developers and teams
are supposed to collaborate, it is out of date or inaccurate.
Thus, the only reliable source of information about the eco-
system is the data present in the versioning repositories of
the projects. Such a collection of version control repositories
for the projects of an ecosystem is called a super-repository.

2.2.1 SPO overview

Figure 3 shows a screen capture of SPO. The figure presents
three concepts that are fundamental to the philosophy of SPO:

Multiple perspectives. SPO provides multiple visual per-
spectives on a super-repository. The focus of each perspec-
tive can be either on the developers or on the projects in
the system. Each perspective can present an overview of the
entire ecosystem or a detailed view on an individual ele-
ment (developer or project) which is to be understood in the
broader context of the entire ecosystem.

Figure 3 presents the Views panel (labeled 1) which con-
tains a list of all the available perspectives. Once the user
has selected one perspective, the central view (labeled 2)
displays a specific perspective on a super-repository. In this
case it is a table that presents metrics about the projects in the
super-repository. The view is interactive: the user can select
and filter the available projects, sort the displayed projects,
obtain contextual menus for the projects or navigate between
various perspectives.

Figure 4 shows a visual perspective of a super-reposi-
tory hosted by the Software Composition Group from the
University of Bern, in Switzerland. The perspective presents
two timelines displayed in parallel: the growth of the size (top
graph) and the fluctuation of the activity (bottom graph). The
size is measured in number of classes while the activity is
measured in number of commits. The figure shows that size
is monotonically increasing while the activity fluctuates over
time with regularities and with a general trend being visible.
One of the regularities is the dip in activity towards the end of
every year and in the summer. This rhythm corresponds to the
holiday periods of students. The general trend shows increase

123

On porting software visualization tools to the web 185

Fig. 3 The user interface of
SPO: 1 detail on the main
project overview; 2 the View
panel which allows selecting
various visual perspectives on
the analyzed super-repository;
3 the filter composition panel

Fig. 4 Size and activity evolution for the projects in the SCG
ecosystem

in activity until the peak of January 2007 when there are 700
commits. After that date, the overall activity level seems to
have fallen.

Filtering. Given the sheer amount of information residing
in a super-repository, filters need to be applied to the super-
repository data. The panel labeled (3) in Fig. 3 lists the active
filters. The only active filter is “In-house projects”. The user
can choose and combine existing filters. A user can also apply
filters through the interactive view, for example, by removing
a project or focusing on a specific project using the contextual
menu (see Fig. 5).

Fig. 5 Two ways of setting project filters in SPO: by composing rules
and by interactively eliminating elements from the active viewpoint

Interaction. The visual perspectives are interactive in SPO,
meaning that every element of the view can be selected either
for navigation, or filtering. The right side of Fig. 5 shows a
pop-up menu that appears when the user interacts with indi-
vidual elements in one of the visual perspectives of SPO.

2.2.2 Navigation

Navigation is at the core of every information visualization
tool, and this is the case also with SPO. Initially, SPO was
designed to support navigation between the different per-
spectives on the system. However, as we were using the

123

186 M. D’Ambros et al.

Fig. 6 Visualizing in SPO an architectural view that was generated in
Softwarenaut

tool we realized that one type of navigation it misses is
vertical navigation: navigating between views which present
information at different levels of abstraction. One example
would be, navigating from a view which presents the inter-
dependencies between all the systems in an ecosystem to a
view which presents the architecture of one of these systems.
We already had a tool that was supporting the visualization of
software architecture at the individual system level. To sup-
port vertical navigation, SPO requests architectural views
from Softwarenaut. Softwarenaut, which runs in the back-
ground, can export its output to SVG and deliver it to SPO to
depict it in the user interface. Figure 6 presents an architec-
tural view loaded in SPO. The two user interface elements
highlighted are:

– The list of available architectural views presenting all
views that are available for the given system. In Fig. 6
there are two views available: the one called main, and
the one called main with tests.

– The list of available queries that can be used for selec-
tion. Currently two types of queries are available:

1. Queries that detect elements of the system that inter-
act with the ecosystem. For example, all the classes
that have methods that are called from the eco-
system, or all the classes that are subclassed in the
ecosystem.

2. Queries that detect elements that were active at
certain periods in the lifetime of the system. For
example, all the classes that were active recently.

2.2.3 Architecture of SPO

Figure 7 presents SPO’s architecture, consisting of2:

2 SPO itself, without dot and Softwarenaut, is composed of 110 classes.

Super-
Repository

SVN

CVS

Store

Super-
Repository

SPO

Analysis
Metrics,

Aggregation

Visualization
Layout Engine,

JS/SVG
Generator

Import and Automatic Update

CVS

Store

Super-
Repository

Cache

SVN

dot
graph layouting

Softwarenaut
Architecture
recovery tool

Internal Representation
Projects, Developers, Histories

Web
portal

Users

1

2

3

4

5 6

Fig. 7 The architecture of SPO

1. The import module is responsible for interfacing with
the super-repository. Currently, SPO supports two types
of super-repositories: one based on SVN and another
one based on Store, a Smalltalk-specific repository.

2. The internal representation is a meta-model [35] for
representing super-repositories and ecosystems. SPO
supports the analysis of multiple models at the same
time.

3. The analysis module is responsible for computing met-
rics, discovering collaborations, analyzing developer
and project vocabularies, aggregating dependencies, and
all the other types of analysis that are to be performed
on an ecosystem model.

4. The cache module. Due to the highly interactive and
exploratory nature of the tool, SPO generates dynam-
ically all the web pages and all the visualizations they
contain. This module caches across sessions all the infor-
mation that is needed in order to speed-up the view
generation.

5. The visualization module takes as input information
from the internal representation, analysis, and cache
modules and generates views from it. The module con-
tains the layout engine, which delegates the layouting
to the Dot external tool3, and the SVG generator. The
generator produces the SVG graphics and the associated
Javascript interaction.

6. The web portal is the user interface of SPO. Like
Churrasco, it is built on top of the Seaside framework, a
web application framework which emphasizes a compo-
nent-based approach to web application development.

2.3 Beyond Churrasco and SPO

Figures 1 and 7 show the architecture of Churrasco and SPO.
We abstracted a general architecture for web-based software
visualization tools displayed in Fig. 8.

3 See http://www.graphviz.org.

123

http://www.graphviz.org

On porting software visualization tools to the web 187

Target

Internal representation
Meta-model

Users

Importers

Data n

Data1

Internal analysis
(measures, metrics etc.)

Visualization
engine

Visualization
exporter

Cache

Web portal

Optional
component

1 2

3

65

4

7

9

8

A

Web based software visualization tool

Fig. 8 General architecture of a web-based software visualization tool

Dashed elements are optional components. Software visu-
alization tools provide views on one or more aspects (e.g.,
source code, bug report, mail archive, etc.) of a software.
Therefore, they have an importer module (1) which retrieves
the data and stores it according to an internal representation
(2). The data are then optionally processed to compute met-
rics (3) about the considered aspects. The data are finally
visualized by means of a visualization engine (4). In case
the engine does not produce a web suitable visualization,
an exporter (5) is used to create the web visualization. To
improve the performances one can use a cache component
(6) which avoids recomputing the visualizations. The soft-
ware visualization tool has a web portal which displays the
visualizations (7), imports the data (8), accesses the models
(9), and computes the metrics (A).

3 Promises and perils

In this section, we recall our experience building Churrasco
and SPO and extract various aspects in the form of promises
and perils, summarized in Table 1.

Promise 1 - Availability: Porting software visualization
tools to the web makes them more available than desktop
applications.

Many research prototypes have problems with respect to
their availability. Often such prototypes are hard to install
because of compatibility issues, missing libraries, missing
documentation, etc. Among the various reasons behind the
availability problem, one is that researchers do not have the
manpower required to create and update documentation,
maintain the software, keep the web site (when existing) up-
to-date, etc.. Moreover, academic research is mostly publi-
cation-driven, and not tool-driven, ı.e. there is little direct
benefit that comes with maintaining tools.

Tracking the evolution of systems and components
requires further effort, as compatibility issues occur over time
when new versions of components the tool depends on are

released. Having the application running on a Web server
means that the environment can be frozen, so that supporting
the latest version of a component is not a priority.

Indeed, porting research prototypes to the web increases
the availability of such tools and avoids installation prob-
lems. In the case of both Churrasco and SPO all that needs
to be given to users is the url.

Peril 1 - Privacy: Sensitive information about software
systems should not be available for unauthorized people.

Having a tool available on the web implies that anybody
can access it. Web-based software visualization tools might
have access to sensitive information about a software sys-
tem, which should be accessible only by authorized people.
For this reason, such tools should provide an authorization
mechanism that is not required for desktop applications.

In Churrasco we tackled this problem by letting only regis-
tered users access the visualizations, and by giving different
users different privileges. SPO does not implement authen-
tication yet. As a result, when we approached an industrial
partner for a case study on the ecosystem of the company, the
partner declined to import their data in the online version of
SPO. They installed a local version of SPO on their intranet
and performed the analysis themselves.

Promise 2 - Collaboration: Porting software visualiza-
tion tools to the web eases the process of making them
collaborative.

Sharing the data among users naturally leads to collab-
oration. Virtually all software is nowadays built in a col-
laborative fashion. This ranges from the usage of software
configuration management systems (SCM) supporting dis-
tributed development, now widely used in practice [18],
awareness tools to prevent upcoming conflicts [50], to fully
integrated solutions such as IBM’s Jazz [21].

Just as the software development teams are geographically
distributed, consultants and analysts are too. Analysis tools
supporting collaboration would allow different experts with
a distinct range of skills to collaboratively analyze a software
system from various locations and/or time zones.

Churrasco supports collaboration using a central database.
Different users access the same web portal, and analyze the
same models of software systems. Users collaborate by anno-
tating the model entities and by looking at other people’s
annotations. This simple collaboration facility proved useful
in the experiment we report on in Sect. 4. Improving it via
the addition of richer communication channels, such as chat
or tagging, is easy to achieve in a web application.

Desktop applications can also support collaboration, but
we argue that this is harder to implement. In this case, the
various instances of the application need a communication

123

188 M. D’Ambros et al.

Table 1 Summary of promises and perils

Availability and Privacy

Promise 1 Porting software visualization tools (SVT) to the web makes them more available than desktop applications

Peril 1 Sensitive information about software systems should not be available for not authorized people

Collaboration and Performance

Promise 2 Porting SVT to the web eases making them collaborative

Peril 2 Web-based software visualization applications (WBSVA) have to serve large amounts of data to several
users, which can be a performance bottleneck impacting all users

Promise 3 WBSVA ease the creation of an incrementally enriched knowledge about a software

Error Handling

Peril 3 WBSVA are single points of failure

Peril 4 Debugging and testing web applications is hard

Promise 4 WBSVA provide feedback about errors

Promise 5 WBSVA make it possible to gather usage data

Development

Peril 5 WBSVA have to tackle cross browser issues

Peril 6 Developing interactive web applications is hard

Peril 7 Web technologies are changing fast

Promise 6 WBSVA can use external tools to perform a number of tasks, exposing only the results as services

Promise 7 Updating an WBSVA is easy since it is only done once for all the users

Measurements

Promise 8 One can selectively deploy changes to a group of users and measure their effect

channel among themselves directly in a peer-to-peer fash-
ion or using a centralized server. This leads to networking
issues due to firewalls. We are not aware of software visu-
alization tools which support collaboration, but a number of
visualization tools in other domains support it [2,17].

Peril 2 - Performance and scalability: Collaborative,
visual web applications have to serve large amounts of
data to several users at the same time, which can be a
performance bottleneck impacting all users.

Web applications have to serve several users at the same
time, and collaborative applications even more so. Depend-
ing on the number of users and the type of application, the
performance per user might decrease. This is especially true
for visualization applications, where for large datasets both
the computation time and the size of the data to be sent to the
user’s browser might be large, increasing the user’s waiting
time and thus decreasing the usability of the application.

Visualization must scale up as it is most useful to deal
with large amounts of data. Since the visualizations are ren-
dered on the client side, bandwidth can become and issue.
For example, in Churrasco an SVG graphic visualizing the
ArgoUML software system (ca. 1800 classes) is larger than
1 MB, while SPO generated SVG images going up to 2MB.
SPO, however, reduces the bandwidth by compressing the
data to be sent, effectively trading CPU usage for increased
bandwidth. In that case the 2 MB file was reduced to 150 KB.

The standard way of rendering a web visualization is that
every time something changes in the page, the whole page is
refreshed. In the context menu example, whenever the user
clicks on a figure the page changes because a new figure
appears, and therefore the page needs to be refreshed to show
the menu. Refreshing the entire web page for every action
introduces latencies which make the web application slow
when it comes to rendering large SVG files. One way to
avoid this problem is to use semantic zoom and details on
demand to keep the rendered image small. Churrasco can
focus on a single package of a system, while SPO allows the
definition of filters. Another possibility is to minimize the
page refreshes by using AJAX updates, which refresh only
the changed part of the page, as Churrasco does. However,
while the use of AJAX has been simplified, it is still non-
trivial. The current standard is to use libraries such as Proto-
type or jQuery.

Concurrent usage is an issue in the context of collaborative
work. With Churrasco and SPO we performed two experi-
ments, with eight participants each, with mixed results with
respect to performance (see Sect. 4). Due to the small number
of participants we refrain from making general statements.

This peril can be tackled by having several instances of
the web application running on several servers, with a web
server responsible of dispatching the requests and balancing
the CPU and bandwidth loads. While this solution is stan-
dard fare in web applications, for research prototypes such
a hardware infrastructure is often not available. However,

123

On porting software visualization tools to the web 189

when infrastructure is an issue, one can exploit cloud com-
puting services which provide data replication and scalability
transparently. Typical examples of cloud computing service
providers are Google, Amazon, and Salesforce.

Promise 3 - Incremental results: Web-based software
visualization tools ease the creation of an incrementally
enriched body of knowledge on software systems.

Despite performance and scalability issues, sharing the
data paves the way for new possibilities. Results of analy-
ses on software systems produced by tools are often written
into files and/or manually crafted reports, and have there-
fore a limited reusability. To maximize their reuse, analysis
results should be incrementally and consistently stored back
into the analyzed models. This would allow researchers to
develop novel analyses that exploit the results of previous
analyses, leading to a cross-fertilization of ideas and results.
It can also serve as a basis for a benchmark for analyses tar-
geting the same problem (ı.e. by tagging entities that a can-
didate analysis should detect, we can compare approaches),
and ultimately would also allow one to combine techniques
targeting different problems.

By using a central database where all the models are
stored, and by letting users annotate the entities compos-
ing the models, the users can store the results of the analysis
on the model itself, thus supporting the incremental storage
of results. This is supported in Churrasco, and can be eas-
ily implemented in other web-based software visualization
applications, in the same fashion.

Peril 3 - Single point of failure: Web-based applications
are single points of failure.

Excessive centralization reduces the reliability of the
application. Web-based applications run on a server, and usu-
ally have a unique instance of the application which all the
users access. As a consequence, if the application crashes
it will lock out all its users, ı.e. the application represents a
single point of failure, whereas in desktop applications each
user has a private instance of the application, where a crash
does not impact the other users. This peril can be tackled,
together with performance, by distributing the computation
on several servers for redundancy.

Peril 4 - Debugging and testing: Debugging and testing
web applications is hard.

A barrier to develop web applications is the lack of sup-
port for debugging. Even if there are some applications like
Firebug (http://getfirebug.com) providing HTML inspection,
Javascript debugging and DOM exploration, the debugging
support is not comparable with the one given in mainstream
IDE such as Eclipse. Moreover, the testing of a web-based

system is hard to perform, due to the lack of consolidated
techniques and supporting tools.

Promise 4 - Feedback: Web-based software visualization
tools provide feedback about errors and failures.

If debugging a web application is more difficult than a
desktop one, being notified of bugs and deploying the fixes
is actually easier. Because of the restricted manpower avail-
able when developing them, research prototypes are far from
being mature and stable applications. Indeed, researchers do
not have the resources to invest a significant amount of time
testing their application. These problems impact the usage
of the tools and therefore their adoption by other researchers
or people from industry. One way to be notified about these
issues is to instrument the tool so that if it crashes, it collects
information about the run-time scenario and then asks the
users to send this information back to the developers. This
widely adopted approach requires a significant infrastructure
and is therefore mostly used in commercial applications.

By having the tool as a web service, the tool is always
running on the server, and therefore the tool developer can
be notified of all bugs and failures. Bug fixes also do not need
to be distributed to individual users, but are available to all
users at once.

Promise 5 - Usage report: Web applications make it pos-
sible to gather precise usage data.

Similarly to error notifications, gathering usage data is
easy. With desktop applications it is possible to track the num-
ber of downloads of a tool, and the tool might be instrumented
to send back feedback about how it is used. This is, however,
not straightforward to implement. Web-based applications
offer the possibility to exploit standard solutions to the usage
statistics problem, such as Google analytics. This allows
developers to easily gather usage statistics and infer pop-
ular features or usability problems, to continuously improve
the tool. As with bug fixes, deploying updates is transparent.

Peril 5 - Browser compatibility: Web applications have
to tackle cross browser issues.

Web browsers are a rather diverse crowd, and the fact that
a web application works with one browser does not guarantee
that it works with other browsers. While many compatibil-
ity issues can be solved, such as how CSS (Cascading Style
Sheets) are interpreted, others cannot. In these cases the users
have to focus on a particular web browser to exploit the full
functionality of the web application.

Visualization applications have requirements which make
this situation more probable: for instance, Churrasco uses
AJAX callbacks to update SVG depictions without refresh-
ing the entire web page. The SVG DOM update in AJAX is

123

http://getfirebug.com

190 M. D’Ambros et al.

supported only by Firefox and, as a consequence, Churrasco
is only fully functional with Firefox.

SVG is a W3C specification and most of the recent ver-
sions of major web browsers support it: Opera and Safari
support it without AJAX update and Internet Explorer sup-
ports it through a third party plug-in. However, not all the
browsers have the same speed in rendering it, which makes
the user experience unpredictable. To test this, we wrote a
simple Javascript program which calculates the rendering
speed of various browsers. We ran the script in OS X on a
PowerBook G4 running at 1.5 GHz with 1 GB of RAM. The
differences between the browsers are very large. For exam-
ple, in one second Opera 9.50 renders 595 polygons while
Safari only renders 77. This simple benchmark shows two
of the greatest limitations of SVG: the amount of visual ele-
ments that one can render is limited (at least currently) and
the user experience is hard to predict, as the timings will be
different for users with different system configurations. Also,
we encountered problems with the same pop-up menu being
rendered differently in two browsers.

Other technical choices such as Flash or Javascript (with
APIs such as Processing.js or the Javascript InfoVis Tool-
kit) may alleviate these problems. Javascript in particular
has seen a resurgence of interest among web browser build-
ers who now compete over their Javascript performance (see
Sect. 6 for details about these issues).

Finally, it is not unreasonable to require a widespread
browser such as Firefox over Internet Explorer if the ben-
efits of the application are promising enough.

Peril 6 - Interaction: Developing interactive web appli-
cations is harder than desktop applications.

Supporting interaction through a web browser is a non-
trivial task, and even supposedly simple features, such as
context menus, must be implemented from scratch. In Churr-
asco context menus are implemented as SVG composite fig-
ures, with callbacks attached, which are rendered on top of
the SVG visualization. In SPO such menus are dynamically
generated by Javascript. It is hard to guarantee a respon-
sive user interface, since every web application introduces a
latency due to the transport of information.

However, libraries of reusable components are quickly
developing, such as Prototype, script.aculo.us and jQuery for
Javascript, which should alleviate this problem. We provide
a more detailed discussion on this in Sect. 6.

Peril 7 - Rapid evolution: Web technologies are changing
fast.

The dust is far from settled in the web technology arena. As
we saw above, several technologies (SVG, Flash, Javascript,
etc.) are currently competing. These technologies are rapidly
evolving: new possibilities are emerging, and the amount of

support among browsers varies. This rapid evolution makes it
difficult to choose which tools/libraries/technologies to use,
and to maintain the web application aligned with the rap-
idly evolving technologies. Developers must be watchful of
new opportunities and potentially capable to switch to newer
technologies when needed. We hope that, with time, standard
solutions will emerge for highly interactive, graphical web
applications.

Promise 6 - Hiding tasks and exposing services: Web-
based visualization applications can use external tools to
perform tasks, exposing the results as services.

Some aspects of web application development are, how-
ever, easier. Implementing software visualization tools as
web applications allows the developer to use external tools
in the backend, hiding them from the users. On the contrary,
in desktop applications external tools have to be included in
the application distribution, and they should run on the client
machine (which might also have installation problems like
the application itself). In short, the web application developer
has total control over the environment the application is
executing in.

The use of external tools offers a lot of reuse opportunities,
such as layout engines. For example, Churrasco reuses two
external tools (Mondrian [42] and the Evolution Radar [10])
to create visualizations, which are then converted to SVG by
a dedicated module of Churrasco (see Fig. 9a). This enables
us to freely reuse all the visualizations and layouts provided
by Mondrian and the Evolution Radar. SPO is dispatching
the layouting of its visualizations to Dot, a Unix command
line layout algorithm library (see Fig. 9b).

SPO also exposes the service of Softwarenaut [36], an
architecture recovery tool whose visualizations where
adapted to the Web. Moreover, SPO is processing huge
amounts of data (entire super repositories) when there are no
user connected, ı.e. exploiting idle time, caching the results
and presenting them on-demand to the users. In this way,
SPO is hiding heavy computations and presenting only the
results as a lightweight service. Churrasco does the same
thing when, given the url of a SVN or Bugzilla repository, it
sends an email to the user when the data are imported.

Figure 10 shows how the usage of external tools can be
generalized: the web interface gets the request for a visuali-
zation and dispatches it to an external tool. The result is then
converted in a web-suitable format and sent back through the
web interface to the clients’ web browsers.

Promise 7 - Updating and maintaining: Updating a web-
based visualization application is easy since it is only done
once for all the users.

In our experience with developing visualization tools as
desktop applications, usually deploying a new version takes

123

On porting software visualization tools to the web 191

Web
interface

Mondrian

Visualization (SVG) request

Churrasco

SVG
converter

Visualization request

Visualization SVG
1

2

3 4
Web

interface

Dot

Visualization (SVG) request

SPO

Viz module
Laid out viz

Layout request

SVG 1

3 2

4 5

(a) (b)

Fig. 9 Two examples of using external tools in Churrasco and SPO. a Churrasco uses the Mondrian framework in the backend to create visualiza-
tions and then it converts them as SVG interactive graphics. b SPO uses the Dot external tool to layout its visualization

Web
interface

External tool
running on the server

Web based visualization application

Conversion
module 1

2

3 4
Viz request

Viz request

Viz web-suitable viz

Fig. 10 The general schema for using external tools in web-based visu-
alization applications and hiding them behind the web interface

weeks or months, since one needs to put up a new release
and then inform all the users.

One of the main advantages of having a visualization tool
available for the web is the ability to update and maintain
the application without distributing and installing software
on numerous client computers. The updates can be done only
once on the server. This promise is one of the building blocks
of promises 4 and 5, as they rely on the instant availability
of updates. The associated risk is that defective updates will
also propagate instantly to all users; careful testing is needed.

This promise is more general than just for visualization
applications, but we feel like this is one of the strong argu-
ments that will bring more software visualization applica-
tions to the web in the future.

Promise 8 - Selective deployment and feedback: One
can selectively deploy changes to a group of users and
measure their effect.

Web applications being easier to update and providing
feedback allows one to measure the effects of changes on the
users. Assuming an application has a steady amount of users,
and gathers usage statistics about how the users are using it,
one can measure the effect of changes in the following way:

– The users are divided in two groups, one using the appli-
cation with the change (such as the introduction of a novel
visualization, or changes to an existing one), while the
second group uses the application without the change.
The possibility of deploying updates transparently,
thanks to Promise 7, makes this possible.

– The application gathers usage statistics about both groups
of users as they are using the application (using Promise 5
in order to do so). The monitoring can be as fine-grained
as needed (i.e., recording individual mouse clicks on web

page elements, with their time stamps). If the monitor-
ing already in place is insufficient, it can be deployed as
another update as well (and removed later on if it proves
to be detrimental to performance, such as if it increases
communications between clients and the server beyond
what is expected).

– A suitable performance metric can be devised and com-
puted on the collected data, in order to assess the impact
of the change introduced. One could, for example, mea-
sure if a novel visualization produces a statistically sig-
nificant decrease of the time needed to perform a given
task by comparing the timestamps of events, or evaluate
differences in correctness if one took time to tag before-
hand the entities that a given task is supposed to uncover
(as mentioned in Promise 3).

This promise is important for visualization techniques,
which are usually hard to evaluate without performing a
controlled experiment. Such a technique could allow one
to deploy enhancements and measure their impact using a
lighter and more automated process than a regular controlled
experiment would allow.

4 Promises and perils in practice

We report on two experiments we performed on small groups
of users, in order to test some of the promises and perils
we described in a real-life setting. In particular, we test the
impact of Peril 2 (performance), and the benefits of Promise 1
(availability), Promise 2 (Collaboration), and Promise 7 (Ease
of updates).

4.1 A collaboration experiment with Churrasco

We performed a collaboration experiment using Churrasco,
with the following goals: (1) evaluate whether Churrasco is
a good means to support collaboration in software evolution
analysis (Promise 2), (2) test the usability of the tool as an
exemplar of a web-based reverse engineering and visualiza-
tion tool (Promise 1), and (3) test the scalability of the tool
with respect to the number of participants (Peril 2).

We performed the experiment in the context of a univer-
sity course on software design and evolution. The experiment

123

192 M. D’Ambros et al.

JMolViewer

Viewer

Graphics3D

Eval

JMolSimpleViewer

JMol
PngEncoder

BondIterator

Fig. 11 A System Complexity of JMol. The color denotes the amount of annotations made by the users. The highlighted classes (thick boundaries)
are annotated classes

lasted 3 hours: during the first 30 min, we explained the con-
cept of the tool and how to use it; in the following 2 h (with
a 15 min break in the middle) the students performed the
actual experiment, and in the last 15 min they filled out a
questionnaire about the experiment and the tool. The partici-
pants were five master students, two doctoral students work-
ing in the software evolution domain, and one professor. The
Master students were lectured on reverse engineering topics
before the experiment.

4.1.1 Case study and tasks

The task consisted in using two Churrasco visualizations
(System Complexity and Correlation View) and looking at
the source code to (1) discover classes on which one would
focus reengineering efforts (explaining why), and to (2) dis-
cover classes with a big change impact. The target system
chosen for the experiment was JMol, a 3D viewer for
chemical structures, consisting of ca. 900 Java classes.
Among the participants only one possessed some knowledge
about the system.

Figure 11 shows a System Complexity of JMol in which
the size of nodes maps to the number of attributes (width) and
methods (height) and the nodes’ color represents the amount
of annotations they received (the darker the color, the more
the annotations), ı.e. number of annotations weighted with
their length. We see that the most annotated class is Viewer,
the one with the highest number of methods (465). However,
we can also see that not only the big classes (with respect
to methods and/or attributes) were commented, but also very
small classes.

4.1.2 Usage of collaborative annotations

In the assigned time the participants annotated 15 different
classes for a total of 31 annotations, distributed among the
different participants, ı.e. everybody actively participates in
the collaboration. The average number of annotations per
author was 3.87, with a minimum of 2 and a maximum of 13.

The annotations were also used to discuss about certain
properties of the analyzed classes. In most of the cases the
discussion consisted in combining different pieces of knowl-
edge about the class (local properties as number of methods
with properties of the hierarchy with dependency etc.).

4.1.3 User survey

At the end of the experiment all participants but one filled
out a survey about the tool and the collaboration experience.
The survey used a Likert scale [33]; its results are shown in
Table 2.

Although not a full-fledged user experiment, it provided
us with information about our initial goals. The survey shows
that the participants found the tool easy to use: this is impor-
tant in the context of web-based tools, and especially with
respect to Promise 1 as the goal is to lower the users’ bar-
rier to entry. Moreover, the survey provides us feedback
about Promise 2: participants found collaboration impor-
tant in reverse engineering and Churrasco as a good means
to support collaboration (for the participants the experiment
was the first collaborative reverse engineering experience).
Informal user comments from the users stated that they espe-
cially liked to be notified of annotations from other people
on the entity they already commented, or to see what was

123

On porting software visualization tools to the web 193

Table 2 Evaluating the
usability and collaboration
support of Churrasco

SA strongly agree, A agree,
N Neutral, D disagree, SD
strongly disagree

Assertion SA (%) A (%) N (%) D (%) SD (%)

Churrasco is easy to use 33 50 17

System Complexity view is useful 73 27

Correlation view is useful 72 14 14

Churrasco is a good means to collaborate 100

Collaboration is important in reverse engineering 14 72 14

Table 3 Evaluating the
usability of SPO

SA strongly agree, A agree,
N Neutral, D disagree, SD
strongly disagree)

Assertion SA (%) A (%) N (%) D (%) SD (%)

Application was easy to use 20 70 10

Application was responsive enough 10 30 40 20

Interaction features were satisfying 30 60 10

going on in the system and which classes were annotated,
to also personally look at them. Further, Churrasco scaled
well with eight people accessing the same model on the web
portal at the same time, without any performance issue, even
if we did not implement any load-balancing scheme: Churr-
asco was running on a 3 GHz, dual-processor server at the
time. This alleviates our concerns about the scalability peril
somewhat.

4.2 A usability experiment with SPO

To verify the usability and usefulness of SPO, we conducted
an experimental study in the context of the Software Evo-
lution course at the University of Lugano. The course is a
master level course.

During one of the labs we introduced the students to the
concept of a software ecosystem and then presented the Pro-
ject Observatory. After that, we gave the students 1 h of time
to analyze an academic ecosystem and report on their under-
standing as well as the usability of the tool. The ecosystem
that we used as case study is the one hosted by the Software
Composition Group from the University of Berne, an eco-
system which contains tens of developers and hundreds of
projects.

At the end of the analysis the students had to answer sev-
eral questions that were testing their understanding of the
relationships between the developers in the ecosystem as
well as the importance and relationships between the projects
in the ecosystem (e.g., Which project is more important in
for the ecosystem A, or B? Which developer is more critical
to the ecosystem?).

During the experiment, we had the chance of testing Prom-
ise 7. At one point, soon after the beginning of the experiment,
one of the students discovered a bug in the application. We
immediately fixed the bug and updated the application on the
server, such that all the participants could benefit from the
fix.

After answering the questions regarding the ecosystem,
the students had to rate on a Likert scale their own under-
standing of the various aspects of the ecosystem. The major-
ity felt that the analysis session was useful in supporting their
understanding of the analyzed ecosystem.

At the end of the experiment, we asked the participants to
fill out a survey on the usability of the tool. Table 3 shows
that in general the participants were happy with the UI and
ease of use of the tool. We report more on the case-study
elsewhere [39].

The main complaint was the slowness of the tool and
the lack of scalability when presenting large graphs. These
problems were not inherent in the web-based nature of the
application, but rather they were problems with the back-end
implementation which represented a computational bottle-
neck. In fact the application was not slow in our previous
tests, but that was because we only tried it with a single user
at a time before. This was a confirmation of Peril 2 - the use
of the tool by multiple users at the same time resulted in a
performance degradation that we did not see before.

When asked about the interaction capabilities of the tool
30% of the students were satisfied, 60% were neutral, and
10% were not satisfied. This means that we have to work
more on the interaction aspects of SPO. Students also men-
tioned that the filtering capacities were very important and
the current filtering that SPO offers needs to be improved.
However, none of the observations were really specific to the
fact that the tool was run in the browser. In fact, the high
expectations that the students had from the tool were proba-
bly the result of being used to highly interactive web-based
applications.

5 Discussion

We argue that in developing a web-based software visuali-
zation tool the benefits of the promises are greater than the

123

194 M. D’Ambros et al.

mostly technical issues and challenges of the perils. In par-
ticular, we argue that the most important promises are

– Availability. In Sect. 1 we observed that 80% of tools
presented in TOSEM in the past 8 years are not even
installable. The web can improve this situation.

– Reuse. We showed that with web applications it is possi-
ble to hide tasks and provide services. Porting or creating
a web visualization requires a smaller implementation
effort, as not only libraries but even entire external tools
can be reused.

– Collaboration. Collaboration is getting more and more
attention both in forward and reverse engineering. We
believe that this trend will continue and collaboration
will play a key role in these domains in the following
years. We discussed how and why, with web applications,
supporting collaboration is easier with respect to desk-
top applications. Our experiment with Churrasco showed
that users used the collaborative annotations when pre-
sented with the option to do so.

– Selective Deployment. Once an application gathers a
steady stream of users, selective deployment of enhance-
ments allows one to measure their effect in a conve-
nient fashion. The ease of access of a web application
allows one to easily recruit potential users to evaluate
the enhancement on as well.

To increase their survival chances, every software visual-
ization tool, in the long run, should have a web front-end.
This does not require a huge implementation effort because
many existing tools can be just reused, and it will increase
the accessibility of the application and its adoption.

The perils of developing web applications should be, how-
ever, taken into account. The peril of performance in partic-
ular is one we were confronted with when we performed our
experiments on Churrasco and SPO: not all the users found
the applications responsive enough for their tastes. However,
no measure was taken to ensure performance at the time.
Standard techniques such as load-balancing can alleviate this
problem. Finally, the peril of rapid evolution is also a concern.
In such a rapidly evolving domain, it is especially important
to evaluate which technology fits best the developer needs
when it comes to porting or creating a web visualization.
Nowadays the choice is among a number of technologies
that we discuss in the next section.

6 Technologies

In this section, we list the array of technologies available pres-
ently to implement software visualization applications, with
a focus on the ones allowing rich presentations with graphical
and interactive elements. The technologies we consider are

Javascript (using Canvas and/or SVG), Flash, Silverlight, and
Java applets. We summarize all the libraries and frameworks
that we mention in this section in Table 4.

6.1 Javascript and DHTML

Javascript is the standard scripting language of web pages. It
is a powerful language which combines functional and pro-
totypical paradigms. Historically, the support for Javascript
was variable among browsers, with some browsers provid-
ing the same functionality differently. With time the browser
implementations of the language became better and more per-
formant, and the popularity of the language increased. With
the standardization of the DOM by the W3C the way was
paved for building interactive web applications by dynami-
cally modifying the content of a page. This combination of
Javascript and DOM manipulation is called Dynamic HTML
(DHTML).

Once DHTML started to get traction, frameworks and
libraries that mask the quirks and differences of individual
browsers have emerged, offering a unified front to the pro-
grammer. Two of the most widespread libraries are Prototype
and jQuery, which simplify the operations needed to manip-
ulate the contents of a web page, and do so while abstracting
the behavior differences of browsers. Several frameworks
also exist to ease the building of applications featuring a
graphical user interface, such as Dojo, script.aculo.us, Sprout
Core, Mootools, the Yahoo UI Library, or the Google Web
Toolkit. All these frameworks provide both traditional GUI
widgets and advanced graphics, charting, and interaction
widgets.

With Javascript one can dynamically modify a page based
on interaction events triggered by the user, allowing for the
production of interactive graphics on a web page. At the
moment, there are two main supporting technologies that
allow the insertion of graphics in a page. The first is SVG
(Scalable Vector Graphics), a declarative XML-based lan-
guage for vector graphics specification. The second is the
Canvas element introduced by Apple in their WebKit com-
ponent and part of the forthcoming HTML 5 standard.

SVG has a tree structure just as the HTML DOM, and
this allows current browsers to make SVG elements become
part of the DOM. This means that approaches that gener-
ate and manipulate HTML can be easily adapted to integrate
with SVG as well. One can attach event handlers to SVG
elements, and use Javascript to add or alter the structure of
the SVG graphic. SVG also supports animations.

The canvas tag allows one to define a zone on the web
page where one can draw programmatically through Java-
script. Several visualization libraries have been built on top
of the HTML canvas to abstract commonly used functional-
ities, such as Processing.js, Cake, Raphael, and the InfoVis

123

On porting software visualization tools to the web 195

Table 4 Libraries and frameworks available to improve the web experience and to support web-based visualization

Library/Framework Available at Goal License

Prototype http://www.prototypejs.org Simplify Javascript programming and DOM manipulation MIT

Dojo http://dojotoolkit.org Provide basic language extensions, and a rich set of widgets BSD

jQuery http://www.jquery.com Ease DOM traversing, event handling, animating, Ajax interactions GPL, MIT

script.aculo.us http://script.aculo.us Improve user interface MIT

Sprout Core http://www.sproutcore.com Move the app logic to the client (the server deliveries only the data) MIT

Mootools http://mootools.net Simplify and improve Javascript programming MIT

Yahoo UI Library http://developer.yahoo.com/yui/ Build scalable, fast, robust and interactive web applications BSD

Google Web Toolkit http://code.google.com/webtoolkit/ Create JavaScript front-end applications in Java Apache 2.0

Processing.js http://processingjs.org Program visualizations, animations, and interactions in Javascript MIT

Cake http://code.google.com/p/cakejs/ Support scene graph visualizations in Javascript MIT

Raphael http://raphaeljs.com Simplify working with vector graphics in Javascript MIT

InfoVis Toolkit http://thejit.org Create interactive data visualizations for the web BSD

Flare http://flare.prefuse.org Create interactive visualizations in Flash BSD

Google Data Explorer http://www.google.com/publicdata/home Explore datasets with interactive Flash-based visualizations –

Toolkit. All these libraries allow one to build event handlers
on top of graphical elements as well.

These technologies are based on standards, yet the sup-
port for those is not complete. For example, as of February
2010 in a sample of web accesses retrieved by Stat Owl4,
67% were performed by browsers not supporting SVG. Inter-
net Explorer’s support for SVG and the canvas element is
weak. There exist workarounds, but they are not fully sat-
isfactory yet. Version 9 of Internet Explorer should address
these issues, but it is far from being released at this moment
of writing. On the subject of performance, Javascript and
especially SVG are slower than Flash, Java applets and Sil-
verlight, although the situation is changing as browsers are
competing on Javascript performance nowadays. According
to the JS Benchmark5 Chrome 4.0 is the browser with the best
Javascript performance, followed by Safari 4.0 (1.1 times
slower), Opera 10.50 (1.4 times slower), Firefox 3.6 (2.6
times slower), Konqueror 4.3 (5.2 times slower), and IE 8.0
(5.6 times slower).

6.2 Java applets, Flash, and Silverlight

Java applets are Java applications that can run in a web
browser through a Java Virtual Machine. They were designed
to provide interactive features to web applications that could
not be provided by HTML alone. Applets were introduced
in the first version of the Java language in 1995. Although
applets were supported by the majority of web browsers,
and had the advantage of being cross-platform, they did not

4 http://www.statowl.com.
5 http://jsbenchmark.celtickane.com.

become mainstream. Another Java technology that makes
applications easier to deploy and install is Java Web Start. It
allows applications to be downloaded in the browser, and to
be run in an independent sandbox. However, as applications
deployed with Java Web Start do not run in a web browser,
they do not benefit from the novel advantages offered by web
technologies.

Adobe Flash and Microsoft Silverlight are multimedia
platforms that integrate graphics, animations, multimedia,
and interactivity into a single runtime environment. While
Flash is an well-established technology, introduced in 1996,
Silverlight is relatively new, as its first version was released
in April 2007.

The Flash, Silverlight, and Java technologies require the
installation of plugins to launch the applications that they
are written in, as they are not natively supported by brows-
ers. Of the three, Flash has the most significant market-
share. According to Stat Owl, 96% of the browsers have
Flash support, while for Java and SilverLight the percent-
ages are, respectively, 81 and 39%.6 Two popular Flash-based
visualization frameworks are Flare and Google Public Data
Explorer. The latter is an application which provides four
types of interactive visualizations to “explore” datasets: line
chart, bar chart, maps, and bubble chart. Flare is an Action-
Script (the language to write Flash application) library for
creating visualizations: from simple charts to complex inter-
active graphics.

One downside of these technologies is their weak integra-
tion with the browser. A Flash application is usually seen as a

6 In a sample population of web accesses retrieved from September
2009 to February 2010.

123

http://www.prototypejs.org
http://dojotoolkit.org
http://www.jquery.com
http://script.aculo.us
http://www.sproutcore.com
http://mootools.net
http://developer.yahoo.com/yui/
http://code.google.com/webtoolkit/
http://processingjs.org
http://code.google.com/p/cakejs/
http://raphaeljs.com
http://thejit.org
http://flare.prefuse.org
http://www.google.com/publicdata/home
http://www.statowl.com
http://jsbenchmark.celtickane.com

196 M. D’Ambros et al.

“black box”, which does not communicate with the rest of the
web page. This implies that a web visualization tool would
probably need to be implemented either entirely in Flash, or
suffer from the limitations of the communication between
the components of the application. Using Javascript on the
other hand allows one to access all the elements of the web
page at once. Churrasco and SPO use SVG graphics, that, in
response to user interactions, alter also the HTML content
of the page. Were the visualizations to be implemented in
Flash, most of the HTML content would have to be rewrit-
ten in Flash as well, in order to be updated in response to
interactions.

6.3 The bottom line

Figure 12 shows the result of Google Trends on how much
the technologies we present in this section are discussed over
time. We can consider it as a predictor of how these tech-
nologies are supported among developers. In the figure, we
clearly see that the two main contenders are Flash and Java-
script. This is reflected in terms of available libraries: for
instance, considerable effort has been invested to make Java-
script frameworks able to support cross-browser compati-
bility, while other solutions, such as Java applets and SVG
graphics, do not have such a support.

Deciding between a Javascript solution and a Flash-based
solution depends on several factors. For example, in terms
of current and future compatibility with browsers, at the
moment Flash enjoys a wider compatibility. However, this
might not continue, since, on the one hand, several mobile
devices do not support Flash and, on the other hand, the sup-
port for the HTML 5 standard is growing. Other two factors
against Flash are its proprietary technology and the fact that
its content does not cooperate well with the host HTML.
However, Flash still offers better performances and multi-
media capabilities (although a visualization application may
not need to perform advanced tasks, such as playing back
video).

Fig. 12 Technological trends over the last year (as of March 2010), in
terms of Google searches and mentions in news articles of Javascript,
Adobe Flash, Java applets, SVG, and Silverlight

7 Related work

7.1 Software visualization

The goal of software visualization is to support the under-
standing of large amounts of data, when the question one
wants to answer about the data cannot be expressed as que-
ries. Software visualization approaches vary with respect to
two dimensions. The first dimension is the type of visual-
ized data, for which visualizations can be classified as Static
(using the system’s structure), dynamic (using its runtime
behavior), or evolutionary (using its history). The second
dimension is the level of abstraction on the data. Different
levels exist for each visualization type of the first dimension.
Based on their abstraction level, we distinguish three main
classes of software visualization approaches: code-level,
design-level, and architectural-level.

Code-level visualization Line-based software visualization
has been addressed in a number of approaches. The first tool
which uses a direct code line to pixel line visual mapping
to represent files in a software system is SeeSoft, proposed
by Eick et al. in 1992 [16]. On top of this mapping, See-
Soft superimposes other types of information such as which
developer worked on a given line of code or which code
fragments correspond to a given modification request. Later,
Ball and Eick [3] focused on the visualization of different
source code evolution statistics such as code version his-
tory, difference between releases, static properties of code,
code profiling and execution hot spots, and program slices.
Marcus et al. [41] extended the visualization techniques of
SeeSoft by exploiting the third dimension in a tool called
sv3D.

Ducasse et al. [15] worked at a finer granularity level,
using a character to pixel representation of methods in object-
oriented systems. The authors enriched this mapping with
semantic information to provide overviews of the methods
in a system.

Telea et al. [53] proposed a code level visualization tech-
nique called Code Flows, which displays the evolution of
source code over several versions. The visualization, based
on a code matching technique which detects correspondences
in consecutive ASTs, is useful to both follow unchanged code
and detect important events such as code drift, splits, merges,
insertions, and deletions.

Augur [20] is a code level visualization tool which com-
bines, within one visual frame, information about both soft-
ware artifacts and the activities of a software project at a given
moment (extracted from SCM logs). Another tool working
at the code level is CVSscan [58].

Design-level visualization The next level of abstraction,
after code, is the design level where visualizations focus

123

On porting software visualization tools to the web 197

on self-contained pieces of code, such as classes in object
oriented systems. UML diagrams are the industry standard
for representing object-oriented design. Researchers
investigated techniques to enrich and extend standard
UML diagrams. Termeer et al. [54] developed the Metric-
View tool which augments UML class diagrams with visual
representation of class metrics extracted from the source
code.

Researchers also investigated different visualization tech-
niques to represent source code at the design level. Lanza
introduced the polymetric views [31], a lightweight software
visualization technique which renders software entities and
software relationships enriched with software metrics. Poly-
metric views can be enriched with dynamic or semantical
information. Orla et al. exploited a 3D visualization to add
execution trace information to polymetric views in a tool
called TraceCrawler [24]. The tool is a 3D extension of Code-
Crawler [32], the tool where Lanza originally implemeted
polymetric views. Ducasse et al. [14] enriched polymetric
views with information extracted from control flow analysis
in a visualization called class blueprint.

Cornelissen et al. proposed a trace visualization method
[5] based on a massive sequence and circular bundle view
[25], implemented in a tool called ExtraVis. ExtraVis shows
the systems structural decomposition (e.g. in terms of pack-
age structures) and renders traces on top of it as bundled
splines, enabling the user to interactively explore and ana-
lyze program execution traces.

Another direction of research is the use of metaphors to
represent software. Wettel et al. argue that a city is an appro-
priate metaphor for the visual representation of software sys-
tems [59] and implement it in their CodeCity tool [60], where
buildings represent classes and districts represent packages.
Kuhn et al. [30] used a cartography metaphor to represent
software systems. In their Software Cartographer tool the
authors use a consistent layout for software maps in which
the position of a software artifact reflects its vocabulary, and
distance corresponds to similarity of vocabulary.

A number of evolutionary visualizations were proposed
at the design level, rendering information extracted from
SCM logs. Taylor and Munro [52] used visualization together
with animation to study the evolution of a CVS repository.
Rysselberghe and Demeyer [56] used a simple visualization
of CVS data to recognize relevant changes in the software
system. Wu et al. [61] used the spectograph metaphor to visu-
alize how changes occur in software systems. The Ownership
Map [23], introduced by Gîrba et al. visualizes code owner-
ship of files over time, based on information extracted from
CVS logs. The Evolution Radar visualizes co-change infor-
mation extracted from SCM logs, integrating different levels
of abstraction, to support the analysis of the coupling at the
module level and the understanding of the causes at the file
level [10].

Architectural-level visualization The highest level of
abstraction is the architecture level, consisting of system’s
modules and relationships among them. In 1988 Müller et
al. [43] introduced Rigi, the first architectural visualization
tool. Rigi is a programmable reverse-engineering environ-
ment which provides interactive visualizations of hierarchi-
cal typed graphs and a Tcl interpreter for manipulating the
graph data. Other architecture visualization tools were built
on top of it [27,46] and it inspired other architectural visu-
alization projects. Two of them were Shrimp [51] and its
Eclipse-based continuation Creole [34]. These tools display
architectural diagrams using nested graphs where graph
nodes embed source code fragments.

Lungu et al. [36] introduced Softwarenaut, an architec-
tural visualization and exploration platform on top of which
they experimented with automatic exploration mechanisms
[37]. Knodel et al. [29] proposed a tool called SAVE which
uses UML-like figures to represent architectural components.
Jazayeri et al. [26] used a three-dimensional visual repre-
sentation at the architectural level for analyzing a software
system’s release history. Gall et al. [22] used a graph-based
representation to visualize historical relationships among
system’s modules extracted from the release history of a
system. The authors applied the visualization to analyze
historical relationships among modules of a large telecom-
munications system and showed that it supported the
understanding of the system architecture. Pinzger et al. [47]
proposed a visualization technique based on Kiviat diagrams.
The visualization provides integrated views on source code
metrics in different releases of a software system together
with coupling information computed from CVS log files.

Summing Up We surveyed software visualization
approaches and tools in the literature: they vary with respect
to the data they visualize and the abstraction level they
address. However, none of the mentioned approaches is web
based, while both Churrasco and SPO are. Concerning the
classification of our tools as software visualization
approaches, Churrasco is an evolutionary approach at the
design level, while SPO is an evolutionary approach at the
architecture level.

7.2 Web based software visualization

There is a wide range of visualization tools that work on
the web. ManyEyes is one of the most well-known web site
where users may upload data, create interactive visualiza-
tions, and carry on discussions [57]. The goal of the site is to
support collaboration around visualizations at a large scale
by fostering a social style of data analysis. Recently, Google
introduced the Data Explorer, another application targeted at
general data visualization.

123

198 M. D’Ambros et al.

To our knowledge, besides Churrasco and SPO, the only
web-based software visualization tools are Tesseract [49] and
the Java applet version of Shrimp.7 Tesseract is a Flash-based
tool which provides interactive visualizations of relation-
ships between files, developers, bugs, and e-mails. The main
difference between our tools and Tesseract is that Churrasco
and SPO address the problem of understanding a system’s
(or eco-system’s) evolution, while the goal of Tesseract is to
support the analysis of the socio-technical relations between
code, developers, and issues. Shrimp running as a Java applet
is identical to the desktop version, functionality wise, but
slower in terms of performance. While Shrimp supports the
exploration of software architecture, our tools focus on soft-
ware evolution analysis.

Apart from Tesseract and Shrimp, the most related work
are software visualization tools which produce outputs read-
able by web browsers, and web-based software analysis tools
without visualizations. Beyer and Hassan [4] proposed Evo-
lution Storyboards, a technique that offers dynamic views.
The storyboards, rendered as SVG files, depict the history
of a project using a sequence of panels, each representing
a particular time period. These visualizations are partially
interactive; they only show the names of the entities in the
figures. In contrast, the views offered in Churrasco and SPO
are fully interactive, providing context menus for the figures
and navigation capabilities. The Evolution Storyboard is not
a web application, but a tool producing SVG files readable
by browsers.

Nentwich et al. [45] introduced BOX, a portable,
distributed and interoperable approach to browse UML
models. BOX translates a UML model in XMI to VML
(Vector Markup Language), which can be directly displayed
in a web browser. BOX enables software engineers to access
and review UML models without the need to purchase licen-
ses of tools that produced the models. As the Evolution Sto-
ryboard, BOX is not a web application but a tool which can
produce output readable by some web browsers.

Mancoridis et al. [40] presented REportal, a web-based
portal site for the reverse engineering of software systems.
REportal allows users to upload their code (Java or C++)
and then to browse, analyze, and query it. These services are
implemented by reverse-engineering tools developed by the
authors over the years. For doing that the authors exploited
promise 6—hiding tasks and exposing services. REportal
supports software analysis through browsing and querying,
but does not offer interactive visualizations.

Finnigan et al. [19] developed the Software Bookshelf, a
web-based paradigm for the presentation and navigation of
information representing large software systems.

While we are aware of one research project that aims at
developing a web-based IDE [55], we believe that this trend

7 Available at http://www.thechiselgroup.com/shrimp.

will continue and this kind of efforts will be duplicated by
other researchers in the future.

8 Conclusion

Building software visualization tools for the web is a daunt-
ing task that we experienced first-hand when we implemented
two web-based tools, Churrasco and SPO. We documented
our experiences in the form of promises and perils of such a
transition, and evaluated some of these promises and perils
in practice by means of two usability studies of the tools we
implemented.

The transition to the web has a variety of technological
consequences making some tasks harder (e.g. debugging,
scaling), but some other easier (e.g. error reporting, main-
tenance). The web is a moving target: technologies and stan-
dards are rapidly changing, and one must regularly assess the
technological choices made in the light of changing support
across browsers. We did such an assessment, as of March
2010, and found that the leading contenders are Javascript
and Flash. Flash is currently more performant, but tends to
not cooperate well with the rest of the web page, hence limit-
ing its usefulness if the visualizations and the rest of the page
need to communicate.

If completed, a transition to the web is rewarding: a web-
based tool has a greater visibility and potential impact, as peo-
ple can work with it without needing to install it. A web plat-
form also makes collaboration a more probable possibility, as
the costs to implement it are lower than in standalone applica-
tions. As our experiment showed, once given the possibility,
people will effortlessly use the collaborative facilities.

Acknowledgments We gratefully acknowledge the financial support
of the Swiss National Science foundation for the project “DiCoSA”
(SNF Project No. 118063).

References

1. Rigi–an environment for software reverse engineering, explora-
tion, visualization, and redocumentation. Science of Computer
Programming, 75(4), 247–263 (2010). Experimental Software and
Toolkits (EST 3): A special issue of the Workshop on Academic
Software Development Tools and Techniques (WASDeTT 2008)

2. Bajaj, C., Cutchin, S.: Web based collaborative visualization of
distributed and parallel simulation. In: Proceedings of the IEEE
symposium on Parallel visualization and graphics (PVGS 1999),
pp. 47–54. IEEE Computer Society (1999)

3. Ball, T., Eick, S.: Software visualization in the large. IEEE Comput
Soc 29(4), 33–43 (1996)

4. Beyer, D., Hassan, A.E.: Animated visualization of software history
using evolution storyboards. In: Proceedings of the 13th Working
Conference on Reverse Engineering (WCRE 2006), pp. 199–210.
IEEE CS Press (2006)

5. Cornelissen, B., Zaidman, A., Holten, D., Moonen, L., van
Deursen, A., van Wijk, J.J.: Execution trace analysis through

123

http://www.thechiselgroup.com/shrimp

On porting software visualization tools to the web 199

massive sequence and circular bundle views. J. Syst. Softw. 81(12),
2252–2268 (2008)

6. D’Ambros, M., Lanza, M.: Reverse engineering with logical cou-
pling. In: Proceedings of WCRE 2006 (13th Working Confer-
ence on Reverse Engineering), pp. 189–198. IEEE CS Press, Los
Alamitos (2006)

7. D’Ambros, M., Lanza, M.: A flexible framework to support col-
laborative software evolution analysis. In: Proceedings of CSMR
2008 (12th IEEE European Conference on Software Maintenance
and Reengineering), pp. 3–12. IEEE CS Press, Los Alamitos (2008)

8. D’Ambros, M., Lanza, M.: Visual software evolution reconstruc-
tion. J Soft Maint Evol Res Pract (JSME) 21(3), 217–232 (2009)

9. D’Ambros, M., Lanza, M., and Lungu, M.: The evolution radar:
visualizing integrated logical coupling information. In: Proceed-
ings of MSR 2006 (3rd International Workshop on Mining Soft-
ware Repositories), pp. 26–32 (2006)

10. D’Ambros, M., Lanza, M., Lungu, M.: Visualizing co-change
information with the evolution radar. Trans. Softw. Eng. (TSE)
35(5), 720–735 (2009)

11. D’Ambros, M., Lanza, M., Pinzger, M.: a bug’s life” — visualizing
a bug database. In: Proceedings of VISSOFT 2007 (4th IEEE Inter-
national Workshop on Visualizing Software For Understanding and
Analysis), pp. 113–120. IEEE CS Press, Los Alamitos (2007)

12. Ducasse, S., Pollet, D., Suen, M., Abdeen, H., Alloui, I.: Package
surface blueprints: visually supporting the understanding of pack-
age relationships. In: Proceedings IEEE International Conference
on Software Maintainance (ICSM 2007), pp. 94–103, IEEE CS
Press, Los Alamitos (2007)

13. Ducasse, S., Gîrba, T., Nierstrasz, O.: Moose: an agile reengineer-
ing environment. In: Proceedings of ESEC/FSE 2005, pp. 99–102
(2005)

14. Ducasse, S., Lanza, M.: The class blueprint: visually support-
ing the understanding of classes. Trans. Softw. Eng. (TSE) 31(1),
75–90 (2005)

15. Ducasse, S., Lanza, M., Robbes, R.: Multi-level method under-
standing using microprints. In: Proceedings of VISSOFT 2005 (3rd
IEEE International Workshop on Visualizing Software for Under-
standing and Analysis), pp. 33–38 (2005)

16. Eick, S.G., Steffen, J.L., Sumner, E.E. Jr..: SeeSoft—a tool for
visualizing line oriented software statistics. IEEE Trans. Softw.
Eng. 18(11), 957–968 (1992)

17. Engel, K., Ertl, T.: Texture-based volume visualization for multiple
users on the world wide web. In: Gervaut, Michael, Schmalstieg,
Dieter, Hildebrand, Axel (eds) Proceedings of the Eurographics
Workshop in Vienna, Austria, pp. 115–124 (1999)

18. Estublier, J., Leblang, D., van der Hoek, A., Conradi, R., Clemm,
G., Tichy, W., Wiborg-Weber, D.: Impact of software engineer-
ing research on the practice of software configuration manage-
ment. ACM Trans. Softw. Eng. Methodol. 14(4), 383–430 (2005)

19. Finnigan, P., Holt, R., Kalas, I., Kerr, S., Kontogiannis, K.,
Mueller, H., Mylopoulos, J., Perelgut, S., Stanley, M., Wong,
K.: The software bookshelf. IBM Syst J 36(4), 564–593 (1997)

20. Froehlich, J., Dourish, P.: Unifying artifacts and activities in a visual
tool for distributed software development teams. In: ICSE ’04:
Proceedings of the 26th International Conference on Software
Engineering, pp. 387–396. IEEE Computer Society, Washington,
DC (2004)

21. Frost, R.: Jazz and the eclipse way of collaboration. IEEE Soft-
ware 24(6), 114–117 (2007)

22. Gall, H., Hajek, K., Jazayeri, M.: Detection of logical coupling
based on product release history. In: Proceedings International
Conference on Software Maintenance (ICSM ’98), pp. 190–198,
IEEE Computer Society Press, Los Alamitos (1998)

23. Gîrba, T., Kuhn, A., Seeberger, M., Ducasse, S.: How developers
drive software evolution. In: Proceedings of International Work-

shop on Principles of Software Evolution (IWPSE 2005), pp. 113–
122. IEEE Computer Society Press, Los Alamitos (2005)

24. Greevy, O., Lanza, M., Wysseier, C.: Visualizing live software sys-
tems in 3d. In: SoftVis ’06: Proceedings of the 2006 ACM sym-
posium on Software visualization, pp. 47–56. ACM, New York
(2006)

25. Holten, D.: Hierarchical edge bundles: Visualization of adja-
cency relations in hierarchical data. IEEE Trans. Visual. Comput
Graph 12(5), 741–748 (2006)

26. Jazayeri, M., Gall, H., Riva, C.: Visualizing Software Release
Histories: The Use of Color and Third Dimension. In: Proceed-
ings of ICSM ’99 (International Conference on Software Mainte-
nance), pp. 99–108. IEEE Computer Society Press, Los Alamitos
(1999)

27. Kazman, R., Carrière, S.J.: View extraction and view fusion in
architectural understanding. In: Proceedings of the 5th Interna-
tional Conference on Software Reuse (ICSR 1998), pp. 290. IEEE
Computer Society, Washington, DC (1998)

28. Kersten, M., Murphy, G.C.: Using task context to improve pro-
grammer productivity. In: Proceedings of the 14th ACM SIGSOFT
International Symposium on Foundations of Software Engineering
(SIGSOFT 2006/FSE-14), pp. 1–11. ACM, New York (2006)

29. Knodel, J., Muthig, D., Naab, M., Lindvall, M.: Static evaluation
of software architectures. In: CSMR’06, pp. 279–294. IEEE Com-
puter Society, Los Alamitos (2006)

30. Kuhn, A., Loretan, P., Nierstrasz, O.: Consistent layout for the-
matic software maps. In: WCRE ’08: Proceedings of the 2008 15th
Working Conference on Reverse Engineering, pp. 209–218. IEEE
Computer Society, Washington, DC (2008)

31. Lanza, M., Ducasse, S.: Polymetric views—a lightweight visual
approach to reverse engineering. Trans Softwa Eng (TSE)
29(9), 782–795 (2003)

32. Lanza, M., Ducasse, S., Gall, H., Pinzger, M.: Codecrawler—
an information visualization tool for program comprehension. In:
Proceedings of ICSE 2005 (27th IEEE International Conference
on Software Engineering), pp. 672–673. ACM Press, New York
(2005)

33. Likert, R.: A technique for the measurement of attitudes. Arch
Psychol 22(140), 1–55 (1932)

34. Lintern, R., Michaud, J., Storey, M.-A., Wu, X.: Plugging-in visu-
alization: experiences integrating a visualization tool with eclipse.
In: SoftVis ’03: Proceedings of the 2003 ACM symposium on Soft-
ware visualization, pp. 47–56. ACM, New York (2003)

35. Lungu, M.: Reverse Engineering Software Ecosystems. PhD thesis,
University of Lugano, Switzerland (October 2009)

36. Lungu, M., Lanza, M.: Softwarenaut: Exploring hierarchical sys-
tem decompositions. In: Proceedings of CSMR 2006 (10th IEEE
European Conference on Software Maintenance and Reengineer-
ing), pp. 349–350. IEEE CS Press, Los Alamitos (2006)

37. Lungu, M., Lanza, M., Gîrba, T.: Package patterns for visual archi-
tecture recovery. In: Proceedings of CSMR 2006 (10th IEEE Euro-
pean Conference on Software Maintenance and Reengineering),
pp. 183–192. IEEE CS Press, Los Alamitos (2006)

38. Lungu, M., Lanza, M., Gîrba, T., Heeck, R.: Reverse engineer-
ing super-repositories. In: Proceedings of WCRE 2007 (14th IEEE
Working Conference on Reverse Engineering), pp. 120–129. IEEE
CS Press, Los Alamitos (2007)

39. Lungu, M., Lanza, M., Girba, T., Robbes, R.: The small project
observatory: Visualizing software ecosystems. J Sci Comput Pro-
gram (SCP) 75(4), 264–275 (2010)

40. Mancoridis, S., Souder, T.S., Chen, Y.-F., Gansner, E.R., Korn, J.L.:
Reportal: A web-based portal site for reverse engineering. In: Pro-
ceedings of the 8th Working Conference on Reverse Engineering
(WCRE 2001), pp. 221. IEEE Computer Society, Los Alamitos
(2001)

123

200 M. D’Ambros et al.

41. Marcus, A., Feng, L., Maletic, J.I.: 3D representations for software
visualization. In: Proceedings of the ACM Symposium on Software
Visualization, pp. 27–36. IEEE, Portland (2003)

42. Meyer, M., Gîrba, T., Lungu, M.: Mondrian: An agile visualiza-
tion framework. In: Proceedings of Softvis 2006 (3rd International
ACM Symposium on Software Visualization). pp. 135–144. ACM
Press, New York (2006)

43. Müller, H.A., Klashinsky, K.: Rigi—a system for programming-
in-the-large. In: ICSE ’88: Proceedings of the 10th international
conference on Software engineering, pp. 80–86. IEEE Computer
Society Press, Los Alamitos (1988)

44. Müller, H.A.: Rigi—A Model for Software System Construction,
Integration, and Evaluation based on Module Interface Specifica-
tions. PhD thesis, Rice University, Houston (1986)

45. Nentwich, C., Emmerich, W., Finkelstein, A., Zisman, A.: BOX:
Browsing objects in XML. Softw Pract Exp 30(15), 1661–1676
(2000)

46. O’Brien, L., Stoermer, C.: Architecture reconstruction case study.
Technical report, CMU/SEI-2001-TR-026 (2001)

47. Pinzger, M., Gall, H., Fischer, M., Lanza, M.: Visualizing multiple
evolution metrics. In: Proceedings of SoftVis 2005 (2nd ACM Sym-
posium on Software Visualization), pp. 67–75, St. Louis (2005)

48. Robbes, R., Lanza, M.: Spyware: A change-aware development
toolset. In: Proceedings of ICSE 2008 (30th ACM/IEEE Interna-
tional Conference in Software Engineering), pp. 847–850. ACM
Press, New York (2008)

49. Sarma, A., Maccherone, L., Wagstrom, P., Herbsleb, J.: Tesser-
act: interactive visual exploration of socio-technical relationships
in software development. In: International Conference on Software
Engineering, pp. 23–33 (2009)

50. Sarma, A., Noroozi, Z., van der Hoek, A.: Palantír: Raising aware-
ness among configuration management workspaces. In: Proceed-
ings of the 25th International Conference on Software Engineering
(ICSE 2003), pp. 444–454 (2003)

51. Storey, M.-A.D., Müller, H.A.: Manipulating and documenting
software structures using SHriMP Views. In: Proceedings of ICSM
’95 (International Conference on Software Maintenance), pp. 275–
284. IEEE Computer Society Press, Los Alamitos (1995)

52. Taylor, C., Munro, Malcolm: Revision towers. In: Proceedings 1st
International Workshop on Visualizing Software for Understanding

and Analysis, pp. 43–50. IEEE Computer Society, Los Alamitos
(2002)

53. Telea, A., Auber, D.: Code flows: visualizing structural evolu-
tion of source code. In: Proceedings of 10th Eurographics/IEEE
Symposium on Data Visualization (EuroVis 2008), vol. 27,
pp. 831–838. Eurographics (2008)

54. Termeer, M., Lange, C.F.J., Telea, A., Chaudron, M.R.V.: Visual
exploration of combined architectural and metric information. In:
VISSOFT ’05: Proceedings of the 3rd IEEE International Work-
shop on Visualizing Software for Understanding and Analysis, pp.
11. IEEE Computer Society, Washington, DC (2005)

55. van Deursen, A., Mesbah, A., Cornelissen, B., Zaidman, A.,
Pinzger, M., Guzzi, A.: Adinda: A knowledgeable, browser-based
ide. In: Companion Proceedings of the 32nd International Confer-
ence on Software Engineering (ICSE NIER). ACM (2010)

56. Van Rysselberghe, F., Demeyer, S.: Studying software evolution
information by visualizing the change history. In: Proceedings 20th
IEEE International Conference on Software Maintenance (ICSM
’04), pp. 328–337. IEEE Computer Society Press, Los Alamitos
(2004)

57. Viegas, F.B., Wattenberg, M., van Ham, F., Kriss, J., McKeon, M.:
Manyeyes: a site for visualization at internet scale. IEEE Trans.
Visual. Comput. Graph. 13(6), 1121–1128 (2007)

58. Voinea, L., Telea, A., van Wijk, J.J.: CVS scan: visualization of
code evolution. In: Proceedings of 2005 ACM Symposium on Soft-
ware Visualization (Softvis 2005), pp. 47–56, St. Louis (2005)

59. Wettel, R., Lanza, M.: Program comprehension through software
habitability. In: Proceedings of ICPC 2007 (15th IEEE Inter-
national Conference on Program Comprehension), pp. 231–240.
IEEE CS Press, Los Alamitos (2007)

60. Wettel, R., Lanza, M.: Codecity: 3D visualization of large-scale
software. In: ICSE Companion ’08: Companion of the 30th
ACM/IEEE International Conference on Software Engineering,
pp. 921–922. ACM press, New York (2008)

61. Wu, J., Holt, R., Hassan, A.: Exploring software evolution using
spectrographs. In: Proceedings of 11th Working Conference on
Reverse Engineering (WCRE 2004), pp. 80–89. IEEE Computer
Society Press, Los Alamitos (2004)

123

	On porting software visualization tools to the web
	Abstract
	1 Introduction
	2 Churrasco and SPO
	2.1 Churrasco
	2.1.1 Architecture
	2.1.2 Visualizations
	2.1.3 Collaboration support

	2.2 The small project observatory
	2.2.1 SPO overview
	2.2.2 Navigation
	2.2.3 Architecture of SPO

	2.3 Beyond Churrasco and SPO

	3 Promises and perils
	4 Promises and perils in practice
	4.1 A collaboration experiment with Churrasco
	4.1.1 Case study and tasks
	4.1.2 Usage of collaborative annotations
	4.1.3 User survey

	4.2 A usability experiment with SPO

	5 Discussion
	6 Technologies
	6.1 Javascript and DHTML
	6.2 Java applets, Flash, and Silverlight
	6.3 The bottom line

	7 Related work
	7.1 Software visualization
	7.2 Web based software visualization

	8 Conclusion
	Acknowledgments
	References

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (ISO Coated v2 300% \050ECI\051)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJobTicket false
 /DefaultRenderingIntent /Perceptual
 /DetectBlends true
 /DetectCurves 0.1000
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 149
 /ColorImageMinResolutionPolicy /Warning
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 150
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.40
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 149
 /GrayImageMinResolutionPolicy /Warning
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 150
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.40
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 599
 /MonoImageMinResolutionPolicy /Warning
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /CreateJDFFile false
 /Description <<
 /ARA <FEFF06270633062A062E062F0645002006470630064700200627064406250639062F0627062F0627062A002006440625064606340627062100200648062B062706260642002000410064006F00620065002000500044004600200645062A064806270641064206290020064406440637062806270639062900200641064A00200627064406450637062706280639002006300627062A0020062F0631062C0627062A002006270644062C0648062F0629002006270644063906270644064A0629061B0020064A06450643064600200641062A062D00200648062B0627062606420020005000440046002006270644064506460634062306290020062806270633062A062E062F062706450020004100630072006F0062006100740020064800410064006F006200650020005200650061006400650072002006250635062F0627063100200035002E0030002006480627064406250635062F062706310627062A0020062706440623062D062F062B002E0635062F0627063100200035002E0030002006480627064406250635062F062706310627062A0020062706440623062D062F062B002E>
 /BGR <FEFF04180437043f043e043b043704320430043904420435002004420435043704380020043d0430044104420440043e0439043a0438002c00200437043000200434043000200441044a0437043404300432043004420435002000410064006f00620065002000500044004600200434043e043a0443043c0435043d04420438002c0020043c0430043a04410438043c0430043b043d043e0020043f044004380433043e04340435043d04380020043704300020043204380441043e043a043e043a0430044704350441044204320435043d0020043f04350447043004420020043704300020043f044004350434043f0435044704300442043d04300020043f043e04340433043e0442043e0432043a0430002e002000200421044a04370434043004340435043d043804420435002000500044004600200434043e043a0443043c0435043d044204380020043c043e0433043004420020043404300020044104350020043e0442043204300440044f0442002004410020004100630072006f00620061007400200438002000410064006f00620065002000520065006100640065007200200035002e00300020043800200441043b0435043404320430044904380020043204350440044104380438002e>
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e9ad88d2891cf76845370524d53705237300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc9ad854c18cea76845370524d5370523786557406300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /CZE <FEFF005400610074006f0020006e006100730074006100760065006e00ed00200070006f0075017e0069006a007400650020006b0020007600790074007600e101590065006e00ed00200064006f006b0075006d0065006e0074016f002000410064006f006200650020005000440046002c0020006b00740065007200e90020007300650020006e0065006a006c00e90070006500200068006f006400ed002000700072006f0020006b00760061006c00690074006e00ed0020007400690073006b00200061002000700072006500700072006500730073002e002000200056007900740076006f01590065006e00e900200064006f006b0075006d0065006e007400790020005000440046002000620075006400650020006d006f017e006e00e90020006f007400650076015900ed007400200076002000700072006f006700720061006d0065006300680020004100630072006f00620061007400200061002000410064006f00620065002000520065006100640065007200200035002e0030002000610020006e006f0076011b006a016100ed00630068002e>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000620065006400730074002000650067006e006500720020007300690067002000740069006c002000700072006500700072006500730073002d007500640073006b007200690076006e0069006e00670020006100660020006800f8006a0020006b00760061006c0069007400650074002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f00730020005000440046002000640065002000410064006f0062006500200061006400650063007500610064006f00730020007000610072006100200069006d0070007200650073006900f3006e0020007000720065002d0065006400690074006f007200690061006c00200064006500200061006c00740061002000630061006c0069006400610064002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /ETI <FEFF004b00610073007500740061006700650020006e0065006900640020007300e4007400740065006900640020006b00760061006c006900740065006500740073006500200074007200fc006b006900650065006c007300650020007000720069006e00740069006d0069007300650020006a0061006f006b007300200073006f00620069006c0069006b0065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740069006400650020006c006f006f006d006900730065006b0073002e00200020004c006f006f0064007500640020005000440046002d0064006f006b0075006d0065006e00740065002000730061006100740065002000610076006100640061002000700072006f006700720061006d006d006900640065006700610020004100630072006f0062006100740020006e0069006e0067002000410064006f00620065002000520065006100640065007200200035002e00300020006a00610020007500750065006d006100740065002000760065007200730069006f006f006e00690064006500670061002e000d000a>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f00620065002000500044004600200070006f0075007200200075006e00650020007100750061006c0069007400e90020006400270069006d007000720065007300730069006f006e00200070007200e9007000720065007300730065002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /GRE <FEFF03a703c103b703c303b903bc03bf03c003bf03b903ae03c303c403b5002003b103c503c403ad03c2002003c403b903c2002003c103c503b803bc03af03c303b503b903c2002003b303b903b1002003bd03b1002003b403b703bc03b903bf03c503c103b303ae03c303b503c403b5002003ad03b303b303c103b103c603b1002000410064006f006200650020005000440046002003c003bf03c5002003b503af03bd03b103b9002003ba03b103c42019002003b503be03bf03c703ae03bd002003ba03b103c403ac03bb03bb03b703bb03b1002003b303b903b1002003c003c103bf002d03b503ba03c403c503c003c903c403b903ba03ad03c2002003b503c103b303b103c303af03b503c2002003c503c803b703bb03ae03c2002003c003bf03b903cc03c403b703c403b103c2002e0020002003a403b10020005000440046002003ad03b303b303c103b103c603b1002003c003bf03c5002003ad03c703b503c403b5002003b403b703bc03b903bf03c503c103b303ae03c303b503b9002003bc03c003bf03c103bf03cd03bd002003bd03b1002003b103bd03bf03b903c703c403bf03cd03bd002003bc03b5002003c403bf0020004100630072006f006200610074002c002003c403bf002000410064006f00620065002000520065006100640065007200200035002e0030002003ba03b103b9002003bc03b503c403b103b303b503bd03ad03c303c403b503c103b503c2002003b503ba03b403cc03c303b503b903c2002e>
 /HEB <FEFF05D405E905EA05DE05E905D5002005D105D405D205D305E805D505EA002005D005DC05D4002005DB05D305D9002005DC05D905E605D505E8002005DE05E105DE05DB05D9002000410064006F006200650020005000440046002005D405DE05D505EA05D005DE05D905DD002005DC05D405D305E405E105EA002005E705D305DD002D05D305E405D505E1002005D005D905DB05D505EA05D905EA002E002005DE05E105DE05DB05D90020005000440046002005E905E005D505E605E805D5002005E005D905EA05E005D905DD002005DC05E405EA05D905D705D4002005D105D005DE05E605E205D505EA0020004100630072006F006200610074002005D5002D00410064006F00620065002000520065006100640065007200200035002E0030002005D505D205E805E105D005D505EA002005DE05EA05E705D305DE05D505EA002005D905D505EA05E8002E05D005DE05D905DD002005DC002D005000440046002F0058002D0033002C002005E205D905D905E005D5002005D105DE05D305E805D905DA002005DC05DE05E905EA05DE05E9002005E905DC0020004100630072006F006200610074002E002005DE05E105DE05DB05D90020005000440046002005E905E005D505E605E805D5002005E005D905EA05E005D905DD002005DC05E405EA05D905D705D4002005D105D005DE05E605E205D505EA0020004100630072006F006200610074002005D5002D00410064006F00620065002000520065006100640065007200200035002E0030002005D505D205E805E105D005D505EA002005DE05EA05E705D305DE05D505EA002005D905D505EA05E8002E>
 /HRV (Za stvaranje Adobe PDF dokumenata najpogodnijih za visokokvalitetni ispis prije tiskanja koristite ove postavke. Stvoreni PDF dokumenti mogu se otvoriti Acrobat i Adobe Reader 5.0 i kasnijim verzijama.)
 /HUN <FEFF004b0069007600e1006c00f30020006d0069006e0151007300e9006701710020006e0079006f006d00640061006900200065006c0151006b00e90073007a00ed007401510020006e0079006f006d00740061007400e100730068006f007a0020006c006500670069006e006b00e1006200620020006d0065006700660065006c0065006c0151002000410064006f00620065002000500044004600200064006f006b0075006d0065006e00740075006d006f006b0061007400200065007a0065006b006b0065006c0020006100200062006500e1006c006c00ed007400e10073006f006b006b0061006c0020006b00e90073007a00ed0074006800650074002e0020002000410020006c00e90074007200650068006f007a006f00740074002000500044004600200064006f006b0075006d0065006e00740075006d006f006b00200061007a0020004100630072006f006200610074002000e9007300200061007a002000410064006f00620065002000520065006100640065007200200035002e0030002c0020007600610067007900200061007a002000610074007400f3006c0020006b00e9007301510062006200690020007600650072007a006900f3006b006b0061006c0020006e00790069007400680061007400f3006b0020006d00650067002e>
 /ITA <FEFF005500740069006c0069007a007a006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e00740069002000410064006f00620065002000500044004600200070006900f900200061006400610074007400690020006100200075006e00610020007000720065007300740061006d0070006100200064006900200061006c007400610020007100750061006c0069007400e0002e0020004900200064006f00630075006d0065006e007400690020005000440046002000630072006500610074006900200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000410064006f00620065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /JPN <FEFF9ad854c18cea306a30d730ea30d730ec30b951fa529b7528002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a306b306f30d530a930f330c8306e57cb30818fbc307f304c5fc59808306730593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020ace0d488c9c80020c2dcd5d80020c778c1c4c5d00020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /LTH <FEFF004e006100750064006f006b0069007400650020016100690075006f007300200070006100720061006d006500740072007500730020006e006f0072011700640061006d00690020006b0075007200740069002000410064006f00620065002000500044004600200064006f006b0075006d0065006e007400750073002c0020006b00750072006900650020006c0061006200690061007500730069006100690020007000720069007400610069006b007900740069002000610075006b01610074006f00730020006b006f006b007900620117007300200070006100720065006e006700740069006e00690061006d00200073007000610075007300640069006e0069006d00750069002e0020002000530075006b0075007200740069002000500044004600200064006f006b0075006d0065006e007400610069002000670061006c006900200062016b007400690020006100740069006400610072006f006d00690020004100630072006f006200610074002000690072002000410064006f00620065002000520065006100640065007200200035002e0030002000610072002000760117006c00650073006e0117006d00690073002000760065007200730069006a006f006d00690073002e>
 /LVI <FEFF0049007a006d0061006e0074006f006a00690065007400200161006f00730020006900650073007400610074012b006a0075006d00750073002c0020006c0061006900200076006500690064006f00740075002000410064006f00620065002000500044004600200064006f006b0075006d0065006e007400750073002c0020006b006100730020006900720020012b00700061016100690020007000690065006d01130072006f00740069002000610075006700730074006100730020006b00760061006c0069007401010074006500730020007000690072006d007300690065007300700069006501610061006e006100730020006400720075006b00610069002e00200049007a0076006500690064006f006a006900650074002000500044004600200064006f006b0075006d0065006e007400750073002c0020006b006f002000760061007200200061007400760113007200740020006100720020004100630072006f00620061007400200075006e002000410064006f00620065002000520065006100640065007200200035002e0030002c0020006b0101002000610072012b00200074006f0020006a00610075006e0101006b0101006d002000760065007200730069006a0101006d002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken die zijn geoptimaliseerd voor prepress-afdrukken van hoge kwaliteit. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d00200065007200200062006500730074002000650067006e0065007400200066006f00720020006600f80072007400720079006b006b0073007500740073006b00720069006600740020006100760020006800f800790020006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006500720065002e>
 /POL <FEFF0055007300740061007700690065006e0069006100200064006f002000740077006f0072007a0065006e0069006100200064006f006b0075006d0065006e007400f300770020005000440046002000700072007a0065007a006e00610063007a006f006e00790063006800200064006f002000770079006400720075006b00f30077002000770020007700790073006f006b00690065006a0020006a0061006b006f015b00630069002e002000200044006f006b0075006d0065006e0074007900200050004400460020006d006f017c006e00610020006f007400770069006500720061010700200077002000700072006f006700720061006d006900650020004100630072006f00620061007400200069002000410064006f00620065002000520065006100640065007200200035002e0030002000690020006e006f00770073007a0079006d002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f0062006500200050004400460020006d00610069007300200061006400650071007500610064006f00730020007000610072006100200070007200e9002d0069006d0070007200650073007300f50065007300200064006500200061006c007400610020007100750061006c00690064006100640065002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /RUM <FEFF005500740069006c0069007a00610163006900200061006300650073007400650020007300650074010300720069002000700065006e007400720075002000610020006300720065006100200064006f00630075006d0065006e00740065002000410064006f006200650020005000440046002000610064006500630076006100740065002000700065006e0074007200750020007400690070010300720069007200650061002000700072006500700072006500730073002000640065002000630061006c006900740061007400650020007300750070006500720069006f006100720103002e002000200044006f00630075006d0065006e00740065006c00650020005000440046002000630072006500610074006500200070006f00740020006600690020006400650073006300680069007300650020006300750020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e00300020015f00690020007600650072007300690075006e0069006c006500200075006c0074006500720069006f006100720065002e>
 /RUS <FEFF04180441043f043e043b044c04370443043904420435002004340430043d043d044b04350020043d0430044104420440043e0439043a043800200434043b044f00200441043e043704340430043d0438044f00200434043e043a0443043c0435043d0442043e0432002000410064006f006200650020005000440046002c0020043c0430043a04410438043c0430043b044c043d043e0020043f043e04340445043e0434044f04490438044500200434043b044f00200432044b0441043e043a043e043a0430044704350441044204320435043d043d043e0433043e00200434043e043f0435044704300442043d043e0433043e00200432044b0432043e04340430002e002000200421043e043704340430043d043d044b04350020005000440046002d0434043e043a0443043c0435043d0442044b0020043c043e0436043d043e0020043e0442043a0440044b043204300442044c002004410020043f043e043c043e0449044c044e0020004100630072006f00620061007400200438002000410064006f00620065002000520065006100640065007200200035002e00300020043800200431043e043b043504350020043f043e04370434043d043804450020043204350440044104380439002e>
 /SKY <FEFF0054006900650074006f0020006e006100730074006100760065006e0069006100200070006f0075017e0069007400650020006e00610020007600790074007600e100720061006e0069006500200064006f006b0075006d0065006e0074006f0076002000410064006f006200650020005000440046002c0020006b0074006f007200e90020007300610020006e0061006a006c0065007001610069006500200068006f0064006900610020006e00610020006b00760061006c00690074006e00fa00200074006c0061010d00200061002000700072006500700072006500730073002e00200056007900740076006f00720065006e00e900200064006f006b0075006d0065006e007400790020005000440046002000620075006400650020006d006f017e006e00e90020006f00740076006f00720069016500200076002000700072006f006700720061006d006f006300680020004100630072006f00620061007400200061002000410064006f00620065002000520065006100640065007200200035002e0030002000610020006e006f0076016100ed00630068002e>
 /SLV <FEFF005400650020006e006100730074006100760069007400760065002000750070006f0072006100620069007400650020007a00610020007500730074007600610072006a0061006e006a006500200064006f006b0075006d0065006e0074006f0076002000410064006f006200650020005000440046002c0020006b006900200073006f0020006e0061006a007000720069006d00650072006e0065006a016100690020007a00610020006b0061006b006f0076006f00730074006e006f0020007400690073006b0061006e006a00650020007300200070007200690070007200610076006f0020006e00610020007400690073006b002e00200020005500730074007600610072006a0065006e006500200064006f006b0075006d0065006e0074006500200050004400460020006a00650020006d006f0067006f010d00650020006f0064007000720065007400690020007a0020004100630072006f00620061007400200069006e002000410064006f00620065002000520065006100640065007200200035002e003000200069006e0020006e006f00760065006a01610069006d002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f00740020006c00e400680069006e006e00e4002000760061006100740069007600610061006e0020007000610069006e006100740075006b00730065006e002000760061006c006d0069007300740065006c00750074007900f6006800f6006e00200073006f00700069007600690061002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d002000e400720020006c00e4006d0070006c0069006700610020006600f60072002000700072006500700072006500730073002d007500740073006b00720069006600740020006d006500640020006800f600670020006b00760061006c0069007400650074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /TUR <FEFF005900fc006b00730065006b0020006b0061006c006900740065006c0069002000f6006e002000790061007a006401310072006d00610020006200610073006b013100730131006e006100200065006e0020006900790069002000750079006100620069006c006500630065006b002000410064006f006200650020005000440046002000620065006c00670065006c0065007200690020006f006c0075015f007400750072006d0061006b0020006900e70069006e00200062007500200061007900610072006c0061007201310020006b0075006c006c0061006e0131006e002e00200020004f006c0075015f0074007500720075006c0061006e0020005000440046002000620065006c00670065006c0065007200690020004100630072006f006200610074002000760065002000410064006f00620065002000520065006100640065007200200035002e003000200076006500200073006f006e0072006100730131006e00640061006b00690020007300fc007200fc006d006c00650072006c00650020006100e70131006c006100620069006c00690072002e>
 /UKR <FEFF04120438043a043e0440043804410442043e043204430439044204350020044604560020043f043004400430043c043504420440043800200434043b044f0020044104420432043e04400435043d043d044f00200434043e043a0443043c0435043d044204560432002000410064006f006200650020005000440046002c0020044f043a04560020043d04300439043a04400430044904350020043f045604340445043e0434044f0442044c00200434043b044f0020043204380441043e043a043e044f043a04560441043d043e0433043e0020043f0435044004350434043404400443043a043e0432043e0433043e0020043404400443043a0443002e00200020042104420432043e04400435043d045600200434043e043a0443043c0435043d0442043800200050004400460020043c043e0436043d04300020043204560434043a0440043804420438002004430020004100630072006f006200610074002004420430002000410064006f00620065002000520065006100640065007200200035002e0030002004300431043e0020043f04560437043d04560448043e04570020043204350440044104560457002e>
 /ENU (Use these settings to create Adobe PDF documents best suited for high-quality prepress printing. Created PDF documents can be opened with Acrobat and Adobe Reader 5.0 and later.)
 /DEU <FEFF004a006f0062006f007000740069006f006e007300200066006f00720020004100630072006f006200610074002000440069007300740069006c006c0065007200200038002000280038002e0032002e00310029000d00500072006f006400750063006500730020005000440046002000660069006c0065007300200077006800690063006800200061007200650020007500730065006400200066006f00720020006f006e006c0069006e0065002e000d0028006300290020003200300031003000200053007000720069006e006700650072002d005600650072006c0061006700200047006d006200480020000d000d0054006800650020006c00610074006500730074002000760065007200730069006f006e002000630061006e00200062006500200064006f0077006e006c006f0061006400650064002000610074002000680074007400700073003a002f002f0070006f007200740061006c002d0064006f0072006400720065006300680074002e0073007000720069006e006700650072002d00730062006d002e0063006f006d002f00500072006f00640075006300740069006f006e002f0046006c006f0077002f00740065006300680064006f0063002f00640065006600610075006c0074002e0061007300700078000d0054006800650072006500200079006f0075002000630061006e00200061006c0073006f002000660069006e0064002000610020007300750069007400610062006c006500200045006e0066006f0063007500730020005000440046002000500072006f00660069006c006500200066006f0072002000500069007400530074006f0070002000500072006f00660065007300730069006f006e0061006c00200030003800200061006e0064002000500069007400530074006f0070002000530065007200760065007200200030003800200066006f007200200070007200650066006c00690067006800740069006e006700200079006f007500720020005000440046002000660069006c006500730020006200650066006f007200650020006a006f00620020007300750062006d0069007300730069006f006e002e000d>
 >>
 /Namespace [
 (Adobe)
 (Common)
 (1.0)
]
 /OtherNamespaces [
 <<
 /AsReaderSpreads false
 /CropImagesToFrames true
 /ErrorControl /WarnAndContinue
 /FlattenerIgnoreSpreadOverrides false
 /IncludeGuidesGrids false
 /IncludeNonPrinting false
 /IncludeSlug false
 /Namespace [
 (Adobe)
 (InDesign)
 (4.0)
]
 /OmitPlacedBitmaps false
 /OmitPlacedEPS false
 /OmitPlacedPDF false
 /SimulateOverprint /Legacy
 >>
 <<
 /AddBleedMarks false
 /AddColorBars false
 /AddCropMarks false
 /AddPageInfo false
 /AddRegMarks false
 /ConvertColors /ConvertToCMYK
 /DestinationProfileName ()
 /DestinationProfileSelector /DocumentCMYK
 /Downsample16BitImages true
 /FlattenerPreset <<
 /PresetSelector /MediumResolution
 >>
 /FormElements false
 /GenerateStructure false
 /IncludeBookmarks false
 /IncludeHyperlinks false
 /IncludeInteractive false
 /IncludeLayers false
 /IncludeProfiles false
 /MultimediaHandling /UseObjectSettings
 /Namespace [
 (Adobe)
 (CreativeSuite)
 (2.0)
]
 /PDFXOutputIntentProfileSelector /DocumentCMYK
 /PreserveEditing true
 /UntaggedCMYKHandling /LeaveUntagged
 /UntaggedRGBHandling /UseDocumentProfile
 /UseDocumentBleed false
 >>
]
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [595.276 841.890]
>> setpagedevice

