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Abstract We use a mathematical technique, the self-similar functional renormalization, to
construct formulas for the average conductivity that apply for large heterogeneity, based on
perturbative expansions in powers of a small parameter, usually the log-variance σ 2

Y of the
local conductivity. Using perturbation expansions up to third order and fourth order in σ 2

Y
obtained from the moment equation approach, we construct the general functional depen-
dence of the scalar hydraulic conductivity in the regime where σ 2

Y is of order 1 and larger
than 1. Comparison with available numerical simulations show that the proposed method
provides reasonable improvements over available expansions.
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76 S. Gluzman, D. Sornette

1 Introduction

Quantitative understanding of processes that govern flow and transport in porous and dis-
continous media is of utmost importance in many geophysical processes. For instance, the
presence of fluid is one of the leading candidate to solve a variety of paradoxes in the physics
of earthquakes such as the apparent weakness of mature faults (e.g., the San Andreas fault)
or the heat flow paradox to cite a few (Sornette 1999). Understanding the transport properties
of fluids in the fragmented crust in the presence of discontinuities occurring at many length
scales is an essential component in the ultimate goal of understanding earthquakes. Under-
standing the properties of transport of fluids in complex porous and cracked media at many
scales is also of fundamental importance from an environmental point of view as well as for
a good stewardship of the storage of contaminants or pollutants or to remediate sites from
contamination that arose during nuclear weapons production. It is also of critical importance
at proposed nuclear waste storage sites like WIPP and Yucca Mountain, and in the simulation
of oil and natural gas reservoirs.

Transport in heterogeneous porous media poses formidable challenges to model and pre-
dict with good reliability due to the multiple scales, topologies, and complex nonlinear
processes. Existing models focus on end-members of a large ensemble of structures, that
are chosen because they are amenable to theoretical analytical or computational attack. For
instance, the moment equation approach is valid for a small variance σ 2

Y of the log hydraulic
conductivity, in contradiction with real geological settings of interest to a large variety of
geophysical applications. At another extreme, the continuous-time random walk (CTRW)
method takes into account extreme fluctuations and anomalous transport paths, but is only
an effective phenomenological representation which may not capture the interplay between
frozen and annealed disorder. Real porous media in geophysical settings are none of these
limiting cartoon models. Uncertainty is usually dealt with either deterministically through
upscaling or stochastically through the evaluating statistical moments. Statistical moments
can be obtained through Monte Carlo simulations or development of moment differential
equations, which is the method from which we start our analysis.

In the stochastic approach, parameter values determined at various points within a more-
or-less distinct soil unit can be viewed as a sample from a random field defined over a
continuum. This random field is characterized by a joint (multivariate) probability density
function or, equivalently, its joint ensemble moments. Thus, a parameter such as (saturated,
natural) log hydraulic conductivity Y (x) = ln Ks(x) varies not only across the real space
coordinates x within the unit, but also in probability space (this variation may be represented
by another “coordinate” ξ , the configuration coordinate, which, for simplicity, we suppress).
Whereas spatial moments are obtained by sampling Y (x) in real space (across x), ensemble
moments are defined in terms of samples collected in probability space (across ξ ).

In the moment equation approach, which we propose to exploit here, the stochastic differ-
ential equations are averaged first to obtain moments differential equations (MDEs) governing
the statistical moments of the dependent variables. The MDEs are themselves deterministic
and can be solved numerically or sometimes, analytically. The MDE approach has important
advantages. First, only a small number of equations must be solved: one for the mean and
one each for a small number of variances and covariances. Second, the coefficients of the
MDEs are relatively smooth because they are averaged quantities. Thus the MDEs can be
solved on comparatively smooth grids. Third, the MDEs are available in analytical form,
even though they are usually solved numerically in applications. This holds the potential
for increased physical understanding of the mechanisms of uncertainty through qualitative
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analysis. Finally, in many applications MDE approaches provide a good estimate of the
behavior of large variance systems despite being based on small perturbation theory.

Since the moment equation approach derives the equations of evolutions of the moments
of the distribution of the scalar hydraulic conductivity by averaging the stochastic differen-
tial equations of transport in heterogeneous porous media, its fundamental limitation is the
assumption that the variance σ 2

Y of the log hydraulic conductivity is small, in contradiction
with real geological settings of interest to a large variety of geophysical applications. In order
to obtain reliable descriptions of the scalar hydraulic conductivity for large σ 2

Y , our goal in
the present article is to adapt and extend the self-similar functional renormalization method
to the moment equation approach. In essence fundamentally non-perturbative, this recently
developed technique provides us with a stable and robust estimation of the scalar hydraulic
conductivity at large values of the perturbation parameter σ 2

Y . The functional renormalization
method associates ideas from the renormalization group theory of multiscale and critical phe-
nomena (Sornette 2004) with methods from the theory of dynamical systems and of control
theory. Using perturbation expansions up to third order and fourth order in σ 2

Y obtained from
the moment equation approach, we construct the general functional dependence of the scalar
hydraulic conductivity in the regime where σ 2

Y is of order 1 and larger than 1.
The next Sect. 2 recalls briefly how perturbation expansions are obtained from the moment

equation approach. Section 3 summarizes the general formulation of the self-similar approx-
imation theory. Section 4 gives the results of the application of the functional renormalization
method to the moment equation expansions at increasing orders in σ 2

Y . Section 5 formulates
the expansion in powers of 1/d , where d is the space dimension. This procedure well-known
in statistical physics is resummed by the fonctional renormalization to provide accurate for-
mulas. Section 6 briefly discusses the results and outlines future directions of investigations.

2 Problem formulation and perturbation expansions

2.1 Basic equations

It has become common to quantify uncertainty in ground water flow models by treating
hydraulic conductivity, K , and derived quantities like hydraulic head, h, as random fields.
For steady-state flows in the absence of sources and sinks, the statistics of h can be obtained
from the stochastic flow equation

∇ · [K (x)∇h(x)] = 0 (1)

when the statistics of K are known. We further assume that the site of interest is sufficiently
characterized so that available experimental data are sufficient to obtain the statistics of K ,
such as its (ensemble) mean, K , variance, σ 2

K , and (two-point) correlation structure, ρK (x, y).
Then one can solve directly for the moments of h by developing deterministic equations for
the moments from (1). In general this involves taking the expected value of (1) and simi-
lar equations for higher-order moments, closing the system of moment equations (usually
through perturbation approximations). Numerical solutions for moment equations are typi-
cally computationally more efficient than Monte Carlo simulations. In the first place, taking
expected values smoothes parameters in the moment equations which in turn allows low-res-
olution grids for numerical solutions. Furthermore, the number of moment equations is much
smaller than the number of realizations required by Monte Carlo simulations. Additionally,
the moment equations lend themselves to qualitative analysis.
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78 S. Gluzman, D. Sornette

Here, we concentrate on flow through highly heterogeneous porous media with the vari-
ance σ 2

Y of log hydraulic conductivity Y = ln K as the expansion parameter of the
theory. We estimate the mean hydraulic head, h(x), and assess the errors associated with
such an estimation. We represent K (x) = K (x) + K ′(x) as the sum of a mean, K (x), and a
zero-mean random deviation, K ′(x), with variance σ 2

K (x). Similarly, h(x) = h(x) + h′(x)

with h′(x) ≡ 0 and variance σ 2
h (x).

The average steady-state flow equation becomes

∇ · [
K (x)∇ h(x)

] + ∇ · r(x) = 0 (2)

which consists of a deterministic mean part, K∇h, and a deterministic residual flux,
r = −K ′∇h′. Solutions of (2) require the mean conductivity, K (x), and in most cases,
a method for closing an expansion of r(x). Usually r(x) is approximated through pertur-
bation expansions based on σ 2

Y , the variance of Y = ln K , the logarithm of conductivity.
This approach works well as long as σ 2

Y is small. This restriction is a stumbling block on
the road to applicability of numerous theoretical analyses to real-world problems. Our goal
here is to provide a general theoretical method that exploits the limited information obtain
from moment equations to derive the best guesses for the properties of the permeability in
the large heterogeneity limit.

2.2 Perturbation expansions

Consider asymptotic expansions of the parameters and functions, K = Kg (1 + σ 2
Y /2 + · · · );

h = h
(0) + h

(1) + · · · ; and r = r(1) + · · · , where Kg = exp(Y ), Y being the ensem-
ble mean of Y . The superscript (i) denotes terms that are of i th-order, i.e. contain only
the i th power of σ 2

Y . The first-order (in σ 2
Y ) approximation of the residual flux is given by

[Tartakovsky and Neuman 1998a, b and references therein]

r(1)(x) = Kg σ 2
Y

∫

�

ρY (y, x)∇x∇T
y G(y, x)∇h

(0)
(y) dy, (3)

where ρY (y, x) is the spatial two-point autocorrelation function of Y , and G(y, x) is the
deterministic Green’s function for Laplace equation in � subject to the corresponding homo-
geneous boundary conditions. It is a standard practice in stochastic hydrogeology to rely on
the first-order approximation of r (Dagan 1989), but higher-order approximations are also
available (Hsu et al. 1995).

Collecting the terms of the same powers of σ 2
Y yields the zeroth-order approximation of

the mean head in 2,

Kg ∇2h
(0)

(x) = 0, (4)

and its first-order approximation,

Kg ∇2h
(1)

(x) + ∇ ·
[

σ 2
Y

2
Kg ∇h

(0)
(x) − r(1)(x)

]

= 0 . (5)

Solving a system of these sequential approximations leads to h
[1] ≡ h

(0) + h
(1)

. Strictly
speaking, for such expansions to be asymptotic it is necessary that σ 2

Y � 1, i.e. that porous
media be mildly heterogeneous. However, various numerical simulations (e.g., Guadagnini
and Neuman 1999) have demonstrated that these first-order approximations remain remark-
ably robust even for strongly heterogeneous media with σ 2

Y as large as 4.
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2.3 Effective conductivity of porous media

For an effective conductivity to exist in the strict sense, it is necessary that ∇h be constant.
A somewhat a less restrictive assumption requires ∇h to vary slowly in space, i.e. to have
negligibly small derivatives (Dagan 1989). Then one can localize expression (3) as

r(1)(x) ≈ Kg σ 2
Y A(1)(x)∇h

(0)
(x), A(1)(x) =

∫

�

ρY (y, x)∇x∇T
y G(y, x) dy. (6)

Under these conditions, retaining the two leading terms in the asymptotic expansion of
the mean Darcy flux, q ≈ q[1] ≡ q(0) + q(1), yields

− r[1](x)

Kg
= ∇h

(1)
(x) +

[
I + σ 2

Y

(
1

2
I − A(1)(x)

)]
∇h

(0)
(x) . (7)

For flow through infinite, statistically homogeneous porous media under mean uniform flow
conditions, or at points away from boundaries and singularities, the mean hydraulic head

gradient J = ∇h
(0) = const and ∇h

(i) = 0 (i ≥ 1) (Dagan 1989; Tartakovsky and
Neuman 1998a, b). This gives rise to the effective conductivity given approximately by

K [1]
ef ≡ K (0)

ef + K (1)
ef = Kg

[
1 +

(
1

2
− 1

d

)
σ 2

Y

]
(8)

where d is the space dimension.
Various attempts to generalize this asymptotic expansion to highly heterogeneous forma-

tions were attempted by conjecturing that expression (8) represents the two leading terms in
the expansion of an exponent (Matheron 1967;Shvidler 1962),

Kef = Kg exp

[(
1

2
− 1

d

)
σ 2

Y

]
. (9)

In recent years the question of validity of expression (9) was the focus of a thorough inves-
tigation. It was proven that expression (9) is rigorously valid under one-dimensional flow in
log-normal fields where it yields the harmonic mean Kh = Kg exp(−σ 2

Y /2) (Dagan 1993;
Paleologos et al. 1996). It is also rigorously valid under two-dimensional flow in log-normal,
statistically isotropic conductivity fields where it yields the geometric mean Kg (Matheron
1967). For three-dimensional flow in log-normal, statistically isotropic fields, the second-
order (in σ 2

Y ) term in (8) was found to be in agreement with the Taylor series expansion of
(9) (Dagan 1993). While unsuccessfull attempts to prove (9) for three-dimensional flows in
such fields have been reported (King 1989; Noetinger 1990), De Wit 1995 demonstrated that
the third-order correction in (8) is not equal to the third-order term in the Taylor expansion
of (9), thereby proving this conjecture to be not strictly valid for three-dimensional Gaussian
isotropic media. Instead, it was demonstrated that this and higher-order terms depend on the
shape of the correlation function ρY .

These results suggest that it would be beneficial to view the Eq. 8 and its higher order
terms as a perturbation expansion of the true scalar hydraulic conductivity in powers of the
variance σ 2

Y . In this sense, the passage from (8) to (9) is a resummation procedure. It thus
makes full sense to ask what could be the most general and robust resummation that can
generalize (8) in order to extract the behavior of the permeability in the regime of large σ 2

Y
where the initial perturbation expansion breaks down.

It is often the case that perturbation expansions are not converging but are instead diverg-
ing series. Even if the series is convergent for small perturbation parameters σ 2

Y , one is in

123



80 S. Gluzman, D. Sornette

general interested in the regime where σ 2
Y is of order 1 and larger. In this case, the pertur-

bation series is divergent and is of no direct use. The study of such summation of divergent
series is the problem of great importance in theoretical physics, applied mathematics and
engineering. This is because realistic problems are usually solved by means of some calcula-
tional algorithm often resulting in divergent sequence of approximations. Assigning a finite
value to the limit of a divergent sequence is called renormalization or summation technique.
The most widely used such technique is Padé summation (Baker 1996). However, the Padé
summation method has several shortcomings. First of all, to reach a reasonable accuracy of
Padé approximants, one needs to possess tens of terms of a perturbation series. In contrast,
only a few terms are often available because of the complexity of the problem. Second, Padé
approximants are defined for the series of integer powers. But in many cases asymptotic
series arise having noninteger powers. Third, there are quite simple examples that are not
Padé summable even for a sufficiently small variable. Last, Padé summation is more of a
numerical technique providing answer in the form of numbers. Therefore, it is difficult, if
possible, to analyze the results when the considered problem contains several parameters to
be varied, since for each given set of parameters one has to repeat the whole procedure of
constructing a table of Padé approximants and of selecting from them one corresponding to
a visible saturation of numerical values.

We thus turn to the method of so-called self-similar approximation or functional renor-
malization that provide a very interesting alternative. We first summarize the idea of the
technique and then apply it to calculate properties of transport in porous media in the limit
of large heterogeneity.

3 General formulation of the self-similar approximation theory

General ideas and the mathematical foundation of the self-similar approximation theory
have been described in detail in (Gluzman and Yukalov 1998; Yukalov and Gluzman 1997a,
b; Yukalov and Gluzman 1998; Yukalov and Gluzman 1999; Gulzman and Sornette 2002;
Gulzman et al. 2003; Gulzman et al. 2003; Gulzman and Yukalov 1998; Yukalov et al. 1998;
Yukalov and Gluzman 1999). The approach is applicable in all cases, when either just a few
terms of a series are known or when a number of such terms are available. We are always able
to obtain analytical formulas that are easy to consider with respect to varying characteristic
parameters. We now expose the general idea of the method of self-similar approximation.
For more details on the method, see the appendix.

Consider the case, when for a sought function f (x), one derives an approximate pertur-
bative expansion

pk(x) =
k∑

n=0

an xαn , (10)

in which αn is an arbitrary real number, integer or noninteger, positive or negative. Following
the method of the algebraic self-similar renormalization (Gluzman and Yukalov 1997), we
define the algebraic transform

Pk(x, s) ≡ xs pk(x) =
k∑

n=0

an xs+αn , (11)
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where s is real. Rather than constructing a trajectory in the functional space of the initial
approximations, the idea behind the introduction of the transform (11) is to deform smoothly
the initial functional space of the approximations pk(x) in order to obtain a faster and better
controlled convergence in the space of the modified functions Pk(x, s). This convergence
can then be mapped back to get the relevant estimations and predictions. The exponent s
depends on x in general and will be acted upon as a control function in order to accelerate
convergence.

Then, by means of the equation P0(x, s) = a0 xs+α0 = ϕ, we obtain the expansion

function x(ϕ, s) =
(

ϕ
a0

)1/(s+α0)

. Substituting the latter into (10), we have

yk(ϕ, s) ≡ Pk(x(ϕ, s), s) =
k∑

n=0

an

(
ϕ

a0

)(s+αn)/(s+α0)

. (12)

The family {yk} of transforms (10) is called the approximation cascade, since its trajec-
tory {yk(ϕ, s) | k = 0, 1, 2 . . .} is bijective to the sequence {Pk(x, s) | k = 0, 1, 2 . . .} of
approximations (11). A cascade is a dynamical system in discrete time k = 0, 1, 2 . . ., whose
trajectory points satisfy the semigroup property yk+p(ϕ, s) = yk(yp(ϕ, s), s). The physical
meaning of the above semigroup relation can be understood as the property of functional
self-similarity with respect to the varying approximation number. The self-similarity relation
is a necessary condition for the fastest convergence criterion.

For the approximation cascade {yk}, defined by transform (12), the cascade velocity is

vk(ϕ, s) ≡ yk(ϕ, s) − yk−1(ϕ, s) = ak

(
ϕ

a0

)(s+αk )/(s+α0)

. (13)

This is to be substituted into the evolution integral
∫ P∗

k

Pk−1

dϕ

vk(ϕ, s)
= τ, (14)

in which Pk = Pk(x, s) and τ is the minimal time needed for reaching a fixed point P∗
k =

P∗
k (x, s, τ ). Integral (14) with velocity (13) yields

P∗
k (x, s, τ ) =

[

P−ν
k−1(x, s) − ν akτ

a1+ν
0

]−1/ν

, (15)

where ν = νk(s) ≡ αk−α0
s+α0

. Taking the algebraic transform inverse to (11), we find

p∗
k (x, s, τ ) ≡ x−s P∗

k (x, s, τ ) =
[

p−ν
k−1(x) − ν akτ

a1+ν
0

xsν

]−1/ν

. (16)

Exponential renormalization (Yukalov and Gluzman 1997a, b; Yukalov and Gluzman 1998)
corresponds to the limit s → ∞, at which lims→∞ νk(s) = 0, lims→∞ sνk(s) = αk − α0.
Then (16) gives

lim
s→∞ p∗

k (x, s, τ ) = pk−1(x) exp

(
ak

a0
τ xαk−α0

)
. (17)

Accomplishing exponential renormalization of all sums appearing in expression of type (17),
we follow the bootstrap procedure (Yukalov and Gluzman 1997a, b) according to the scheme
pk(x) → p∗

k (x, s, τ ) → Fk(x, τ1, τ2, . . . , τk), with k ≥ 1.
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Let us mention a recent innovation (Gluzman and Sornette 2002) that may improve signifi-
cantly the convergence of the method, based on the determination of the control parameters
from the knowledge of some moments of the function to reconstruct. Let us assume that we
can obtain the first j − 1 moments µi , i = 1, 2, . . . , j of the sought function φ(t), in some
interval T ,

µi =
∫ T

0
t i−1φ(t)dt, (18)

so that for j=2 both zero and first moments are available etc. One can condition the control
parameters τ1,τ2,...τ j as follows

∫ T

0
f ∗

j (t, τ1,τ2, . . . , τ j−1)t
i−1dt = µi , (19)

Based on these conditions, one can attempt to solve two different problems, the first one
corresponds to an approximate reconstruction of the function φ(t) within the same interval
[0,T] where moments are given or measured. The second problem consists in extrapolating to
t > T . It is also possible to use an hybrid approach, where some controls are obtained from
the agreement with the expansion, while the remaining ones are found from the conditions
on moments.

4 Resummation of lower order expansions in σ 2
Y

4.1 What can be extracted from the expansion of K [1]
ef

Assume that the following extremely short expansion has been obtained,

K (σY ) 
 1 − aσ 2
Y , a = 1

d
− 1

2
(σ 2

Y → 0). (20)

Consider the case a > 0. In order to find the behavior of K (σY ) for arbitrary σ 2
Y , we con-

tinue it from the region of σ 2
Y → 0 self-similarly, along the most stable trajectory, with the

crossover index s, determined by the condition of the minimum of the multiplier (Gluzman
and Yukalov 1998; Yukalov and Gluzman 1997a, b; Yukalov and Gluzman 1999)

m(σY , s) = 1 − aσ 2
Y

1 + s

s
, (21)

from where

s(σY ) = aσ 2
Y

(
1 − aσ 2

Y

)−1
, σY < a−1/2,

s → ∞, σY ≥ a−1/2,

corresponding to the self-similar approximation

K ∗(σY ) =
(

s(σY )

s(σY )+aσ 2
Y

)s(σY )

= (
2 − aσ 2

Y

)
aσ2

Y
aσ2

Y −1 , σY < a−1/2, (22)

K ∗(σY ) = exp(−aσ 2
Y ), σY ≥ a−1/2 . (23)

This suggests one self-similar expression (22) up to σY 0 = a−1/2, and another (23), expo-
nentially “soft”, above this value. Strictly speaking, formula (22) is applicable for σY only
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up to (2/a)1/2, where it predicts a spurious zero of conductivity. In this particular case, the
self-similar approximation plausibly reconstructs the exponential function for arbitrary σY ,
even in the absence of any a priori assumption on the asymptotic behavior at σY → ∞.

For negative a (d > 2), there is no limiting value σY 0 and this yields

K ∗(σY ) =
(

s(σY )

s(σY ) + aσ 2
Y

)s(σY )

, (24)

which can be used for arbitrary σY . This expression appears to be more stable than the previ-
ously proposed exponential solution exp(−aσ 2

Y ) for arbitrary σY , as indicated by the analysis
of the multipliers. Expression (24) also predict a smaller conductivity than the exponential
function for arbitrary σY suggesting that, for the most interesting case d = 3, the ansatz Eq.
8 should be replaced. Analysis of higher-order expansions will provide more details on the
sought function.

4.2 Resummation of the second-order expansion in σ 2
Y . One-parameter formula

Available from (Dagan 1993) in the next order in σ 2
Y , we have

K [2]
ef ≡ K [1]

ef + K (2)
ef = Kg

[

1 +
(

1

2
− 1

d

)
σ 2

Y + 1

2

(
1

2
− 1

d

)2

σ 4
Y

]

. (25)

Below, for simplicity, we apply our resummation technique to the dimensionless quantity

K (z) 
 1 + a1z + a2z2, z ≡ σ 2
Y , a1 =

(
1

2
− 1

d

)
, a2 = 1

2

(
1

2
− 1

d

)2

. (26)

Application of accuracy-through-order conditions, or of the super-exponential approxi-
mants give, almost trivially, an exponential solution. Note that the Padé approximant available
in this case,

P(z) = 1 + (−a2/a1 + a1)z

1 − a2/a1 z
, (27)

for d = 3, possesses a singularity at z = 12, which is wrong.
The set of approximations to K (z), including the two starting terms from (26), can be

written down as follows:

K0 = 1,

K1 = 1 + a1z,

and the expression for the renormalized quantity a∗
1 can be readily obtained:

K ∗
1 =

(
s1

s1 − a1z

)s1

�⇒
(

s1

−a1

)s1

z−s1 (z → ∞), (28)

where the stabilizer s1 should be negative, if we want to reproduce in the limit of z → ∞, the
correct, supposedly power-law behavior of the conductivity. A different set of approxima-
tions, which does not include the constant term from (26) into the renormalization procedure,
has the form:

K1 = a1z, (29)

K2 = a1z + a2z2, (30)
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and applying the standard procedure of (Yukalov and Gluzman 1997a, b), we obtain

K ∗
2 = 1 + a1z[1 − a2z

a1(1 + s2)
]−(1+s2) �⇒ (− a2

1 + s2
)−(1+s2) a2+s2

1 z−s2 (z → ∞). (31)

Demanding now that both (28) and (31) have the same power-law behavior at z → ∞, we
find that

s2 = s1 ≡ s.

Requiring now the fulfillment of the stability criteria for the two available approximations in
the form of the minimal-difference condition (see Sect. 3), we obtain the condition that the
negative stabilizer s should be determined from the minimum of the expression:

∣
∣
∣
∣
∣

[( −a2

1 + s

)−(1+s)

a(2+s)
1 −

(
s

−a1

)s
]∣
∣
∣
∣
∣
. (32)

Generally speaking, it is sufficient to ask for an extremum of this difference.
In the case of d = 3, the maximum is located at the point s = −1.218. The final formulae

have the following form:

K ∗
1 (z) =

(
s

s − a1z

)s

, (33)

K ∗
2 (z) = 1 + a1z

[
1 − a2z

a1(1 + s)

]−(1+s)

. (34)

This last formula gives a lower bound for conductivity while the upper bound is simply
exp(a1z) (Eq. 8) which, in this case, is the only available “factor”-approximant based on all
available (three) terms from the expansion. The corresponding multiplier is

M∗
2 (z) = a1(1 + s) + a2z s

a1(1 + s) − a2z

(
1 − a2

a1(1 + s)
z

)−(s+1)

(35)

and the weighted average (Yukalov and Gluzman 1999; Gluzman and Sornette 2002) is given
by

C(z) = 1 + K ∗
2 (z)

∣∣M∗
2 (z)

∣∣−1

exp(−a1z) + ∣∣M∗
2 (z)

∣∣−1 , (36)

providing the one-parametric formula for 3d-conductivity. See Fig. 1 for a comparison of
different formulas for the conductivity as a function of the variance z ≡ σ 2

Y defined in Eq.
26. The solid line corresponds to the average C(z), while the dotted line presents K ∗

2 (z). The
dashed line is the celebrated exponential Landau–Lifshitz–Matheron (LLM) conjecture. The
dash-dotted line corresponds to the result of resummation based on first-order expansion,
K ∗(σY ). The filled circles are the values obtained by the numerical calculations reported in
Ref. Neuman and Orr 1993. One can see that the Landau–Lifshitz–Matheron (LLM) conjec-
ture provides the best description.
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Fig. 1 Dependence of different estimators of the conductivity as a function of the variance z ≡ σ 2
Y defined

in Eq. 26. The solid line corresponds to C(z), the dotted line shows K ∗
2 (z). The dashed line is the Landau–

Lifshitz–Matheron (LLM) conjecture. K ∗(σY ) (dash-dotted line) corresponds to the result of resummation
based on the first-order expansion. The filled circles are the values obtained by the numerical calculations
reported in Ref. Neumand and Orr 1993. The Landau–Lifshitz–Matheron (LLM) conjecture provides the best
description

4.3 Resummation of the third-order expansion in σ 2
Y . two-parameters formula

The expansion to the next order is given by (De wit 1995),

K (z) 
 1 + a1z + a2z2 + a3z3, a3(Z) = 1

6

(
1

2
− 1

d

)3

− Z , (37)

where Z = 0.0042/3 (in the case of a Gaussian covariance), or Z = 0.0014/3 (in the case
of an exponentially decaying covariance).

Using all terms from the expansion, we can create the following “odd” factor-approximant
(Gluzman et al. 2003),

K ∗
3 (z, Z) = 1 + a1z

(
1 − a2

a1(s2(Z) + 1)
z

)−(s2(Z)+1)

, s2(Z) = −2
a2

2 − a3(Z)a1

a2
2 − 2a3(Z)a1

,

(38)

while K ∗
2 (z) = exp(a1z), which recovers expression (8). The approximant K ∗

2 (z) gives an
upper bound for the conductivity coefficient, while K ∗

3 (z, Z) given by (38) provides a lower
bound. The corresponding multipliers can be readily written down,

M∗
3 (z, Z) = a1(1 + s2(Z)) + a2z s2(Z)

a1(1 + s2(Z)) − a2z

(
1 − a2

a1(s2(Z) + 1)
z

)−(s2(Z)+1)

, (39)

M∗
2 (z) = exp(a1z). (40)
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Fig. 2 Dependence of the conductivity C(z, Z) as a function of the variance z ≡ σ 2
Y defined in Eq. 26

for Gaussian and exponential covariances, shown with solid and dotted lines respectively. For comparison,
the Landau–Lifshitz–Matheron (LLM) conjecture is shown in dashed lines. The filled circles are the values
obtained by the numerical calculations reported in Ref. Neumand and Orr 1993. The conductivity C(z, Z) for
the exponential covariances is performing comparably or slightly better than the Landau–Lifshitz–Matheron
(LLM) conjecture

This allows us to obtain the weighted average of the conductivity coefficient

C(z, Z) = 1 + K ∗
3 (z, Z)

∣∣M∗
3 (z, Z)

∣∣−1

exp(−a1z) + ∣∣M∗
3 (z, Z)

∣∣−1 , (41)

providing a two-parameters formula for the 3d-conductivity. The results for C(z, Z) for
Gaussian and exponential covariances are shown in Fig. 2, with the dotted line for the expo-
nential case and with the solid line for the Gaussian case. These results are compared with
the Landau–Lifshitz–Matheron (LLM) shown with dashed line. The filled circles are the val-
ues obtained by the numerical calculations reported in Ref. Neuman and Orr 1993. One can
observe that the conductivity C(z, Z) for the exponential covariances is performing compa-
rably or slightly better than the Landau–Lifshitz–Matheron (LLM) conjecture, the difference
becoming more significant for that largest available value of the variance.

Numerical data in the exponential case are available till z = 7 Neuman and Orr 1993 and
in the Gaussian case up to z = 6 (Dykaar and Kitanidis 1992). Our results suggest that all
formulas based on the expansion on σ 2

Y —up to the third order underestimate the conductivity
and more terms are needed to improve the accuracy of the resummed expressions.

A different approach aimed at increasing the accuracy consists in getting expressions for
the conductivity in the limit of σ 2

Y → ∞, for instance from expansions in inverse powers
of σ 2

Y , It is known (see Ref. Gluzman and Yukalov 1998; Yukalov et al. 1998; Yukalov and
Gluzman 1999) that when the asymptotic form of the solution is known, even only quali-
tatively, the formulas for the sought function can be improved very significantly. Even the
knowledge of the leading power in the limit of large σ 2

Y would be of utmost importance.
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Fig. 3 As a function of the variance z ≡ σ 2
Y defined in Eq. 26, this figure shows a comparison between

the conductivity K ∗
2 (m) (dotted line) with C(z) (dashed) and with exp(a1z) (solid line). The Perturbative

expansion K (m) is shown with the dashed-dot line. The filled circles are the values obtained by the numerical
calculations reported in Ref. Neumand and Orr 1993. The function K ∗

2 (m) (dotted line) is in good agreement
with these simulations

5 1/d-expansion and resummation

5.1 One-parametric case (d=3)

Expression (26) for K (z) in the second order of perturbation theory can be re-written in the
form of an expansion in the parameter 1/d with coefficients dependent on z,

K (m) 
 b0(z) + b1(z)m + b2(z)m
2, m ≡ 1/d; (42)

b0(z) = 1 + z

2
+ z2

8
, b1(z) = −z − z2

2
, b2(z) = z2

2
. (43)

The theory of self-similar super-exponential approximants (Yukalov and Gluzman 1997a, b;
Yukalov and Gluzman 1998; Gluzman and Sornette 2002; Gluzman et al. 2003) then provides
the following approximant

K ∗
2 (m) = b0 exp

(
b1

b0
τ1m exp

(
b2

b1
τ2m

))
, τ1 = 1, τ2 = 1 − b2

1

2b0b2
. (44)

K ∗
2 (m) is located within the bounds given by K ∗

2 (z) and exp(a1z) and provides a one-para-
metric formula for the d = 3-conductivity, as shown in Fig. 3. K ∗

2 (m) (dotted line) also
appears to be located within the bounds outlined by C(z) (dashed) and exp(a1z) (solid line).
The perturbative expression K (m) (dashed-dot line) is shown as well for comparison. The
filled circles are the values obtained by the numerical calculations reported in Ref. Neumand
Orr 1993. The function K ∗

2 (m) (dotted line) is in good agreement with these simulations.
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5.2 Two-parametric case (d=3)

Expression for K (z) (37) in the third order of perturbation theory can also be re-written in
the form of an 1/d-expansion with coefficients dependent on z and Z ,

K (m, Z) 
 b0(z, Z) + b1(z)m + b2(z)m
2 + b3(z)m

3; (45)

b0(z, Z) = 1 + z

2
+ z2

8
+

(
1

48
− Z

)
z3, b1(z) = −z − z2

2
− z3

8
, b2(z) = z2

2
+ z3

4
,

(46)

b2(z) = z2

2
+ z3

4
, b3(z) = − z3

6
. (47)

We apply the technique of self-similar super-exponential function in its variant detailed in
(Gluzman and Sornette 2002; Gluzman et al. 2003), giving the following approximants

K ∗
2 (m, Z , τ1, τ2) = b0 exp

(
b1

b0
τ1m exp

(
b2

b1
τ2m

))
, (48)

K ∗
3 (m, Z , τ1, τ2, τ3) = b0 exp

(
b1

b0
τ1m exp

(
b2

b1
τ2m exp

(
b3

b2
τ3m

)))
, (49)

τ3 = 1

6

(−b4
1 + 6b2

0b1b3 − 6τ2b0b2
1b2 − 3τ 2

2 b2
0b2

2

)

τ2b2
0b1b3

. (50)

In order to check whether the sequence of K ∗
j converges, we study their mapping multipliers,

M∗
j (t, τ1, τ2, . . . τ j ) defined as

M∗
j (m, Z , τ1, . . . , τ j ) ≡ 1

b1

∂

∂t
K ∗

j (m, Z , τ1, . . . , τ j ). (51)

This definition of the multipliers allows us to compare the convergence of the expansion and
of the renormalized expressions, making clear what can be expected a priori.

This provides a matrix of self-similar approximants, indexed by the order j and by the
number of control parameters,

K ∗
21(m, Z) = K ∗

j (m, Z , τ1, 1), K ∗
22(m, Z) = K ∗

j (m, Z , τ1, τ2), (52)

K ∗
31(m, Z) = K ∗

3 (m, Z , τ1, 1, 1), K ∗
32(m, Z) = K ∗

3 (m, Z , τ1, τ2, 1),

K ∗
33(m, Z) = K ∗

3 (m, Z , τ1, τ2, τ3), (53)

Approximants K ∗
22(m, Z) and K ∗

32(m, Z) form the closest pair. Their average

K ∗(m, Z) = K ∗
22(m, Z)

∣∣M∗
22(m, Z)

∣∣−1 + K ∗
32(m, Z)

∣∣M∗
32(m, Z)

∣∣−1

∣∣M∗
22(m, Z)

∣∣−1 + ∣∣M∗
32(m, Z)

∣∣−1 . (54)

is located within the bounds given by K ∗
3 (z, Z) (38) and exp(a1z) and provides a useful

formula for the conductivity coefficient. The results for the exponential and Gaussian
covariances are shown in Figs. 4 and 5, respectively. In the exponential case, good agreement
between K ∗(m, Z) (dash-dot) and the Landau–Lifshitz–Matheron (LLM) conjecture (solid)
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Fig. 4 Exponential covariance: K ∗(m, Z) (dash–dot) is compared with the Landau–Lifshitz–Matheron
(LLM) conjecture (solid line). Two approximants K ∗

22(m, Z) (dashed) and K ∗
32(m, Z) (dotted) are shown

as well
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Fig. 5 Gaussian case: Approximant K ∗
32(m, Z) (dotted) compared with the Landau–Lifshitz–Matheron

(LLM) conjecture (solid line). The approximant K ∗
22(m, Z) (dashed line) is shown as well

remains valid till z ≈ 11. The average behavior appears to be located within the bounds
outlined by K ∗

22(m, Z) (dashed) and K ∗
32(m, Z) (dotted) and provides a reasonable formula

for the conductivity. Numerical data are available till z = 7 (Neuman and Orr 1993) and they
agree well with our lower bound.
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In the Gaussian case K ∗
32(m, Z) (dotted line) gives an approximation which is closer to

the Landau–Lifshitz–Matheron (LLM) conjecture (solid) than K ∗
22(m, Z) (dashed line). In

this case, numerical results are available up to z = 6 (Dykaar and Kitanidis 1992).
We conclude, tentatively, that all formulas based on 1/d-expansion in the third order

provide rather accurate expressions for conductivity for small and moderate variances and
disagree with the LLM-conjecture for very large variances. To the best of our knowledge, the
region of large variances is not accessible by other techniques, numerically or theoretically.
All formulas based on the novel proposed 1/d-expansion in the third order provide rather
accurate expressions for the conductivity coefficient. We note that 1/d-expansions may be
faster converging than the original expansion in variances and should be investigated future.

6 Future directions

We have shown that it is possible to exploit the limited information obtained from moment
equations to derive the best guesses for the properties of the permeability in the large hetero-
geneity limit. We have done this by using the self-similar functional renormalization method,
which provides a more stable and robust estimation of the scalar hydraulic conductivity of
the three-dimensional medium at large values of the perturbation parameter σ 2

Y .
A fundamental question on the self-similar renormalization method should be raised: Do

the first terms in the expansions contain enough information about the behavior of other
terms? There is not unique and universal answer to this non-trivial question. Our experience
(see all the papers by Yukalov et al. and Gluzman et al.) shows that in many (most?) cases,
the self-similar renormalization method does a remarkable job at providing significantly
improved estimations of the true functions just from the knowledge of a few terms of the
perturbative expansion. This relies evidently in some smoothness and regularity conditions in
the solution which is searched for. We propose to use the self-similar renormalization method
as a practical tool to obtain in most cases significantly better estimates of the observables
than previously available just by using perturbation expansions. We should however mention
that the proposed approach can only work if a perturbation expansion is available, which
may not be the case for more complex realistic situations with complex initial and bound-
ary conditions, source terms, and when the hydraulic conductivity is non-stationary due to
conditioning on measurements. Our methodology, considered as a whole, works indeed in
most of the problems in Condensed Matter, when it is possible to express them in the form
of expansions; and it is possible because approximants by design possess asymptotic form
well agreeing with the true physical asymptotic behavior. Our best guess therefore appears
as plausible.

Future directions include the extension of the self-similar functional renormalization
method to go beyond the characterization of the heterogeneity solely in terms of the var-
iance and consider also the dependence of the transport properties with respect to the skew-
ness (third normalized cumulant) and kurtosis (fourth normalized cumulant). In particular,
most natural heterogeneous permeable media are observed to be statistically anisotropic. The
application of our technique to this case is an important extension of this first preliminary
work, and should follow the same lines based on the second order treatment of Abramovich
and Indelman 1995.

Acknowledgements We are grateful to D.M. Tartakovsky for introducing us into the subject and for useful
discussions.
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Appendix: method of self-similar renormalization

The complete description of the method with the corresponding mathematical foundation
can be found in Refs. Yukalov 1990, 1991, 1992; Yukalov and Yukalova 1994, 1996. In this
appendix inspired from Ref. Gluzman and Yukalov 1997, we provide the ingredients which
are necessary for a self-contained understanding of this paper.

Let us consider a function f (x) of the variable x ∈ (−∞,∞). Let this function satisfy
a complicated equation that cannot be solved exactly. Assume that by means of perturba-
tion theory we can get a sequence {pk(x)} of perturbative approximations pk(x), where
k = 0, 1, 2 . . ., enumerates the approximation order. Usually, perturbation sequences are
divergent. To extract a meaningful result from a divergent sequence, one has to use so-called
resummation techniques. In the method of self-similar renormalization, a divergent sequence
can be made convergent by introducing additional functions ensuring convergence (see
Yukalov 1990, 1991, 1992; Yukalov and Yukalova 1994, 1996). Due to their role, these
functions are called governing or control functions. Let s be a set of such control functions
entering into a sequence {Fk(x, s)} obtained by a perturbation algorithm.

In addition to introducing the control functions, the main idea of the method of self-similar
renormalization is to treat the passage from one approximation to another as a motion with
respect to the approximation number k = 0, 1, 2,…considered as an effective time variable.
This motion is realized in the functional space of the considered function as follows. Let us
define the initial approximation

F0(x, s) = f (55)

as an equation for the expansion function x = x( f, s). Substitute the latter back to Fk, so
that

yk( f, s) ≡ Fk(x( f, s), s). (56)

The relation inverse to (56) is

Fk(x, s) = yk(F0(x, s), s). (57)

Let {yk} form a group of transformations with respect to k = 0, 1, 2…Then, the trajectory
{yk( f, s)} of this dynamical system, according to definitions (56) and (57), is bijective, that
is in one-to-one correspondence to the approximation sequence {Fk(x, s)}. This dynamical
system with discrete time k has been called (Yukalov and Yukalova 1994, 1996) the approx-
imation cascade. The attracting fixed point of the cascade trajectory is, by construction,
bijective to the limit of the approximation sequence {Fk(x, s)}, and thus corresponds to the
sought function.

It is easier to deal with continuous than with discrete time. It is thus convenient to embed
the approximation cascade {yk} into an approximation flow {y(t, . . .)} with continuous time
t ≥ 0. This implies that the trajectory {y(t, f, s)} of the flow passes through all the points of
the cascade trajectory at the integer times t = k = 0, 1, 2, . . . ,,

y(k, f, s) = yk( f, s) (k = 0, 1, 2, . . .). (58)

The evolution equation for the flow reads

∂

∂t
y(t, f, s) = v(y(t, f, s)), (59)

with the right-hand side being the velocity field. The latter, in the language of renormaliza-
tion-group theory, is often called the Gell–Mann–Low or β-function.
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Integrating the evolution Eq. 59 from t = k to t = k∗, we get the evolution integral
∫ y∗

k+1

yk

d f

v( f, s)
= k∗ − k, (60)

in which yk = y(k, f, s) and y∗
k+1 = y(k∗, f, s). Before specifying the numbers k and k∗ in

the limits of the evolution integral, let us note that the differential form (59) of the evolution
equation, or its integral form (60), are equivalent to the functional relation

y(t + t ′, f, s) = y(t, y(t ′, f, s), s). (61)

The latter in physical applications is labeled as the self-similarity relation, which explains our
terminology. In general, the self-similarity can occur with respect to motion over different
parameters. In our case, this is the motion over the steps of a computational procedure, the
number of steps playing the role of effective time.

If there exists an attractive fixed point of the approximation-flow trajectory, then it is
always possible to find a number k∗ in the evolution integral (60) such that the upper limit
y∗

k would correspond to an expression

F∗
k (x, s) ≡ y(k∗, F0(x, s), s) (62)

representing, with the desired accuracy, the sought function f (x). If y∗
k was an exact fixed

point, then (62) would give an exact answer to the problem. However, a fixed point can be
reached only after infinite number of steps k → ∞. For a finite number k, the limit y∗

k may
represent the fixed point only approximately, and is thus named the quasi-fixed point. Our
aim is to reach the latter as fast as possible, that is, during the minimal time

t∗k = min(k∗ − k), (63)

or the minimal number of steps. When there are no additional restrictions, the minimal number
of steps counted by k is 1, so that

abs min t∗k = 1. (64)

In the case where some constraints are imposed on the motion, the minimal time (63) should
correspond to a conditional minimum. For instance, if a value f0 ≡ f (x0) of the sought
function f (x) is given for some x0, then we can find t∗k by requiring that the trajectory of the
approximation cascade should pass through the given point f0.

To calculate the evolution integral (60), we need to define the velocity field. This can be
done by the Euler discretization of (59) yielding the finite-difference form

vk( f, s) = yk( f, s) − yk−1( f, s). (65)

Substituting (65) into (60), and using (57), we come to the representation
∫ F∗

k+1

Fk

d f

vk+1( f, s)
= t∗k , (66)

for the evolution integral (60), where Fk = Fk(x, s), F∗
k+1 = F∗

k+1(x, s).
Finally, we have to define the set s of control functions, whose role is to govern the con-

vergence of the approximation sequence. This convergence can be expressed, in the language
of dynamical theory, as the stability of the cascade trajectory. A useful tool for analyzing
stability is the set {µk} of the local multipliers

µk( f, s) = ∂

∂ f
yk( f, s). (67)
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The inequality

| µk( f, s) |< 1 (68)

is the condition of local stability at the step k with respect to the variation of an initial point
f . The equality | µk( f, s) |= 1 implies local neutral stability. For a convergent sequence
corresponding to a contracting mapping, the condition of asymptotic stability is

| µk( f, s) | → 0 (k → ∞). (69)

The approximation cascade {yk} describes the motion in the functional space { f }. To
return to the domain {x}, we must use the inverse transformation (57) which allows us to
pass from the multiplier (67) given on the functional space { f } to its image

mk(x, s) = µk(F0(x, s), s) (70)

being a function of x . For the image (70), the same stability condition as in (68) can be
written,

| mk(x, s) |< 1. (71)

According to (69), the local multipliers decrease when approaching an attracting fixed point.
This means that the variation of the initial condition f produces weaker effects on the tra-
jectory as the attractor becomes closer. In other words, the smaller are the absolute values
of the multipliers, the more stable is the trajectory. Therefore, it is reasonable to define the
control functions as those minimizing the absolute values of the local multipliers, ensuring
that the trajectory becomes more stable at each step k. In this way, a set s of control functions
is defined by the principle of maximal stability written as

| mk(x, sk(x)) |= mins | mk(x, s) | . (72)

The control functions sk(x) defined by the principle (72) may be called the stabilizing func-
tions or stabilizers.

Note that the control functions may be introduced in several ways, as discussed in the other
papers by Yukalov and co-workers. However, their introduction always uses the criteria of
stability conditions and the closeness of a trajectory to an attracting fixed point. In all cases,
the control functions are defined so that they govern the convergence of an approximation
sequence, which, from the point of view of dynamical theory, is equivalent to stabilizing the
cascade trajectory.

After the stabilizers are defined, we have to substitute them into the corresponding approx-
imations Fk(x, s) getting

fk(x) ≡ Fk(x, sk(x)). (73)

This stage can be called the stabilizing renormalization of a perturbative sequence.
Then, considering the motion near the renormalized quantity (73) by means of the evolu-

tion integral (66), we obtain

f ∗
k (x) ≡ F∗

k (x, sk(x)). (74)

This step can be called the dynamical renormalization. And the whole procedure of the
double renormalization (73) and (74) is named the self-similar renormalization. It is worth
noting that the evolution Eq. 59 is generally nonlinear and can have several different solutions
leading to different self-similar approximations (74). In such a case, to select a physically
meaningful solution, we need to involve additional conditions as constraints. The constraints

123



94 S. Gluzman, D. Sornette

can involve the properties of symmetry, the asymptotic properties at x → 0 or x → ∞, sum
rules or other relations containing some known information on the character of the sought
solution. Such additional constraints narrow down the set of possible solutions to a class with
desired properties.

Since our goal is to obtain a good accuracy for the sought function from just a few availabel
perturbative terms, Yukalov and co-workers have introduced tricks which amount effectively
to increase the perturbation order. Here, we present the simplest algebraic method.

Suppose that there is a sequence of approximations pk(x) having polynomial structure,
k showing the order of the polynomial. This order can be effectively increased by means of
the multiplicative transformation

Pk(x, s) = xs pk(x), s ≥ 0. (75)

Then, the order of the expression (75) becomes k + s. The transformation inverse to (75) is

pk(x) = x−s Pk(x, s). (76)

Following the method described above, we consider the sequence {Pk(x, s)} and construct
an approximation cascade {yk} whose trajectory {yk( f, s)} is bijective to {Pk(x, s)}. Solving
the evolution integral (66), we have P∗

k (x, s). From the principle of maximal stability (72)
we define the stabilizers sk(x). Substituting these into P∗

k (x, s) and invoking the inverse
transformation (76), we obtain the self-similar approximation

f ∗
k (x) = x−sk (x) P∗

k (x, sk(x)). (77)

The multiplicative transformation (75) is the most natural one in the case when the pertur-
bative approximations pk(x) have the form of polynomials or series of a variable with not
necessarily integer powers. The factor xs effectively increases the approximation order, and
s plays simultaneously the role of a stabilizer.

The power or effective order s is dictated by the principle of maximal stability selecting
the most stable trajectory of the approximations cascade. In particular, it may happen that
s = 0, and we do not need to proceed further, or, vice versa, we may have to go to the limit
of s → ∞, thus allowing for all approximation orders. In each concrete case, the effective
order we need to reach depends on how good is the perturbative sequence {pk(x)} we start
with and, how much information can be extracted from its first terms by means of the double
renormalization (73) and (74). The name algebraicself-similar renormalization method has
been used to refer to this choice wheren the control functions are introduced in the exponents
of perturbative polynomials.

Concretely, the procedure works as follows.

pk(x) =
k∑

n=0

an xn, an �= 0, (78)

as a polynomial of the order k. Following (75), define

Pk(x, s) =
k∑

n=0

an xn+s . (79)

Similarly to (55), we have

P0(x, s) = a0 xs = f, (80)
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from which the expansion function is

x( f, s) =
(

f

a0

)1/s

. (81)

The definition (56) yields the points

yk( f, s) =
k∑

n=0

an

(
f

a0

)n/s+1

(82)

of the approximation-cascade trajectory. For the velocity field (65), we get

vk+1( f, s) = ak+1

(
f

a0

) k+1
s +1

. (83)

From the evolution integral (66), we find

P∗
k+1 = Pk

(

1 − (k+1) ak+1 t∗k
s a

k+1
s +1

0

P
k+1

s
k

) s
k+1

. (84)

The multiplier (67) becomes

µk( f, s) =
k∑

n=0

an

a0

(
1 + n

s

) (
f

a0

) n
s

, (85)

and its image (70) reads

mk(x, s) =
k∑

n=0

an

a0

(
1 + n

s

)
xn . (86)

The principle of maximal stability (72) defines the stabilizers sk(x), whose explicit expres-
sions depend on the coefficients an . According to the transformations (75)–(77), we obtain
from (84)

f ∗
k+1 = pk(x)

(

1 − (k+1) ak+1 t∗k
s a

k+1
s +1

0

xk+1 pk(x)
k+1

s

) s
k+1

, (87)

where sk(x) defines the most stable trajectory. When there are no additional conditions, the
minimal value is t∗k = 1, as in (64).

As noted above, it may happen that the most stable trajectory corresponds to s → ∞. It
is straightforward to check that the limit of the right side in (87), as s → ∞, leads to

f ∗
k+1(x) = pk(x) exp

(
ak+1

a0
xk+1

)
. (88)

One may notice that, renormalizing pk(x) in (88), we obtain the recurrence relation

f ∗
k+1(x) = f ∗

k (x) exp

(
ak+1

a0
xk+1

)
. (89)

It is possible also to derive several other relations permitting to repeat the self-similar renor-
malization several times, which is useful when working with high-order terms. Comparing
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(87) with (88), we see that the self-similar renormalization can yield quite different expres-
sions, from the fractional form to exponential one. Other extensions are described in (Gluzman
et al. 2003; Gluzman et al. 2003; Tarakovsky and Neuman 1998).
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