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Abstract Weakly dicomplemented lattices are bounded lattices equipped with two
unary operations to encode a negation on concepts. They have been introduced to
capture the equational theory of concept algebras (Wille 2000; Kwuida 2004). They
generalize Boolean algebras. Concept algebras are concept lattices, thus complete
lattices, with a weak negation and a weak opposition. A special case of the rep-
resentation problem for weakly dicomplemented lattices, posed in Kwuida (2004),
is whether complete weakly dicomplemented lattices are isomorphic to concept
algebras. In this contribution we give a negative answer to this question (Theorem 4).
We also provide a new proof of a well known result due to M.H. Stone (Trans
Am Math Soc 40:37–111, 1936), saying that each Boolean algebra is a f ield of
sets (Corollary 4). Before these, we prove that the boundedness condition on the
initial definition of weakly dicomplemented lattices (Definition 1) is superfluous
(Theorem 1, see also Kwuida (2009)).
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1 Introduction

Formal concept analysis (FCA) started in the 80s from an attempt to restructure
lattice theory by R. Wille [23, 24]. FCA is based on the formalization of the notions
of “concept” and “concept hierarchy”. In traditional philosophy a concept is defined
by its extent and its intent: the extent contains all entities belonging to the concept,
and the intent contains all properties satisfied by exactly all entities of the concept.
The concept hierarchy states that “a concept is more general if it contains more
objects, or equivalently, if its intent is smaller”. The set of all concepts of a “context”
with its concept hierarchy forms a complete poset called concept lattice. Based on
ordered structures, FCA provides a nice formalism for knowledge management and
retrieval. It has developed rapidly and now stands as a research area on its own,
and has been applied in many fields. For displaying knowledge FCA offers several
techniques, among them the line diagrams (visualization) and the implication theory
(logical description of the information [11, 12]).

In his project to extend FCA to a broader field called contextual logic, Rudolf
Wille needed to formalize a conceptual negation. The problem of negation is surely
one of the oldest problems of the scientific and philosophic community, and still
attracts the attention of many researchers (see [14, 22]). Several types of logic
have been introduced, according to the behavior of the corresponding negation. To
develop a contextual logic, one of the starting points is that of Boolean algebras,
which arise from the encoding of the operations of human thought by G. Boole [1].
Is there a natural generalization of Boolean algebras to concept lattices? Boolean
concept logic aims to develop a mathematical theory for logic, based on concept
as unit of thought, as a generalization of that developed by G. Boole in [1], based
on signs and classes. The main operations of human mind that Boole encoded are
conjunction, disjunction, universe, “nothing” and “negation”.

The set of all formal concepts of a given formal context forms a complete lattice.
Therefore, apart from the negation, the operations encoded by Boole are without
problem encoded by lattice operations. To encode a negation Wille followed Boole’s
idea, and suggested many candidates, among them a weak negation (taking the
concept generated by the complement of the extent) and a weak opposition (taking
the concept generated by the complement of the intent) [25]. This approach is driven
by the wish to have a negation as an internal operation on concepts.1 The concept
lattice together with these operations is called concept algebra. Expressing a negation
in information science and knowledge systems can be very helpful, in particular while
dealing with incomplete information (see for example [3, 8, 18, 19]). In the absence of
a Boolean negation, weak negation and weak opposition would offer an alternative.
In this case concept algebras and weakly dicomplemented lattices (see below) would
replace powerset algebras and Boolean algebras respectively.

For abstracting concept algebras, weakly dicomplemented lattices have been
introduced [15]. Those are lattices with two unary operations that satisfy some
equations known to hold in concept algebras. The main problem we address in this
paper is when a weakly dicomplemented lattice is isomorphic to a concept algebra.

1Other approaches have to relax the definition of concept. These are preconcepts, semiconcepts and
protoconcepts. They have been investigated by R. Wille and coworkers for example in [2, 13, 21, 25,
26],. . . . In [6], there is another proposition to get negation on lattices.
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Characterizing concept algebras remains an open problem, but substantial results are
obtained, especially in the finite case [9, 15]. The rest of this contribution is divided
as follows: in Section 2 we introduce some formal definitions, give a characterization
of weakly dicomplemented lattices and present several constructions of weakly
dicomplemented lattices. Section 3 shows why weakly dicompelemented lattices are
considered as a generalization of Boolean algebras. In Section 4 we prove that
completeness is not enough to get weakly dicomplemented lattices isomorphic to
concept algebras. We end with a new proof of the representation of Boolean algebras
by fields of sets.

2 Weak dicomplementation

Definition 1 A weakly dicomplemented lattice is a bounded lattice L equipped
with two unary operations � and � called weak complementation and dual weak
complementation, and satisfying for all x, y ∈ L the following equations:2

(1) x�� ≤ x, (1′) x�� ≥ x,

(2) x ≤ y =⇒ x� ≥ y�, (2′) x ≤ y =⇒ x� ≥ y�,

(3) (x ∧ y) ∨ (x ∧ y�) = x, (3′) (x ∨ y) ∧ (x ∨ y�) = x.

We call x� the weak complement of x and x� the dual weak complement of x.
The pair (x�, x�) is called the weak dicomplement of x and the pair (�,� ) a
weak dicomplementation on L. The structure (L,∧,∨,� , 0, 1) is called a weakly
complemented lattice and (L,∧,∨,� , 0, 1) a dual weakly complemented lattice.

The following properties are easy to verify: (i) x ∨ x� = 1, (ii) x ∧ x� = 0,
(iii) 0� = 1 = 0�, (iv) 1� = 0 = 1�, (v) x� ≤ x�, (vi) (x ∧ y)� = x� ∨ y�,
(vii) (x ∨ y)� = x� ∧ y�, (viii) x��� = x�, (ix) x��� = x� and (x) x�� ≤ x�� ≤ x ≤
x�� ≤ x��.

Example 1

(a) The natural examples of weakly dicomplemented lattices are Boolean algebras.
For a Boolean algebra (B, ∧,∨, ¯, 0, 1), the algebra (B, ∧,∨, ¯, ¯, 0, 1) (comple-
mentation duplicated, i.e. x� := x̄ =: x�) is a weakly dicomplemented lattice.

(b) Each bounded lattice can be endowed with a trivial weak dicomplementation
by defining (1, 1), (0, 0) and (1, 0) as the dicomplement of 0, 1 and of each
x �∈ {0, 1}, respectively.

Theorem 1 Weakly complemented lattice are exactly the nonempty lattices with an
additional unary operation � that satisfy the equations (1)–(3) in Def inition 1.

2Note that x�� ≤ x ⇐⇒ x�� ∨ x = x and x�� ≥ x ⇐⇒ x�� ∧ x = x; thus conditions (1) and
(1’) can be written as equations. For conditions (2) and (2’) the implication x ≤ y =⇒ x� ≥ y�
is equivalent to the identity (x ∧ y)� ∧ y� = y� and the quasi-equation x ≤ y =⇒ x� ≥ y� is
equivalent to the equation (x ∧ y)� ∧ y� = y�.
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Of course, weakly complemented lattices satisfy the equations (1)–(3) in
Definition 1. So what we should prove is that all non empty lattices satisfying the
equations (1)–(3) are bounded.

Proof Let L be a nonempty lattice satisfying the equations (1)–(3). For an element
x ∈ L, we set 1 := x ∨ x� and 0 := 1�. We are going to prove that 1 and 0 are
respectively the greatest and lowest element of L. Let y be an arbitrary element
of L. We have

1 ≥ y ∧ 1 = y ∧ (x ∨ x�) ≥ (y ∧ x) ∨ (y ∧ x�) = y, by (3).

Thus x ∨ x� is the greatest element of L. Of course, if L was equipped with a unary
operation � satisfying the equations (1′)–(3′) we could use the same argument as
above to say that x ∧ x� is the smallest element of L. Unfortunately we have to check
that 0 := 1� is less than every other element of L. So let y ∈ L. We want to prove
that 0 ≤ y. Note that

(y ∧ y�)� ≥ y� ∨ y�� = 1.

Thus (y ∧ y�)� = 1. For an arbitrary element z of L, we have

0 ∧ z = 1� ∧ z = (y ∧ y�)�� ∧ z ≤ y ∧ y� ∧ z ≤ y ∧ z

and

0 ∧ z� = 1� ∧ z� = (y ∧ y�)�� ∧ z� ≤ y ∧ y� ∧ z� ≤ y ∧ z�.

Henceforth 0 = (0 ∧ z) ∨ (0 ∧ z�) ≤ (y ∧ z) ∨ (y ∧ z�) = y. �

Remark 1 In Universal Algebra (see for example [4]), one should care about the
signature while defining an algebra. By Theorem 1 we can choose between (∧,∨,� )

and (∧,∨,� , 0, 1) as signature for weakly complemented lattices. Let V1 be the
variety of algebras (L,∧, ∨,� ) of type (2, 2, 1) such that (L,∧, ∨) is a lattice
satisfying the equations (1)–(3) in Definition 1, and V2 the variety of algebras of type
(2, 2, 1, 0, 0) such that (L,∧,∨, 0, 1) is a bounded lattice satisfying the equations (1)–
(3) in Definition 1. Then an algebra with the empty set as carrier set belongs to V1,
but not to V2. Any non empty substructure of an algebra of V1 is a substructure
of the corresponding algebra in V2 and vice versa. Any map that is a morphism
between nonempty algebras of V1 is also a morphism between algebras of V2 and
vice-versa. Hence, there is no big difference is considering one signature instead of
another. Here we will keep the signature (∧,∨,� , 0, 1) to emphasize contradiction
and universe.

Definition 2 Let (P, ≤) be a poset and f : P → P be a map. f is a closure operator
on P if

x ≤ f (y) ⇐⇒ f (x) ≤ f (y), for all x, y ∈ P.

This is equivalent to

x ≤ f (x), x ≤ y =⇒ f (x) ≤ f (y) and f ( f (x)) = f (x), for all x, y ∈ P.
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Usually we will write a closure operator on a set X to mean a closure operator on
the powerset (P(X),⊆) of X. Dually, f is a kernel operator on P if

x ≥ f (y) ⇐⇒ f (x) ≥ f (y), for all x, y ∈ P.

As above, we say that f is a kernel operator on X to mean a kernel operator on
(P(X),⊆).

For a weakly dicomplemented lattice (L,∧,∨,� ,� , 0, 1), the maps x �→ x�� and
x �→ x�� are resp. kernel and closure operators on L. If f is a closure operator (resp.
a kernel operator) on a lattice L, then f (L) (with the induced order) is a lattice.
Recall that for any closure operator h on L we have

h(h(x) ∧ h(y)) = h(x) ∧ h(y) as well as h(h(x) ∨ h(y)) = h(x ∨ y);
dually, for any kernel operator k on L we have

k(k(x) ∧ k(y)) = k(x ∧ y) and k(k(x) ∨ k(y)) = k(x) ∨ k(y).

We denote by Pd the dual poset of (P, ≤), i.e. Pd := (P,≥). Then f is a kernel
operator on P iff f is a closure operator on Pd.

Proposition 1 Let h be a closure operator on a set X and k a kernel operator on a set
Y. We def ine two unary operations �h and �k by:

A�h := h(X \ A) and B�k := k(Y \ B), for any subset A ⊆ X and B ⊆ Y.

Furthermore def ine two binary operations ∨h and ∧k:

A1 ∨h A2 :=h(A1 ∪ A2) and B1 ∧k B2 :=k(B1 ∩ B2) for A1, A2 ⊆ X and B1, B2 ⊆Y.

Then we have

(i) (hP(X),∩,∨h,�h , h∅, X) is a weakly complemented lattice.
(i′) (kP(Y),∧k, ∪,�k , ∅, kY) is a dual weakly complemented lattice.
(ii) If hP(X) is isomorphic to kP(Y), then h and k induce weakly dicomplemented

lattice structures on hP(X) and on kP(Y) that are extensions of those in (i) and
(i′) above respectively.

Proof For (i), let h be a closure operator on X; (hP(X),∩,∨h, h∅, X) is a bounded
lattice. So we should only check that the equations (1)–(3) in Definition 1 hold.
For x ∈ hP(X), we have x�� = h(X \ h(X \ x)) ⊆ h(X \ (X \ x)) = h(x) = x, and
(1) is proved. For x1 ≤ x2 in hP(X), we have x1 ⊆ x2 and h(X \ x1) ⊇ h(X \ x2), and
(2) is proved. Now we consider x, y ∈ hP(X). Trivially (x ∩ y) ∨h (x ∩ y�h) ≤ x. In
addition,

(x ∩ y) ∨h (x ∩ y�h) = (x ∩ y) ∨h (x ∩ h(X \ y)) = h((x ∩ y) ∪ (x ∩ h(X \ y)))

⊇ h((x ∩ y) ∪ (x ∩ (X \ y))) = h(x) = x.

(i′) is proved similarly.
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For (ii) we will extend the structures of (i) and (i′) to get weakly dicomplemented
lattices. By (i), (hP(X),∩, ∨h,�h , h∅, X) is a weakly complemented lattice. Let ϕ be
an isomorphism from hPX to kPY. We define �ϕ on hP(X) by:

x�ϕ := ϕ−1(ϕ(x)�k).

Then

x�ϕ�ϕ = (
ϕ−1

(
ϕ(x)�k

))�ϕ = ϕ−1
(
ϕ

(
ϕ−1

(
ϕ(x)�k

))�k
)

= ϕ−1
(
ϕ(x)�k�k

)
,

and x�ϕ�ϕ ≥ ϕ−1(ϕ(x)) = x. For x ≤ y in hPX we have ϕ(x) ≤ ϕ(y) implying

ϕ(x)�k ≥ ϕ(y)�k and x�ϕ = ϕ−1(ϕ(x)�k) ≥ ϕ−1(ϕ(y)�k) = y�ϕ .

For x, y in hPX, we have

(x ∨ y) ∧ (x ∨ y�ϕ ) = (x ∨ y) ∧ (x ∨ ϕ−1(ϕ(y)�k))

= ϕ−1
(
(ϕ(x) ∨ ϕ(y)) ∧ (ϕ(x) ∨ ϕ(y)�k)

)

= ϕ−1(ϕ(x)) = x.

Therefore (hP(X),∩, ∨h,�h ,�ϕ , h∅, X) is a weakly dicomplemented lattice. Simi-
larly (kP(Y),∧k, ∪,�ϕ ,�k ,∅, kY) with x�ϕ := ϕ(ϕ−1(x)�h) is a weakly dicomple-
mented lattice. �

Proposition 2 Let h be a closure operator on X and k a kernel operator on Y such
that hP(X) is isomorphic to kP(Y). Let ϕ be an isomorphism from hP(X) to kP(Y).
We set

L := {(x, y) ∈ hP(X) × kP(Y) | y = ϕ(x)}.
L has a weakly dicomplemented lattice structure induced by h and k.

Proof By Lemma 1 (hP(X),∩,∨h,�h , h∅, X) is a weakly complemented lattice and
(kP(Y),∧k,∪,�k ,∅, kY) a dual weakly complemented lattice. For every y ∈ kP(Y)

there is a unique x ∈ hP(X) such that y = ϕ(x). For (a, b) and (c, d) in L, we have
a ≤ c ⇐⇒ b ≤ d. We define a relation ≤ on L by:

a ≤ c ⇐⇒ : (a, b) ≤ (c, d) : ⇐⇒ b ≤ d.

Then

hP(X)
π1∼= L

π2∼= kP(Y)

where πi is the ith projection. Thus (L,≤) is a bounded lattice. Moreover

(a, b) ∧ (c, d) = (a ∩ c, ϕ(a ∩ c)) and (a, b) ∨ (c, d) = (ϕ−1(b ∪ d), b ∪ d).

For (x, y) ∈ L, we define (x, y)� := (x�h , ϕ(x�h)) and (x, y)� := (ϕ−1(y�k), y�k). We
claim that (L,∧,∨,� ,� , 0, 1) is a weakly dicomplemented lattice. In fact,

(x, y)�� = (x�h , ϕ(x�h))� = (x�h�h , ϕ(x�h�h)) ≤ (x, ϕ(x)) = (x, y).



On the isomorphism problem of concept algebras 229

If (x, y) ≤ (z, t) in L, we have x ≤ z and y ≤ t, implying x�h ≥ z�h and
ϕ(x�h) ≥ ϕ(z�h); thus (x, y)� = (x�h , ϕ(x�h)) ≥ (z�h , ϕ(z�h)) = (z, t)�. These prove
(1) and (2) of Definition 1. It remains to prove (3). Let (x, y) and (z, t) in L;

((x, y)∧(z, t))∨((x, y)∧(z, t)�) = (x ∩ z, ϕ(x ∩ z)) ∨ ((x, y) ∧ (z�h , ϕ(z�h)))

= (x ∩ z, ϕ(x ∩ z)) ∨ (x ∩ z�h , ϕ(x ∩ z�h))

= (ϕ−1(ϕ(x ∩ z) ∪ ϕ(x ∩ z�h)), ϕ(x ∩ z) ∪ ϕ(x ∩ z�h))

= ((x ∩ z) ∨h (x ∩ z�h), ϕ((x ∩ z) ∨h (x ∩ z�h)))

= (x, ϕ(x))

= (x, y),

and (3) is proved. �

The advantage of the weakly dicomplemented lattice L constructed in Lemma 2
is that, in addition to extending the weakly and dual weakly complemented lattice
structures induced by h and k, it also keeps track of the closure and kernel systems.
The next definition introduces a class of algebras that is pretty close to that of weakly
dicomplemented lattices.

Definition 3 Let L be a bounded lattice and x ∈ L. The element x∗ ∈ L (resp.
x+ ∈ L) is the pseudocomplement (resp. dual pseudocomplement) of x if

x ∧ y = 0 ⇐⇒ y ≤ x∗ (resp. x ∨ y = 1 ⇐⇒ y ≥ x+) for all y ∈ L.

A double p-algebra is a lattice in which every element has a pseudocomplement and
a dual pseudocomplement.

Example 2 Boolean algebras are double p-algebras. Finite distributive lattices are
double p-algebras. All distributive double p-algebras are weakly dicomplemented
lattices. N5 is a double p-algebra that is not distributive. The double p-algebra
operation (+,∗ ) on N5 is however not a weak dicomplementation.

The following result give a class of “more concrete” weakly dicomplemented
lattices, and can serve as prelude to the representation problem for weakly dicom-
plemented lattices.

Proposition 3 Let L be a f inite lattice. Denote by J(L) the set of join irreducible
elements of L and by M(L) the set of meet irreducible elements of L respectively.
Def ine two unary operations � and � on L by

x� :=
∨

{a ∈ J(L) | a � x} and x� :=
∧

{m ∈ M(L) | m � x}.
Then (L,∧, ∨,� ,� , 0, 1) is a weakly dicomplemented lattice. In general, for G ⊇ J(L)

and H ⊇ M(L), the operations �G and �H def ined by

x�G :=
∨

{a ∈ G | a � x} and x�H :=
∧

{m ∈ H | m � x}
turn (L,∧, ∨,�G ,�H , 0, 1) into a weakly dicomplemented lattice.
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Proof Let G ⊇ J(L), b ∈ G and x ∈ L. Then b �
∨{a ∈ G | a � x} implies b ≤ x;

i.e., b � x�G =⇒ b ≤ x. Thus x�G�G = ∨{b ∈ G | b � x�G} ≤ x and (1) is proved.
For x ≤ y we have {a ∈ G | a � x} ⊇ {a ∈ G | a � y} implying x�G ≥ y�G , and
(2) is proved. For (3), it is enough to prove that for a ∈ J(L), [a ≤ x ⇐⇒
(a ∧ x) ∨ (a ∧ x�G)], since J(L) is

∨
-dense in L. Let a ≤ x. We have a ≤ y or a ≤ y�G .

Then a ≤ x ∧ y or a ≤ x ∧ y�G . Thus a ≤ (x ∧ y) ∨ (x ∧ y�G). The reverse inequality
is obvious. (1′)−(3′) are proved similarly. �

The examples in Proposition 3 above are not in general isomorphic. They are
special case of concept algebras. Before we introduce concept algebras, let us recall
some basic notions from FCA. The reader is referred to [5, 10]. As we mentioned
before, FCA is based on the formalization of the notion of concept and concept
hierarchy. Traditional philosophers considered a concept to be determined by its
extent and its intent. The extent consists of all objects belonging to the concept while
the intent is the set of all attributes shared by all objects of the concept. In general,
it may be difficult to list all objects or attributes of a concept. Therefore a specific
context should be fixed to enable formalization. A formal context is a triple (G, M, I)
of sets such that I ⊆ G × M. The members of G are called objects and those of M
attributes. If (g, m) ∈ I, then the object g is said to have m as an attribute. For subsets
A ⊆ G and B ⊆ M, A′ and B′ are defined by

A′ := {m ∈ M | ∀g ∈ A g I m} and B′ := {g ∈ G | ∀m ∈ B g I m}.
A formal concept of the formal context (G, M, I) is a pair (A, B) with A ⊆ G and
B ⊆ M such that A′ = B and B′ = A. The set A is called the extent and B the
intent of the concept (A, B). B(G, M, I) denotes the set of all formal concepts of the
formal context (G, M, I). The concept hierarchy states that a concept is more general
if it contains more objects. For capturing this notion a subconcept-superconcept
relation is defined: a concept (A, B) is called a subconcept of a concept (C, D)

provided that A ⊆ C (which is equivalent to D ⊆ B); in this case, (C, D) is a called
superconcept of (A, B) and we write (A, B) ≤ (C, D). Obviously the subconcept-
superconcept relation is an order relation on the set B(G, M, I) of all concepts of
the formal context (G, M, I). The following result describing the concept hierarchy
is considered as the basic theorem of FCA.

Theorem 2 ([23]) The poset (B(G, M, I),≤) is a complete lattice in which inf imum
and supremum are given by:

∧

t∈T

(At, Bt) =
(

⋂

t∈T

At,

(
⋃

t∈T

Bt

)′′)

and
∨

t∈T

(At, Bt) =
((

⋃

t∈T

At

)′′
,
⋂

t∈T

Bt

)

.

A complete lattice L is isomorphic to B(G, M, I) if f there are mappings
γ̃ : G → L and μ̃ : M → L such that γ̃ (G) is supremum-dense, μ̃(M) is inf imum-
dense and g I m ⇐⇒ γ̃ g ≤ μ̃m for all (g, m) ∈ G × M.

The poset (B(G, M, I);≤) is called the concept lattice of the context (G, M, I)
and is denoted by B(G, M, I). By Theorem 2, all complete lattices are (copies of)
concept lattices. We adopt the notations below for g ∈ G and m ∈ M:

g′ := {g}′, m′ := {m}′, γ g := (g′′, g′) and μm := (m′, m′′).
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The concept γ g is called object concept and μm attribute concept. They form the
building blocks of the concept lattice. The sets γ G is supremum-dense and μM is
infimum-dense in B(G, M, I). We usually assume our context clarified, meaning that

x′ = y′ =⇒ x = y for all x, y in G ∪ M.

If γ g is supremum-irreducible we say that the object g is irreducible. An attribute
m is called irreducible if the attribute concept μm is infimum-irreducible. A formal
context is called reduced if all its objects and attributes are irreducible. For every
finite nonempty lattice L there is, up to isomorphism, a unique reduced context
K(L) := (J(L), M(L), ≤) such that L ∼= B(K(L)). We call it standard context of
L. The meet and join operations in the concept lattice can be used to formalize
respectively the conjunction and disjunction on concepts [11]. To formalize the
negation, the main problem is that the complement of an extent is probably not
and extent and the complement of an intent might not be an intent. Therefore two
operations are introduced as follows:

Definition 4 Let K := (G, M, I) be a formal context. We define for each formal
concept (A, B)

its weak negation by (A, B)� := (
(G \ A)′′ , (G \ A)′

)

and its weak opposition by (A, B)� := (
(M \ B)′ , (M \ B)′′

)
.

A(K) := (
B(K); ∧,∨,� ,� , 0, 1

)
is called the concept algebra of the formal context

K, where ∧ and ∨ denote the meet and the join operations of the concept lattice.

These operations satisfy the equations in Definition 1 (cf. [25]). In fact, concept
algebras are typical examples of weakly dicomplemented lattices. The examples of
weakly dicomplemented lattices in Proposition 3 are (copy of the) concept algebras
of the contexts (J(L), M(L), ≤) and (G, H,≤) respectively. One of the important
and still unsolved problems in this topic is to find out the equational theory of
concept algebras; that is the set of all equations valid in all concept algebras. Is it
finitely generated? I.e. is there a finite set E of equations valid in all concept algebras
such that each equation valid in all concept algebras follows from E? We start with
the set of equations defining a weakly dicomplemented lattice and have to check
whether they are enough to represent the equational theory of concept algebras.
This problem, known as “representation problem” [15], can be split in three sub-
problems:

SRP Strong representation problem: describe weakly dicomplemented lattices that
are isomorphic to concept algebras.

EAP Equational axiomatization problem: find a set of equations that generate the
equational theory of concept algebras.

CEP Concrete embedding problem: given a weakly dicomplemented lattice L, is
there a context K

�
�(L) such that L embeds into the concept algebra of K

�
�(L)?

We proved (see [15] or [9]) that finite distributive weakly dicomplemented lattices
are isomorphic to concept algebras. However we cannot expect all weakly dicom-
plemented lattices to be isomorphic to concept algebras, since concept algebras are
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necessary complete lattices. In Section 4 we will show that even being complete is not
enough for weakly dicomplemented lattices to be isomorphic to concept algebras.
Before that we show in Section 3 that weakly dicomplemented lattices generalize
Boolean algebras.

3 Weakly dicomplemented lattices with negation

Example 1 states that duplicating the complementation of a Boolean algebra leads
to a weakly dicomplemented lattice. Does the converse hold? I.e., is a weakly
dicomplemented lattice in which the weak complementation and the dual weak
complementation are duplicate a Boolean algebra? The finite case is easily ob-
tained (Corollary 1). Major parts of this section are taken from [15]. We will also
describe weakly dicomplemented lattices whose Boolean part is the intersection of
their skeletons (definitions below).

Definition 5 A weakly dicomplemented lattice is said to be with negation if the unary
operations coincide, i.e., if x� = x� for all x. In this case we set x� =: x̄ := x�.

Lemma 1 A weakly dicomplemented lattice with negation is uniquely complemented.

Proof x�� ≤ x ≤ x�� implies that x = ¯̄x. Moreover, x ∧ x̄ = 0 and x̄ is a complement
of x. If y is another complement of x then

x = (x ∧ y) ∨ (x ∧ ȳ) = x ∧ ȳ =⇒ x ≤ ȳ

x = (x ∨ y) ∧ (x ∨ ȳ) = x ∨ ȳ =⇒ x ≥ ȳ

Then ȳ = x and x̄ = y. L is therefore a uniquely complemented lattice. �

It can be easily seen that each uniquely complemented atomic lattice is a copy of
the power set of the set of its atoms, and therefore distributive. Thus

Corollary 1 The f inite weakly dicomplemented lattices with negation are exactly the
f inite Boolean algebras.

Of course, the natural question will be if the converse of Lemma 1 holds. That
is, can any uniquely complemented lattice be endowed with a structure of a weakly
dicomplemented lattice with negation? The answer is yes for distributive lattices.
If the assertion of Corollary 1 can be extended to lattices in general, the answer
will unfortunately be no. In fact R.P. Dilworth proved that each lattice can be
embedded into a uniquely complemented lattice [7]. The immediate consequence is
the existence of non-distributive uniquely complemented lattices. They are however
infinite. If a uniquely complemented lattice could be a weakly dicomplemented
lattice (duplicating the unique complementation), it would be distributive. This
cannot be true for non distributive uniquely complemented lattices.

Lemma 2 Each weakly dicomplemented lattice with negation L satisf ies the de
Morgan laws.
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Proof We want to prove that x ∧ y = x̄ ∨ ȳ.

(x̄ ∨ ȳ) ∨ (x ∧ y) ≥ x̄ ∨ (x ∧ ȳ) ∨ (x ∧ y) = x̄ ∨ x = 1

and

(x̄ ∨ ȳ) ∧ (x ∧ y) ≤ (x̄ ∨ ȳ) ∧ x ∧ (x̄ ∨ y) = x̄ ∧ x = 0.

So x̄ ∨ ȳ is a complement of x ∧ y, hence by uniqueness it is equal to x ∧ y. Dually
we have x ∨ y = x̄ ∧ ȳ. �

Now for the distributivity we can show that

Lemma 3 x ∧ (y ∨ z) is a complement of (x ∧ y) ∨ (x ∧ z).

Proof Since in every lattice the equation x ∧ (y ∨ z) ≥ (x ∧ y) ∨ (x ∧ z) holds, we
have that x ∧ (y ∨ z) ≤ (x ∧ y) ∨ (x ∧ z); so we have only to show that

x ∧ (y ∨ z) ∨ (x ∧ y) ∨ (x ∧ z) = 1.

Using the de Morgan laws and axiom (3) several times we obtain:

x ∧ (y ∨ z) ∨ (x ∧ y) ∨ (x ∧ z) = x̄ ∨ (ȳ ∧ z̄) ∨ (x ∧ y) ∨ (x ∧ z)

= x̄ ∨ (ȳ ∧ z̄ ∧ x) ∨ (ȳ ∧ z̄ ∧ x̄) ∨ (x ∧ y ∧ z)

∨(x ∧ y ∧ z̄) ∨ (x ∧ z ∧ ȳ)

= x̄ ∨ (ȳ ∧ z̄ ∧ x̄) ∨ (x ∧ y ∧ z) ∨ (x ∧ y ∧ z̄)

∨(x ∧ ȳ ∧ z) ∨ (x ∧ ȳ ∧ z̄)

= x̄ ∨ (ȳ ∧ z̄ ∧ x̄) ∨ (x ∧ y) ∨ (x ∧ ȳ)

= x̄ ∨ (ȳ ∧ z̄ ∧ x̄) ∨ x

= 1.

Thus x ∧ (y ∨ z) is a complement of (x ∧ y) ∨ (x ∧ z). �

Since the complement is unique we get the equality

x ∧ (y ∨ z) = x ∧ (y ∨ z) = (x ∧ y) ∨ (x ∧ z).

Thus weakly dicomplemented lattices generalize Boolean algebras in the following
sense

Theorem 3 Boolean algebras with duplicated complementation3 are weakly dicom-
plemented lattices. If � =� in a weakly dicomplemented lattice L then (L,∧,∨,� , 0, 1)

is a Boolean algebra.

As the equality x� = x� not always holds, we look for maximal substructures
having this property.

3See Example 1.
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Definition 6 For any weakly dicomplemented lattice L, we will call

B(L) := {x ∈ L | x� = x�}
the subset of elements with negation.

As in Definition 5 we denote by x̄ the common value of x� and x�, for any
x ∈ B(L). We set

L� := {a� | a ∈ L} = {a ∈ L | a�� = a}
and call it the skeleton of L, as well as

L� := {a� | a ∈ L} = {a ∈ L | a�� = a}
and call it the dual skeleton of L.

Corollary 2 (B(L),∧, ∨, ¯, 0, 1) is a Boolean algebra that is a subalgebra of the
skeleton and the dual skeleton.

Proof From x� = x� we get x�� = x�� and x�� = x��. Thus

x�� = x�� = x = x�� = x��

and B(L) is closed under the operations � and �. We will prove that B(L) is a
subalgebra of L. We consider x and y in B(L). We have

(x ∧ y)� = x� ∨ y� = x� ∨ y� ≤ (x ∧ y)� ≤ (x ∧ y)� and

(x ∨ y)� = x� ∧ y� = x� ∧ y� ≥ (x ∨ y)� ≥ (x ∨ y)�.

Thus x ∧ y and x ∨ y belong to B(L). B(L) is a weakly dicomplemented lattice with
negation, and is by Theorem 3, a Boolean algebra. �

While proving Corollary 2 we have also shown that B(L) is a subalgebra of L. It
is, in fact, the largest Boolean algebra that is a subalgebra of the skeletons and of L.
We call it the Boolean part of L. The inclusion B(L) ⊆ L� ∩ L� can be strict. For
the weakly dicomplemented lattice L1 in Fig. 1, we have

B(L1) = {0, 1}, L�
1 = {0, 1, c, d, e, c�, d�, e�} and L�

1 = {0, 1, c, a, b , c�, a�, b�}.
Thus B(L1) � L�

1 ∩ L�
1 . It would be nice to find under which conditions the Boolean

part is the intersection of the skeleton and dual skeleton.

Lemma 4 If L is a f inite distributive lattice with � = ∗ (pseudocomplementation) and
� = + (dual pseudocomplementation), then B(L) is the set of complemented elements
of L.

Proof Let L be a finite distributive lattice with � = ∗ and � = +. We denote by C(L)

the set of complemented elements of L. Of course B(L) ⊆ C(L). Let x ∈ C(L). From
the distributivity there is a unique elements z ∈ L such that x ∨ z = 1 and x ∧ z = 0.
Then z ≤ x� ≤ x� ≤ z, and x ∈ B(L). �
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Fig. 1 Examples of dicomplementations. For L1, the elements c, b and a are each image (of their
image). The operation � is the dual of �. For L2, � =+ and � =∗

Even in this case, the Boolean part can still be strictly smaller than the intersection
of the skeletons. For L1 in Fig. 1 we have

B(L1) � L�
1 ∩ L�

1 = {0, 1, c, a�} = C(L1).

For L2 in Fig 1, we have � =+ and � =∗; but

L�
2 = {0, 1, c, c�}, L�

2 = {0, 1, c, c�}, B(L2) = {0, 1} = C(L2) � {0, 1, c} = L�
2 ∩ L�

2 .

Lemma 5 B(L) = L� ∩ L� if f x�� = x�� =⇒ x�� = x��.

Proof

(⇒) Let x ∈ L such that x�� = x��. Then x ∈ L� ∩ L� = B(L) and implies
x� = x�. Therefore x�� = x�� = x = x�� = x��.

(⇐) Let x ∈ L� ∩ L�. Then x�� = x = x�� and implies x� = x��� ≤ x�. Thus
x� = x�, and x ∈ B(L). �

Lemma 6 If L� and L� are subalgebras of L, then there are complemented.

Proof We assume that L� is a subalgebra of L. Let x ∈ L�. Then x ∧ x� = 0 and
x ∨ x� = t� for some t ∈ L. Therefore

0 = (x ∨ x�)� = t�� =⇒ 1 = 0� = t��� = t� = x ∨ x�.

Thus L� is complemented. The proof for L� is obtained analogously. �

In general, L� and L� are orthocomplemented lattice, when considered as lattice
on their own [15].

4 Strong representation problem

We start this section by a negative result, namely by showing that completeness is not
enough for weakly dicomplemented lattices to be (copies of) concept algebras.
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Theorem 4 There is no formal context whose concept algebra is isomorphic to a
complete atomfree Boolean algebra.

Proof Let B be a complete and atomfree Boolean algebra. By Theorem 2, there
is a context (G, M, I) such that B(G, M, I) ∼= B (lattice isomorphism). Without
loss of generality, we can assume that (G, M, I) is a subcontext of (B, B, ≤). We
claim that there are g, h ∈ G with 0 < h < g < 1. In fact, for an element g ∈ G ⊆ B
with 0 �= g there is a ∈ B such that 0 < a < g, since B is atomfree. Moreover G is∨

-dense in B and then 0 �= a =∨{x ∈ G | x ≤ a}, implying that {x ∈ G | 0 < x ≤ a} �=
∅. Thus we can choose h ∈ G with 0 < h ≤ a < g. In the concept algebra of (G, M, ≤)

we have h� = ∨{x ∈ G | x � h} ≥ g > h. From h ∨ h� = 1 we get h� = 1 �= h̄ (the
complement of h in B). �

Theorem 4 says that an atomfree Boolean algebra is not isomorphic to a concept
algebra. However it can be embedded into a concept algebra. The corresponding
context is constructed via ultrafilters. A general construction was presented in [15].

Definition 7 A primary filter is a (lattice) filter that contains w or w� for all w ∈ L.
Dually, a primary ideal is an ideal that contains w or w� for all w ∈ L. Fpr(L) denotes
the set of all primary filters and Ipr(L) the set of primary ideals of L.

For Boolean algebras, a proper filter F is primary iff it is an ultrafilter, iff it is a
prime filter (x ∨ y ∈ F =⇒ x ∈ F or y ∈ F). The following result based on Zorn’s
lemma provides the object set and the attribute set for a context K

�
�(L) which is the

best candidate for representing a weakly dicomplemented lattice L.

Theorem 5 (“Prime ideal theorem” [15]) For every f ilter F and every ideal I such
that F ∩ I = ∅ there is a primary f ilter G containing F and disjoint from I. Dually, for
every ideal I and every f ilter F such that I ∩ F = ∅ there is a primary ideal J containing
I and disjoint from F.

Corollary 3 If x �≤ y in L, then there exists a primary f ilter F containing x and not y.

For x ∈ L, we set

Fx := {F ∈ Fpr(L) | x ∈ F} and Ix := {I ∈ Ipr(L) | x ∈ I}.
The canonical context of a weakly dicomplemented lattice L is the formal context

K
�
�(L) := (Fpr(L),Ipr(L),�) with F � I : ⇐⇒ F ∩ I �= ∅.

The derivation in K
�
�(L) yields, F ′

x = Ix and I ′
x = Fx for every x ∈ L. Moreover, the

map

i : L → B

(
K

�
�(L)

)

x �→ (Fx,Ix)

is a bounded lattice embedding with

i(x�) ≤ i(x)� ≤ i(x)� ≤ i(x�).
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If the first and last inequalities above were equalities, we would get a weakly
dicomplemented lattice embedding into the concept algebra of K

�
�(L). This would

solve CEP as well as EAP for weakly dicomplemented lattices.

Theorem 6 If L is a Boolean algebra, then the concept algebra of K
�
�(L) is a complete

and atomic Boolean algebra into which L embeds.

Proof If B is a Boolean algebra, then a proper filter F of L is primary iff it is
an ultrafilter, and a proper ideal J is primary iff it is maximal. Thus Fpr(L) is the
set of ultrafilters of L and Ipr(L) the set of its maximal ideals. In addition, the
complement of an ultrafilter is a maximal ideal and vice-versa. For F ∈ Fpr(L), L \ F
is the only primary ideal that does not intersect F, and for any J ∈ Ipr(L), L \ J is
the only primary filter that does not intersect J. Thus the context K

�
�(L) is a copy of

(Fpr(L),Fpr(L), �=). The concepts of this context are exactly pairs (A, B) such that
A ∪ B = Fpr(L) and A ∩ B = ∅. Thus B(K

�
�(L)) ∼= P(Fpr(L)) and each subset A of

Fpr(L) is an extent of K
�
�(L). It remains to prove that the lattice embedding

i : L → B

(
K

�
�(L)

)

x �→ (Fx,Ix)

is also a Boolean algebra embedding. If i(x�) �= i(x)� then there is

F ∈ Fx� \ (
Fpr(L) \ Fx

)′′ = Fx� \ (
Fpr(L) \ Fx

) = ∅,

which is a contradiction. Similarly i(x�) = i(x)�. Therefore B embeds into the

complete and atomic Boolean algebra A

(
K

�
�(L)

)
which is a copy of P

(
Fpr(L)

)
. �

The above result is a new proof to a well-known result (Corollary 4) due to M.
Stone [20]. The advantage here is that the proof is simple and does not require any
knowledge from topology. Recall that a field of subsets of a set X is a subalgebra of
P(X), i.e. a family of subsets of X that contains ∅ and X, and that is closed under
union, intersection, and complementation.

Corollary 4 ([20]) Each Boolean algebra embeds into a f ield of sets.

We conclude this section by an example. Consider the Boolean algebra FN of
finite and cofinite subsets of N. It is not complete. But P(N) is a complete and atomic
Boolean algebra containing FN. By Theorem 6 A(K

�
�(FN)) is also a complete and

atomic Boolean algebra into which FN embeds. The atoms of FN are {n}, n ∈ N.
These generate its principal ultrafilters. FN has exactly one non-principal ultrafilter
U (the cofinite subsets). Thus |FN| = |N| + 1 = |N|. We can find a bijection let say f
between the atoms of P(N) and the atoms of A(K

�
�(FN)). f induces an isomorphism

f̂ : P(N) → A(K
�
�(FN)). Henceforth, it is natural to look for a universal property

to characterize A(K
�
�(B)) for any Boolean algebra B. For example is A(K

�
�(B)) the

smallest complete and atomic Boolean algebra into which B embeds?
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5 Conclusion

Weakly dicomplemented lattices with negation are exactly Boolean algebras (The-
orem 3). Even if they are not always isomorphic to concept algebras (Theorem 4),
they embed into concept algebras (Theorem 6). Finite distributive weakly dicom-
plemented lattices are isomorphic to concept algebras [9]. Extending these results
to finite weakly dicomplemented lattices in one sense and to distributive weakly
dicomplemented lattices in the other are the next steps towards the representation of
weakly dicomplemented lattices. Finding a kind of universal property to characterize
the construction in Theorem 6 is a natural question to be addressed.
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