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Abstract This paper presents both the theory and the ex-
perimental results of a method allowing simultaneous robot
localization and odometry error estimation (both systematic
and non-systematic) during the navigation. The estimation
of the systematic components is carried out through an aug-
mented Kalman filter, which estimates a state containing the
robot configuration and the parameters characterizing the
systematic component of the odometry error. It uses encoder
readings as inputs and the readings from a laser range finder
as observations. In this first filter, the non-systematic error
is defined as constant and it is overestimated. Then, the esti-
mation of the real non-systematic component is carried out
through another Kalman filter, where the observations are
obtained by two subsequent robot configurations provided
by the previous augmented Kalman filter. There, the system-
atic parameters in the model are regularly updated with the
values estimated by the first filter. The approach is theoreti-
cally developed for both the synchronous and the differential
drive. A first validation is performed through very accurate
simulations where both the drive systems are considered.
Then, a series of experiments are carried out in an indoor
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1 Introduction

Mobile robot navigation highly relies on odometry. The en-
coder data are extensively used in the localization process
by fusing them with data coming from another (or several)
sensor. At least one of the sensors used for data fusion has
to be exteroceptive in order to avoid the error growing with
the distance traveled by the robot. Clearly, any fusion ar-
chitecture needs to know the accuracy of the estimation of
each sensor in order to weigh all the data in a proper manner.
In particular, when the fusion regards the encoder data the
accuracy is completely described by the odometry error co-
variance matrix. Therefore, determining the odometry errors
of a mobile robot is very important both in order to reduce
them, and to know the accuracy of the state configuration
estimated by using encoder data.

Odometry errors can be separated in systematic and non-
systematic. In a series of papers Borenstein and collaborators
(Borenstein, 1994, 1995, 1998; Borenstein and Feng, 1994,
1995, 1996) investigated on possible sources of both kind
of errors. A review of all the types of these sources is given
in Borenstein (1998). In the work by Borenstein and Feng
(1994), a calibration technique called UMBmark test has
been developed to calibrate for systematic errors of a mobile
robot with a differential drive.

Goel et al. (1999) used another calibration procedure to
compensate systematic errors. They referred to the differen-
tial drive mobile robot Pioneer AT. They measured the actual
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velocities of the wheels and the velocity measurements from
the encoders, when the robot was sitting on a box and the
wheels rotated freely in the air. In this way they found a rela-
tionship between the velocity returned by encoders and the
actual velocity measured by using a precise tachometer. Fur-
thermore, they measured the effective axle length due to skid
steering which differs from that given by the specifications
for the robot.

Larsen (1998), Larsen et al. (1998) Martinelli and Sieg-
wart (2003), Martinelli et al. (2003) and Caltabiano et al.
(2004) suggested an algorithm that uses the robot’s sensors
to automatically calibrate the robot as it operates. In par-
ticular, they introduced an augmented Kalman filter (AKF)
which simultaneously estimates the robot configuration and
the parameters characterizing the systematic odometry error.
This filter uses encoder readings as inputs and the measure-
ments coming from an exteroceptive sensor as observations.
In Larsen (1998) and Larsen et al. (1998) the vision sensor
is adopted and in Martinelli and Siegwart (2003) and Mar-
tinelli et al. (2003) a laser range-finder sensor. In these cases
the method was experimentally validated in an indoor envi-
ronment. In Caltabiano et al. (2004) an outdoor environment
was considered.

Finally, Doh et al. (2003) suggested a procedure to cali-
brate an odometry system called the PC-method. The basic
idea characterizing this method consists in moving the robot
forth and back along the same trajectory. For this purpose,
the Generalized Voronoi Graph was adopted.

Many investigations have been carried out on the odom-
etry error from a theoretical point of view. Wang (1988) and
Chong and Kleeman (1997) analyzed the non-systematic
errors and computed the odometry covariance matrix Q for
special kind of the robot trajectory. Kelly (2001) presented
the general solution for linearized systematic error prop-
agation for any trajectory and any error model. Martinelli
(2002) derived general formulas for the covariance matrix
and suggested a strategy to estimate the model parameters
for a mobile robot with a synchronous drive system. This
strategy is based on the evaluation of the mean values of
some quantities (called observables) which depend on the
model parameters and on the chosen robot motion.

Martinelli and Siegwart (2003) and Martinelli et al.
(2003) suggested a method to estimate both systematic and
non-systematic odometry error of a mobile robot, during nav-
igation. Concerning the systematic component, they adopted
the AKF as in Caltabiano et al. (2004), Larsen (1998), Larsen
et al. (1998), Martinelli and Siegwart (2003) and Martinelli
et al. (2003) by considering also the case of a synchronous
drive. Concerning the non-systematic parameters, they in-
troduced a new filter (the Observable Filter, OF) where the
state to be estimated contains the parameters characterizing
the non-systematic error and the observations are provided
by the observables as defined in Martinelli (2002) and which

can be evaluated by knowing two subsequent robot configu-
rations.

The main contribution of this paper is twofold. On one side
the previous AKF and the OF are theoretically discussed for
mobile robot with synchronous and differential drive. On the
other side, here the two filters are integrated in a coherent
framework allowing to auto-calibrate the odometry system
while localizing during the robot movement. Therefore, the
strategy presented here differs dramatically from the one
suggested in Martinelli (2002) not only from a computational
point of view but also for a very important practical reason.
While with the method in Martinelli (2002) it was possible
to calibrate the odometry only before using a system (off-
line), the strategy suggested here embeds this capability in a
complete framework, able to auto-calibrate while localizing
during the movement.

In Section 2 we introduce the model adopted here to char-
acterize the odometry error for a mobile robot with the syn-
chronous and the differential drive. In Section 3 we summa-
rize the AKF and we extend the same filter to the case of
a synchronous drive. The OF is presented in Section 4 and
deeply discussed for the specific case implemented in the
experiments. In particular, the influence on the accuracy on
the non-systematic parameter estimations due to the error on
the systematic error evaluation is investigated. In Section 5,
we show and discuss both the results obtained through sim-
ulations and the experimental results obtained with the fully
autonomous robot Donald Duck in an indoor environment.
Finally, conclusions are provided in Section 6.

2 The odometry error model

We consider two different drive systems: synchronous and
differential. Concerning the former we adopt the same model
introduced in Martinelli (2002) whereas for the latter we
adopt a model very similar to the one introduced by Chong
and Kleeman (1997). In the next sections we briefly summa-
rize these odometry error models.

2.1 Synchronous drive

In the synchronous drive system each wheel is capable of
being driven and steered. Let us denote with δρi and δθi re-
spectively the robot translation and rotation in the ith time
step with respect to a global world coordinate frame. Be-
cause of the odometry errors these values differ from the
encoder readings. The model here adopted assumes that δρi

and δθi are random variables, uncorrelated, with gaussian
distribution. In particular their mean values are given by
the encoder readings corrected for the systematic error. It is
assumed that the systematic errors (both in translation and
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rotation) increase linearly with the distance traveled by the
robot. Therefore,

δρi = δρδρ
e
i δθ i = δθ e

i + Eθ δρ
e
i (1)

where δρe
i and δθ e

i are the encoder readings respectively for
the robot translation and rotation, and δρ and Eθ characterize
the systematic errors. Finally, it is also assumed that the
variances increase linearly with the distance traveled by the
robot. We therefore can write:

δρi = δρi + ν
ρ

i δθi = δθ i + νθ
i (2)

where

ν
ρ

i ∼ N
(
0, Kρ

∣∣δρe
i

∣∣) νθ
i ∼ N

(
0, Kθ

∣∣δρe
i

∣∣) (3)

The odometry error model presented here is based on 4
parameters. Two of them (δρ, Eθ ) characterize the systematic
components whereas the other two (Kρ , Kθ ) characterize
the non-systematic components. Clearly, these parameters
depend on the environment where the robot moves.

2.2 Differential drive

A simple way to characterize the odometry error for a mobile
robot with a differential drive system is obtained by modeling
separately the error in the translation of each wheel Chong
and Kleeman (1997). The actual translation of the right/left
wheel related to the ith time step is assumed to be a gaussian
random variable satisfying the following relation:

δρ
R/L
i = δρ

R/L
i + ν

R/L
i (4)

δρ
R/L
i = δρ

eR/L
i δR/L (5)

ν
R/L
i ∼ N

(
0, Kw

∣
∣δρeR/L

i

∣
∣) (6)

In other words, both δρR
i and δρL

i are assumed gaussian
random variables, whose mean values are given by the en-
coder readings (respectively δρeR

i and δρeL
i ) corrected for

the systematic errors (which are assumed to increase lin-
early with the distance traveled by each wheel), and whose
variances also increase linearly with the traveled distance.
Furthermore, it is assumed that δρR

i and δρL
i are uncorre-

lated. With respect to the Chong–Kleeman model, here only
one parameter (Kw) is adopted to characterize both the vari-
ances for the right and left wheel. The robot translation and
rotation are given by the following relations:

δρi = δρR
i + δρL

i

2
δθi = δρR

i − δρL
i

dδd
(7)

where d is the estimated distance between the wheels and δd

characterizes the uncertainty on this estimation. Clearly, the

robot translation and rotation are correlated accordingly to
the Eqs. (4)–(7).

The proposed odometry error model is based on 4 pa-
rameters. Three (δR, δL and δd ) characterize the systematic
components whereas the last one (Kw) characterizes the non-
systematic components.

In Sections 3 and 4 we introduce the strategy to simul-
taneously estimate all these parameters via the localization
during the standard robot navigation.

3 Systematic parameters estimation during navigation

In order to estimate the parameters characterizing the sys-
tematic error (both for synchronous and differential drive)
we adopt an extended Kalman filter which estimates a state
containing the robot configuration and the systematic param-
eters (augmented state). This method was already adopted for
a differential drive system (Caltabiano et al., 2004; Larsen,
1998; Larsen et al., 1998; Martinelli and Siegwart, 2003;
Martinelli et al., 2003).

Let us denote with X the robot configuration (X =
[x, y, θ ]T ), with Xa the augmented state and with Pa its co-
variance matrix. We have, respectively for the synchronous
and differential drive

Xa = [x, y, θ, δρ, Eθ ]T Xa = [x, y, θ, δR, δL , δd ]T

The state X evolves accordingly to the dynamical equa-
tion Xi+1 = f (Xi , Ui ) where Ui = [δρi , δθi ]T for the syn-
chronous drive and Ui = [δρR

i , δρL
i ]T for the differential

drive. The observation at the ith time step depends on the
current robot configuration and it is assumed to be affected
by an error wi with a gaussian distribution, zero-mean and
covariance matrix Ri = 〈wiw

T
i 〉

zi = h(Xi , wi ) (8)

A simple example for this function is obtained by defin-
ing z as the vector containing all the distances in several
directions of observation from the robot configuration to-
wards the landmarks (e.g. straight lines stored in a map a
priori known). In this case the function h characterizes the
measurement prediction of a laser range finder. In the exper-
iments carried out in our lab and discussed in Section 5, this
function was different since, instead of using the raw data,
we extracted the straight lines from the data (see also Arras
et al. (2001)).

The dynamical equation for the augmented state Xa is
given by the equation:

Xai+1 = fa(Xai , Ui ) (9)
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The function fa , restricted to the first three components,
is obtained directly from the function f including the depen-
dence on the systematic parameters in the input Ui ; regard-
ing the last components (two for the synchronous drive and
three for the differential drive) fa is the identity function
since there is no evolution in time for the error parameters.

In order to obtain the EKF equations for the augmented
state (i.e. the equations of the AKF), it is necessary to com-
pute the Jacobian Fa of the function fa with respect to Xa

and the Jacobian Ga of the function fa with respect to
the vector ν, which is [νρ, νθ ]T in the synchronous drive
(Eq. (2)) and [νR, νL ]T in the differential drive (Eq. (6)):

Fa = ∇Xa fa|Xa (i |i),U i
Ga = ∇ν fa|Xa (i |i),U i

where Xa(i |i) is the state estimated at the previous time step
and U i is the mean value of the vector Ui previously defined.
The computation of these matrices can be found in Larsen
(1998) and Larsen et al. (1998) for the differential drive and
can be easily carried out for the synchronous drive.

Finally, in order to implement this filter, we must know
the covariance of the vector w in (8) and the covariance of
ν in (4) and (2). The former regards the exteroceptive sen-
sor, the latter regards the odometry and it is known once the
non-systematic parameters are known (see Eqs. (6) for the
differential drive and the Eq. (3) for the synchronous drive).
Since at the beginning these parameters are not known, to
maintain consistent the estimation process of the AKF, we
adopt constant values which overestimate the true values
of the non-systematic parameters. This results in a consis-
tent estimation. The price to pay is a slower convergence
since in practice the AKF strongly relies on the exterocep-
tive sensor and it partially exploits the information coming
from the odometry. The use of constant values for the non-
systematic parameters makes the AKF independent of the
non-systematic parameters estimation which will be carried
out by a separate filter discussed in the next section.

Once the Jacobians Fa and Ga are computed and the
covariance matrices of w and ν are also determined, it is
possible to implement the AKF by applying the standard
EKF equations (Bar-Shalom and Fortmann, 1988; Leonard
and Durrant-Whyte, 1992).

4 Non-systematic parameters estimation during
navigation via localization

The non-systematic parameters cannot be evaluated follow-
ing the previous method. Indeed, by including them in the
augmented state, the Kalman gain related to these parameters
is null.

In the following, we define the encoder trajectory between
two time steps tA and tB , as the set of the encoder displace-

ments occurred during the interval tB − tA. Obviously, the
encoder trajectory is provided by the encoder sensors and
therefore it is known.

The method we suggest to estimate the non-systematic
parameters exploits the observables defined in Martinelli
(2002). The observables are random variables related to a
given robot motion whose statistical properties (e.g. mean
value and variance) depend on the parameters characterizing
the odometry error and on the encoder trajectory. Therefore,
for a given encoder trajectory, the statistics of the observ-
ables only depends on the non-systematic and systematic
parameters. In particular, we have for the mean value:

〈Obs〉 = mObs(K , Ks) (10)

where Obs is the considered observable, K is the vector
containing the non-systematic parameters (K = [Kρ, Kθ ]T

for the synchronous drive and K = Kw for the differential
drive), Ks is the vector containing the systematic parame-
ters and the function mObs is completely determined for the
observable Obs for a given encoder trajectory. In Martinelli
(2002a, 2002b) we derived analytical formulas to compute
the function mObs for several encoder trajectories.

On the other hand, in Martinelli (2002a) it was shown
that it is possible to estimate the mean value of an observ-
able in another way which does not require the knowledge of
the odometry parameters. We remark that this second method
does not provide the entire statistics of the chosen observable
but only its mean value. This second method only requires
to know the actual initial and final robot configurations of
the considered robot motion, i.e. the configurations at tA and
tB (respectively CA and CB). Indeed, when the robot moves
from CA to CB , all the observables are built as functions of
CA and CB . For instance, an observable is the distance be-
tween CA and CB , another one is the difference in orientation
between CA and CB (see also Martinelli (2002a)). In general
we have

Obs ≡ µ(CA, CB) (11)

where µ is the function defining the considered observable.
Now, if we perfectly know CA and CB we are able to

compute the value of the observable. This value corresponds
to a special realization of the observable occurred during the
considered motion. Therefore, it can be used to estimate the
mean value of the observable. The error of this estimation
will be characterized by a covariance matrix which is the
covariance of the observable itself. In other words we have:

〈Obs〉 = µ(CA, CB) + wObs (12)

where

wObs = N (0, CovObs) (13)
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Our goal is to introduce a filter, the Observable Filter
(OF), where the measurement is

zObs ≡ µ(CA, CB) (14)

Therefore, from (12) we have

zObs = 〈Obs〉 − wObs (15)

Unfortunately, CA and CB are not perfectly known in a
real world scenario. However, the AKF provides at each time
step an estimation of the robot configuration. Therefore, the
exteroceptive sensor adopted by the OF will be the AKF.
Obviously, we must take into account the accuracy on the
configuration estimated by the AKF. Hence, instead of (15)
we have

zObs = 〈Obs〉 − wObs + wX (16)

where wX is a zero-mean random variable (independent from
wObs) whose covariance matrix depends on the accuracy of
the AKF in estimating the robot pose at tA and tB , i.e.

CovwX = [∇CAµ][P(tA | tA)][∇CAµ]T

+ [∇CB µ][P(tB | tB)][∇CB µ]T (17)

where P is the upper left block 3 × 3 of the matrix Pa defined
in Section 3 .

If we combine Eqs. (10) and (16) we obtain an observation
on the state [K , Ks]:

zObs = mObs(K , Ks) − wObs + wX (18)

On the other hand, the vector Ks is estimated through the
AKF. Let us indicate the estimated value of the systematic
parameters with Ks0. We have:

zObs = mObs(K , Ks0) − wObs + wX + wsyst (19)

where wsyst ≡ [∇Ks m
Obs]δKs and δKs is the error on the

systematic parameters whose statistics is provided by the
AKF.

The Eq. (19) can be interpreted as an observation on the
state K. Since the environment is assumed to be homoge-
neous and stationary the dynamical equation for the state K
is the identity:

KtB = fK (KtA ) = KtA (20)

The measurements zObs are provided at the frequency of
the AKF. Therefore, the OF can run with a frequency which
is not larger than the one of the AKF. We will indicate with
i and i + j (where j is an integer ≥ 1) two subsequent time

steps in the OF. In practice, we run the OF once every j
cycles of the AKF.

The knowledge of the function mObs allows us to make
a prediction for the measurement zObs. Therefore, the
innovation is obtained from the difference between this
prediction and the value obtained through (14) where the
robot configuration at tA = i and tB = i + j are estimated
through the AKF.

In order to introduce the adopted observable we define the
following quantities. Let us indicate with �Xo,�Yo and �θo

the displacements respectively in the x-axis, y-axis and orien-
tation between the (i + j)th and i th time step as evaluated by
the odometry corrected for the systematic errors by using the
systematic parameters estimated by the AKF at the (i + j)th
time step. Furthermore, we denote with �Xa,�Ya and �θa

the actual displacements. The observable we adopt is:

Obs =
[

(�Xa − �Xo)2 + (�Ya − �Yo)2

(�θa − �θo)2

]

(21)

As explained before (see Eqs. (14) and (16)), the corre-
spondent measurement zObs is obtained by estimating the
actual robot displacements through the AKF.

The mean value of the second component of the observ-
able defined in (21) can be computed without approxima-
tion for any trajectory followed by the robot between the
i th and (i + j)th time step (Martinelli, 2002a). Concern-
ing the first component the same property holds only for
the synchronous drive. However, even in this case we show
the result obtained by approximating the trajectory by an
arc of circumference for the sake of simplicity (Martinelli,
2002b). In the next section we compute the mean value of
this observable for the synchronous drive. Concerning the
differential drive, we adopt a simpler observable consisting
only of the second component of the previous observable,
Obs = (�θa − �θo)2.

In the Sections 4.1 and 4.2 we provide the analytical ex-
pressions for the statistics of the chosen observable, respec-
tively for the synchronous and the differential drive systems.
In the Section 4.3 we provide the procedure to compute the
matrices characterizing the OF. In the Section 4.4 we discuss
the optimal frequency of the OF and we show that it depends
on the error on the estimated augmented state.

4.1 Synchronous drive

It is possible to define the robot trajectory by giving the
orientation as a function of the curve length. In the syn-
chronous drive, both the orientation and the curve length are
directly estimated by the odometry. We obtain for the in-
crements in the orientation and translation between the i th
and (i + j)th time step respectively �θ e = ∑i+ j

k=i δθ e
k and
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�ρe = ∑i+ j
k=i δρe

k . Moreover, we obtain for the mean value
of the observable in (21), (see Martinelli (2002b))

〈Obs〉 = mObs(K , Ks0)

=
[

Kρ�ρe + 2(δρ�ρe)2
(
� {F(z)} − 1−cos(�θ e)

(�θ e)2

)

Kθ�ρe

]

(22)

where F(z) = z−1+e−z

z2 and z = Kθ�ρe

2 + i(Eθ + �θ e

�ρe )�ρe.
We do not report here the computation of the covariance
matrix. It can be carried out following similar computation
as described in Martinelli (2002a).

4.2 Differential drive

From the Eqs. (4–7) it is easy to obtain the mean value and
the variance of the observable Obs = (�θa − �θ e)2:

〈Obs〉 = mObs(K , Ks0) = Kw(�ρeR + �ρeL )
(
dδd

)2 (23)

CovObs = 2K 2
w

d4δ4
d

(�ρeR + �ρeL )2 (24)

where �ρeR = ∑i+ j
k=i |δρeR

k | and �ρeL = ∑i+ j
k=i |δρeL

k |.

4.3 OF implementation

The equations of the filter are the equations of the EKF.
Clearly, the matrix F = ∇K fK is the identity and the ma-
trix G is the zero-matrix since the dynamical Eq. (20) is
not affected by any error. Furthermore, we need to compute
the matrix H, i.e. the Jacobian of the observational equation
with respect to the state estimated by the filter itself. We get
this matrix, respectively for the synchronous and differential
drive, by computing the Jacobian of the function in Eq. (22)
and in Eq. (23) with respect to the state K. Finally, the matrix
R (i.e. the covariance matrix of wObs + wX + wsyst in (19)) is
the sum of the covariance matrix of the observable (CovObs)
plus the covariance matrix of wX in (17) plus the covariance
matrix of wsyst (i.e. [∇Ks m

Obs]Ps(i + j |i + j)[∇Ks m
Obs]T ),

where Ps is the block in Pa regarding the systematic param-
eters.

Note that in most cases the function mObs is linear in
K (second component in the synchronous drive and in the
differential drive).

4.4 The optimal frequency for the OF

In this section we consider only the case of the differential
drive since it is the drive system of the robot used in the
experiments.

Fig. 1 The three terms mObs, wX and wsyst vs the total distance traveled
by the two wheels between two subsequent OF updates. In the case
shown in (b) the noise terms are larger than the term containing the
non-systematic parameter for any frequency

The goal is to choose the frequency of the OF (i.e. the
value of j) in order to minimize the effect of the three
noise terms (wObs, wX and wsyst ) in the observation. In other
words, we want to minimize the ratio wObs+wX +wsyst

mObs .
From (23) we can see that mObs increases linearly with the

traveled distance. On the other hand, from (24) we see that
also the standard deviation of wObs increases linearly with
the traveled distance. Therefore, the ratio wObs

mObs is independent
of the distance traveled between two observations, i.e. it
is independent of the frequency of the OF. Regarding the
other two components in the error (wX and wsyst ) we note
that the standard deviation of the former is independent of
the traveled distance, while the latter increases squarely. Let
us consider the three terms mObs, wX and wsyst . The best
frequency for the OF is fixed by requiring that the first one
is the largest. Clearly, as shown in Fig. 1(b) this requirement
could not be satisfied (e.g. when the value of Kw is very
small). Let us indicate with S the total distance traveled
by the two wheels (S = �ρeR + �ρeL ). The value of S0

shown in the figure corresponds to the S where the standard
deviation of wX is equal to the standard deviation of wsyst .

In the next section we show the experimental results ob-
tained by choosing the value of S0 in order to fix the fre-
quency of the OF.

5 Results

In this section we present the results obtained through simu-
lations (Section 5.1) and real experiments (Section 5.2).

5.1 Simulations

We simulate a mobile robot moving in an environment con-
sisting of a square with side measure 10 m. Therefore, the
map consists of four straight lines and it is a priori known.
The exteroceptive sensor is simulated through a function
which provides the distance of the map lines from the actual
robot configuration. In particular, at each time step, 36 dis-
tances are provided yielding a 10 ◦ angular resolution. An er-
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Table 1 The systematic and non-systematic model parameters for the
synchronous and differential drive as defined for the simulation

δρ = 1.1 Eθ = .0175 rad/m−1

Kρ = .001 m Kθ = .0003 rad2/m−1

δR = 1.1 δL = 0.9
δd = 1.1 Kw = .00025 m

ror source is introduced by adding at each distance a gaussian
random variable, zero-mean, and whose variance is equal to
(3 cm2). The random variables corresponding to different
distances are independent. The errors in the encoder read-
ings are obtained by introducing gaussian random variables
accordingly to the models described in the Sections 3and 2.2.
The AKF introduced in Section 2.2 is used to estimate the
robot configuration (x, y, θ ) and the systematic parameters
(δρ and Eθ for the synchronous drive and δR, δL and δd for
the differential drive). The systematic parameters are initial-
ized in order to have a null systematic error (δρ = 1, Eθ = 0
and δR = δL = δd = 1). The non-systematic parameters are
initialized in the OF at a value which differs from the one
defined for the truth by a factor 100 (we both considered
the cases of smaller and larger initial value obtaining similar
results). As explained in Section 3 , the AKF adopts fixed
values for the non-systematic parameters in order to com-
pute the error covariance matrices. These values are set 1000
times larger than the truth. Table 1 shows the values of the
adopted actual parameters.

We simulated the same robot motion (a circumference
with radius equal to 5 m) 100 times. The length of each
robot motion is about 30 m. The error on the estimated robot
configuration at each time step is about 1 cm for the position
and 1 deg for the orientation (and this is consistent with the

Fig. 2 Simulation results for the synchronous drive. The units adopted
to represent the model parameters are rad for angle and m for length

Fig. 3 Simulation results for the synchronous drive. The accuracy in
% is plotted vs the traveled distance. The units adopted to represent the
model parameters are rad for angle and m for length

experimental results obtained in our laboratory Arras et al.
(2001)).

Figures 2 and 3 show the results related to the synchronous
drive. Figure 2(a)–(d) display the estimated parameter mean
values at each time step i (e.g. δρi in Fig. 2(a)). These mean
values are plotted vs the traveled distance (in m). The val-
ues are obtained from the 100 simulated robot motion (for
instance, concerning the former, δρi = 1

100

∑100
sim=1 δρi,sim ).

Figure 3(a)–(d) display the accuracy on the previous param-
eter estimations (in %) (for instance

�δρi
δρ

× 100%, where

�δρi =
√

1
100

∑100
sim=1(δρi,sim − δρ)2). Concerning the non-

systematic parameters the frequency of the OF is the same
as for the AKF (i.e. j = 1).

Figures 4 and 5 show the results related to the differential
drive. We plot the same quantities as in the previous case.

We can conclude that it is possible to reach good accuracy
on the parameter estimation by moving the mobile robot
along quite short distances.

5.2 Real experiments

For the experiments, a fully autonomous mobile vehicle has
been used. Donald Duck (Fig. 6) is a mobile robot with a
differential drive. It is equipped with wheel encoders, a 360◦

laser range finder and a grey-level CCD camera (not used
here). It is connected via radio ethernet only for data visual-
ization via web and data logging for statistical purposes.

We performed two set of experiments. In each experiment
the robot moved along a distance of about 300 m in our
laboratory. The two set of experiments differed because in
one case we added on both the robot wheels a small piece of
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Fig. 4 Simulation results for the differential drive. The units adopted
to represent the model parameters are rad for angle and m for length

Fig. 5 Simulation results for the differential drive. The accuracy in %
is plotted vs the traveled distance. The units adopted to represent the
model parameters are rad for angle and m for length

tape in order to increase slightly the wheel diameters and to
test the accuracy of the implemented AKF. In all the cases
the OF started to work only when the systematic parameter
errors, as estimated by the covariance matrix of the AKF
(Pa), were smaller than 5 × 10−4. This accuracy was always
achieved after about 100 m (see Figs. 7–9).

Concerning the AKF, we set the initial covariance matrix
Pa as diagonal. Moreover, the variances corresponding to the
systematic parameters were set equal to (0.05)2 for all the
three parameters. Finally, the initial values were fixed equal
to 1.0 for all of them.

Fig. 6 The autonomous robot Donald Duck. Its controller consists
of a VME standard backplane with a Motorola PowerPC 604 micro-
processor clocked at 300 Mhz. Among its peripheral devices, the most
important are the wheel encoders, a 360◦ laser range finder and a grey-
level CCD camera (not used here)

Fig. 7 The δR parameter estimated by the AKF vs the distance traveled
by the robot (unity m). The dotted line refers to the case with the tape
on the wheels

Fig. 8 The δL parameter estimated by the AKF vs the distance traveled
by the robot (unity m). The dotted line refers to the case with the tape
on the wheels
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Fig. 9 The δd parameter estimated by the AKF vs the distance traveled
by the robot (unity m). The dotted line refers to the case with the tape
on the wheels

Regarding the non-systematic parameter Kw, we set in the
most of the experiments, the initial value equal to 0.01 m.
This value is very large. Indeed, it corresponds to have a
non-systematic error whose standard deviation after 100 m
of navigation, is equal to 1 m for each wheel. Therefore, the
AKF used nearly only the laser range finder to localize the
robot.

Figures 7–9 show the systematic parameter results. Dotted
line is adopted for the case with the tape on the wheels. As
expected, the values of δR and δL increase with respect to
the case without tape. The variation is equal to about 0.01
corresponding to a diameter change of 0.4 mm, since the
wheel diameter is equal to 3.8 cm. Figure 9 shows also a
change in the wheels base distance due to the tape. This
change shows that the point where the wheel touches the
terrain seems to be pushed out by the tape.

Figure 10 concerns the non-systematic parameter results.
Again, dotted line is adopted for the case with the tape on

Fig. 10 The non-systematic parameter Kw as estimated by the OF vs
the distance traveled by the robot (unity m in both axis). The dotted
line refers to the case with the tape on the wheels

the wheels. In this case the tape does not produce variation.
The frequency of the OF was chosen accordingly to the
considerations given in Section 4.4. We obtain the value S0 

15 m. Observe that the frequency of the AKF is much higher
(
10 cm). Similar results for the estimated Kw were obtained
by changing the value of S0. In particular, we performed
many experiments in the range 10 m ≤ S0 ≤ 30 m obtaining
a variation in Kw within the 20%. We also performed other
trials by changing the initial value of Kw (always in the range
0.0001 m ≤ Kw ≤ 0.1 m) obtaining again a slight variation
in the results (within the 20%). The final estimated Kw shown
in the Fig. 10 are Kw = (4.7 ± 1.6)10−5 m and Kw = (5.4 ±
1.8)10−5 m respectively with and without tape. This value
of Kw corresponds to have a non-systematic error whose
standard deviation after 100 m of navigation, is 
5 cm for
each wheel.

By comparing the results obtained through the experi-
ments and the ones obtained in the simulations we can find a
good consistency, confirming that both the adopted model to
characterize the odometry error of a differential drive and the
approach introduced here are right. In particular, concerning
the systematic parameters, we observe from Figs. 7–9 a rapid
variation of the estimated value during the first 30 m. After
this distance, the overall change never exceeds the 2%. This
is perfectly in agreement with the results obtained with our
simulation (see Fig. 5). Concerning the non-systematic pa-
rameter, the experiment shows that it is required to move the
robot along a distance of about 100 m. After this distance,
the overall change never exceeds the 10%.

6 Conclusions

Two filters — the Augmented Kalman Filter and the Observ-
able Filter — are introduced to estimate the systematic and
the non-systematic odometry errors.

The main contributions are the theoretical discussion of
these filters both for synchronous and differential drive, and
the integration of them in a coherent framework allowing to
auto-calibrate the odometry system while localizing during
the robot navigation.

Simulations and real experiments show that the approach
performs well both with respect to the precision and the con-
vergence. In particular, simulations show that it is possible to
estimate the systematic error with low relative error (1% by
moving the robot for 30 m) and the non-systematic error with
a relative error of 90%. Observe that our experiments were
carried out in an indoor environment with a very smooth floor
and therefore the non-systematic component is very low and
very difficult to be evaluated.

We are performing some experiments showing the useful-
ness of an odometry auto calibration in the framework of the
SLAM problem. We want to remark that in the localization
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problem with a precise map a priori known, and when a
precise exteroceptive sensor is available, the localization er-
ror is very small compared to the odometry error (calibrated
or not), since the localization task is nearly completely re-
lied to the external sensor. In the SLAM problem, however,
the odometry could play a very important role especially in
solving the data association problem.
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