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Abstract We prove that, in a heterogeneous economy with scale-invariant utilities,
the yield of a long term bond is determined by the agent with maximal expected
marginal utility. We also prove that the same result holds for the long term forward
rates.

Furthermore, we apply Cramér’s large deviations theorem to calculate the yield of
a long term European call option. It turns out that there is a threshold risk aversion
such that the option yield is independent of the risk aversion when the latter is above
the threshold. Surprisingly, the long term option yield is always greater than or equal
to the corresponding equity return. That is, in the long run, it is more profitable to
buy a long maturity call option on equity than the equity itself.
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1 Introduction

In this paper, we study long run zero coupon bond yields and forward rates in hetero-
geneous, complete market economies. In equilibrium, long run forward rates and long
yields on bonds reflect the price of long run economic risks and, for this reason, help
us in understanding the role of these risks. See, for example, Alvarez and Jermann [2]
and Dybvig et al. [10] (see also Hubalek et al. [12] for a general mathematical result).
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There is a large literature analyzing asset prices in heterogeneous economies. See,
e.g., Dumas [9], Ross [18], Wang [20, 21], Constantinides and Duffie [5], and Gollier
and Zeckhauser [11]. A direct predecessor of our paper is the paper of Wang [22].
Wang considered an economy populated by two agents with CRRA utility functions,
identical discount factors, and risk aversions 1 and 0.5 and proved that the long run
zero coupon bond yield is determined by the agent with the largest expected marginal
utility. In this paper, we prove this result for an arbitrary number of agents with ar-
bitrary heterogeneous discount factors and risk aversions. Furthermore, we prove a
much stronger statement: an analogous result holds for long run forward rates. Our
results can be directly extended to any scale-invariant preferences, including hetero-
geneous beliefs (such as Wang [20] and Wang [21]) and state-dependent preferences,
generated by habit formation (such as, e.g., Constantinides [4] and Abel [1]). Even
though we work in discrete time, all our results literally hold for continuous time
economies. Note also that our result extends Lengwiler [14], who considered an econ-
omy with heterogeneous discount factors and proved that the long run bond yield is
determined by the most patient agent.

It is well known that, in a homogeneous economy with standard, CRRA prefer-
ences and geometric random walk (Brownian motion) aggregate endowment, the eq-
uity price is proportional to the aggregate endowment and, consequently, options are
priced via the standard Black–Scholes formula. Thus, the Black–Scholes formula can
be considered as a trivial, homogeneous special case of our heterogeneous equilibria.
Introducing heterogeneity is a natural way of generating new effects, such as sto-
chastic volatility. For example, Benninga and Mayshar [3] considered a one-period
economy with heterogeneous risk aversions and discount factors and showed how
heterogeneity generates a correction to the Black–Scholes formula and, in particular,
is able to produce smiles and skews compatible with real data.

In this paper, we study for the first time the yield of a long maturity call option,
that is, the per-period return on holding the option up to maturity. We explicitly cal-
culate the limit of the option yield as the maturity tends to infinity. Several surprising
phenomena arise. First, there is a threshold risk aversion such that the long run op-
tion yield is independent of the risk aversion when the latter is above the threshold.
Second, the option yield is always greater than or equal to the corresponding equity
return. That is, in the long run, it is more profitable to invest in options than in eq-
uities. It would be very interesting to compare these theoretical predictions with real
data.

It is necessary to point out that the word “agent” is used to denote a set of identical
agents, each of measure zero. Of course, an agent of positive measure cannot remain
a price taker when he begins to dominate certain asset returns at sufficiently long
horizon.1 However, we abuse this fine distinction and use the word “agent” alone.

2 The model

We assume a discrete-time, pure exchange economy with a single, perishable con-
sumption good (numeraire). The aggregate endowment stream Wt, t ≥ 1, equiva-

1We thank Rajnish Mehra for this important remark.
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lently, the single good stream, is a geometric random walk normalized by W0 = 1.
That is, there exists a sequence of positive, i.i.d. random variables Xt such that

Wt = X1 · · ·Xt

for all t . The information structure is encoded in the filtration (Ft , t ≥ 0) on the un-
derlying probability space (Ω,B,P ) generated by the aggregate endowment process
(Wt). We emphasize that all our results can be directly extended to continuous time
by incorporating the model of [22].

We also make the common assumption that there is a “money market" in which a
one-period risk-free bond can be traded at each moment of time. Agents trade com-
petitively in both the equity and money markets and consume the proceeds. Fur-
thermore, we assume that the market is dynamically complete. This assumption is
naturally fulfilled in standard, Brownian motion driven complete markets (see, e.g.,
[13]). When time is discrete, things become slightly different, because there may be
exceptional situations for a set of parameters of measure zero for which the dimen-
sion of the market subspace falls down. But for risky assets with generic endowment
processes, this does not happen. The standard way to proceed is the following: first
assume that the market is complete and calculate the equilibrium state price densities.
Then, find the generic set of (exogeneously specified) risky dividend processes that
complete the market. This set will be the complement of a countable set of hyper-
planes.

Note that in discrete time with a finite time horizon, we need infinitely many assets
to complete the market if the probability space Ω is infinite. But since our proofs and
results do not depend on the discreteness of time, we present all the arguments for
general probability spaces.

Since the market is dynamically complete, it is well known (see, e.g., [8, 13]) that
there exists a unique positive state price density process M = (Mt , t ≥ 0) (normalized
by M0 = 1) through which all securities can be priced. In particular, the price of the
Lucas tree equity, whose dividend process coincides with the aggregate endowment
(Wt), is given by

P W
t = Et

[ ∞∑
τ=1

Mt+τ

Mt

Wt+τ

]
(2.1)

(we assume no bubbles). Abel [1] suggested considering equities with dividend
processes (Wα

t ) with α ∈ R, along with the Lucas tree asset. The parameter α is
introduced to account for leverage effects. In general, the price P D

t at time t of an
asset with a dividend process D = (Dt , t ≥ 0) is given by

P D
t = Et

[ ∞∑
τ=1

Mt+τ

Mt

Dt+τ

]
.

Furthermore, the price at time t1 of a risk-free zero coupon bond maturing at time t2
is given by

BF(t1, t2) = Et1

[
Mt2

Mt1

]
. (2.2)
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That is, specifying asset prices is equivalent to specifying the state price density
process. For the Lucas tree equity price to be defined, it is necessary that the state
price densities lie in the natural price space

l1(W) =
{

M :
∞∑
t=0

E
[
Wt |Mt |

]
< ∞

}
.

The economy is populated by n classes of identical CRRA agents. Since they
aggregate (see [19]), we will use the name agent i for the representative agent of a
class i, i = 1, . . . , n. We denote by N = {1, . . . , n} the set of all agents.

Agent i has a constant relative risk aversion (CRRA) utility function. He chooses
his random consumption xit at each time t ≥ 0 and each possible state of the world
to maximize the expected discounted intertemporal utility function2

E

[ ∞∑
t=0

δt
i

x
1−γi

it − 1

1 − γi

]
.

Here, γi is the relative risk aversion of agent i, and δi is his discount factor (patience).
Agent i is endowed with ηi shares of equity, and

∑n
i=1 ηi = 1 since we normalize the

supply to be one. An agent finances his consumption by trading assets. It is easy to
show (see, e.g., Wang [8, 22]) that, since markets are complete, the set of feasible
consumption streams (the budget set) of agent i can be easily described in terms
of the unique state price density process. Agent i chooses his optimal consumption
stream (xit )t≥0 from the corresponding consumption space

l1(M) =
{

(xit )t≥0 :
∞∑
t=0

E[xitMt ] < ∞
}

satisfying the budget constraint

E

[ ∞∑
t=0

xitMt

]
= ηiE

[ ∞∑
t=0

WtMt

]

to maximize his utility. The utility maximization problem can now be easily solved.

Lemma 2.1 Let bi = γ −1
i . The solution to the utility maximization problem for

agent i,

max

{
E

[ ∞∑
t=0

δt
i

x
1−γi

it − 1

1 − γi

]∣∣∣∣∣E
[ ∞∑

t=0

xitMt

]
= ηiE

[ ∞∑
t=0

WtMt

]}
, (2.3)

2The reciprocal of relative risk aversion, bi = 1/γi , is called cautiousness.
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is given by xit = M
−bi
t δ

tbi

i xi0 for all t ≥ 1 and

xi0 = ηi

∑∞
t=0 E[WtMt ]∑∞

t=0 δ
tbi

i E[M1−bi
t ] . (2.4)

3 Market equilibrium

If the payoffs of all assets are linearly independent, standard arguments (see, e.g.,
[8, 13]) imply that the equilibrium market clearing for all assets is equivalent to the
market clearing for the consumption good. Thus, our equilibrium can be characterized
as an Arrow–Debreu equilibrium.

Definition 3.1 A positive state price density process M := (Mt , t ≥ 0) is an Arrow–
Debreu equilibrium if ∑

i∈N

xit = Wt

for all t ≥ 0. That is, ∑
i∈N

δ
t bi

i M
−bi
t xi 0 = Wt (3.1)

for all t ≥ 1 (recall that bi = γ −1
i ). Market clearing at time zero follows from Walras’

law.

Existence of an equilibrium for infinite horizon economies is a nontrivial problem.
In [16] we prove the following:

Theorem 3.2 Under the assumptions above, an equilibrium exists if and only if

δiE
[
X

1−γi

1

]
< 1 (3.2)

for all i = 1, . . . , n. This condition is also necessary and sufficient for the finiteness
of the Lucas tree equity price.

Therefore, everywhere in the sequel we make the following:

Assumption 3.3 Inequality (3.2) is fulfilled for any i = 1, . . . , n.

In general, if the state space and horizon are finite, the existence follows from
standard results (see, e.g., [6]). Then we could simply view the infinite horizon yields
as limits of finite horizon yields as the horizon goes to infinity. But viewing the yields
directly as prices in infinite horizon economies is, of course, more convenient. For
this reason, we present a sketch of the proof of Theorem 3.2 in the Appendix.
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Nonuniqueness of equilibria Note that the equilibrium in our economy is not neces-
sarily unique (see [16] for concrete examples of nonuniqueness). But these multiple
equilibria only differ from each other via the initial consumptions xi0. Our results are
universal because they are independent of the initial consumptions xi0 and, conse-
quently, are independent of a particular equilibrium.

4 The aggregator function and its properties

The key ingredient of the proofs is the aggregator function constructed in the follow-
ing:

Proposition 4.1 In equilibrium, the τ -period stochastic discount factor is given by

Mt+τ

Mt

= Ft

(
δτ

1

(
Wt+τ

Wt

)−γ1

, . . . , δτ
n

(
Wt+τ

Wt

)−γn
)

,

where Ft = Ft (y1, . . . , yn) is the unique solution to

n∑
i=1

F
−bi
t y

bi

i

(
xitW

−1
t

) = 1.

Note that the weights xitW
−1
t sum to one.

Proof Dividing the equilibrium equations (3.1) at time t + τ by Wt+τ , we get

1 =
n∑

i=1

e−ρi(t+τ)bi M
−bi
t+τ xi 0W

−1
t+τ

=
n∑

i=1

e−ρiτbi

(
Mt+τ

Mt

)−bi

M
−bi
t e−ρi tbi xi0W

−1
t WtW

−1
t+τ

=
n∑

i=1

e−ρiτbi

(
Mt+τ

Mt

)−bi (
xitW

−1
t

)((
Wt+τ

Wt

)−γi
)bi

=
n∑

i=1

(
Mt+τ

Mt

)−bi
(

e−ρiτ

(
Wt+τ

Wt

)−γi
)bi (

xitW
−1
t

)
, (4.1)

and the claim immediately follows. �

Proposition 4.1 allows us to formulate the most important properties of the state
price density process in terms of the aggregator function. In Malamud [15], we use
the aggregator function to prove sharp estimates for asset prices.

We will need the following important lemma.
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Lemma 4.2 The function Ft satisfies

max
i

(
yi

(
xitW

−1
t

)γi
) ≤ Ft(y1, . . . , yn)

≤
(∑

i∈N

y
γ −1

i

(
xitW

−1
t

)γ −1γi

)γ

≤ nγ−1
∑
i∈N

yi, (4.2)

where γ is any number satisfying the inequality γ −1 ≤ min{mini bi ,1}.

Proof The first inequality follows from

F
−bj

t y
bj

j xjtW
−1
t ≤

n∑
i=1

F
−bi
t y

bi

i

(
xitW

−1
t

) = 1

for any j ∈ N . Suppose now that

Ft(y1, . . . , yn) >

(∑
i∈N

y
γ −1

i

(
xitW

−1
t

)γ −1γi

)γ

.

Then

1 =
n∑

i=1

F
−bi
t y

bi

i

(
xitW

−1
t

)
<

n∑
i=1

(
y

γ −1

i (xitW
−1
t )γ

−1γi∑
i∈N y

γ −1

i (xitW
−1
t )γ

−1γi

)biγ

≤
n∑

i=1

y
γ −1

i (xitW
−1
t )γ

−1γi∑
i∈N y

γ −1

i (xitW
−1
t )γ

−1γi

= 1, (4.3)

which is a contradiction. The last inequality follows from Jensen’s inequality and
convexity of xγ . �

5 The long run yield of a zero coupon bond and long run forward rates

Recall that the aggregate endowment (Wt ) is assumed to be a geometric random walk,

Wt = X1 · · ·Xt

with i.i.d. Xt . In a homogeneous economy populated by identical agents with risk
aversion γ and discount factors δ, bond prices are constant and are given by

BF(t, t + τ)(δ, γ ) = δτ
(
E

[
X

−γ

1

])τ
,

and the yield of the zero coupon bond is, by definition,

−τ−1 logBF(t, t + τ)(δ, γ ) = − log
(
δE

[
X

−γ

1

])
.
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When agents are heterogeneous, bond prices cannot be calculated explicitly anymore,
but their asymptotic behavior can be studied in detail. The following result is a sub-
stantial extension of Theorem 4 in Wang [22] for the general class of heterogeneous
CRRA economies.

Theorem 5.1 We have

lim
τ→∞ τ−1 logBF(t, t + τ) = max

i
log

(
δiE

[
X

−γi

1

])
. (5.1)

Remark 5.2 Wang [22] considered an economy with two agents having identical dis-
count factors and risk aversions 1 and 1/2 and proved (5.1) in this very special case.

The proof of Theorem 5.1 is based on the following simple lemma.

Lemma 5.3 Let ρi ∈ R, i = 1, . . . ,m. If ai(τ ) = eτρi+O(1) for all τ > 0, then

lim
τ→∞ τ−1 log

m∑
i=1

ai(τ ) = max
i

ρi .

Proof of Theorem 5.1 By Lemma 4.2 and Proposition 4.1,

δτ
j

(
E

[
X

−γj

1

])τ (
xjtW

−1
t

)γj

= δτ
j Et

[
(Wt+τ /Wt)

−γj
](

xjtW
−1
t

)γj

≤ Et

[
Mt+τ

Mt

]
= BF(t, t + τ) ≤ nγ−1

∑
i∈N

δτ
i Et

[
(Wt+τ /Wt)

−γi
]

= nγ−1
∑
i∈N

δτ
i

(
E

[
X

−γi

1

])τ (5.2)

for any j ∈ N . The required assertion immediately follows. �

A much more subtle question is to understand the behavior of the forward rates

ft (τ ) = BF(t, t + τ)

BF(t, t + τ + 1)
.

Note that the bond yields satisfy

−τ−1 logBF(t, t + τ) = τ−1
τ∑

θ=1

logft (θ),

and, consequently, if the forward rates converge to a limit, so do the bond yields (see
also [10] and [12]), but the converse is generally not true.

Surprisingly, this is true in our class of economies under a simple genericity as-
sumption.
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Assumption 5.4 There exists a unique agent b ∈ N such that

δbE
[
X

−γb

1

] = max
i

δiE
[
X

−γi

1

]
.

Obviously, Assumption 5.4 holds for generic economies (the set of such economies
is a complement of a finite number of smooth hypersurfaces).

Theorem 5.5 Let Assumption 5.4 be fulfilled. Then

lim
τ→∞ft (τ ) = (

δbE
[
X

−γb

1

])−1
.

We will need the following auxiliary lemma.

Lemma 5.6 Let γ ≥ 1. Then the function f : Rn+ → R defined by

f (x1, . . . , xn) =
(

n∑
i=1

x
1/γ

i

)γ

is concave.

Proof The Hessian H(f ) of the function f is given by

H(f ) = (
∂2f/∂xi∂xj

)n

i,j=1

= (
1 − γ −1)( n∑

i=1

x
1/γ

i

)γ−2((
x

1/γ−1
i x

1/γ−1
j

)n

i,j=1

−
(

n∑
i=1

x
1/γ

i

)
diag

(
x

1/γ−2
i

)n

i=1

)

= (
1 − γ −1)f 1−2/γ diag

(
x

γ −1/2−1
i

)n

i=1

× ((
x

γ −1/2
i x

γ −1/2
j

)n

i,j=1 − f 1/γ I
)
diag(x

γ −1/2−1
i )ni=1.

Here, I is the identity matrix. The matrix

A =
(
x

γ −1/2
i x

γ −1/2
j

)n

i,j=1

equals f 1/γ times the orthogonal projection onto the vector (x
γ −1/2
i )ni=1. Thus,

‖A‖ = f 1/γ , and the matrix(
x

γ −1/2
i x

γ −1/2
j

)n

i,j=1
− f 1/γ I

is negative definite. Therefore, H(f ) is also negative definite. �

The Jensen inequality immediately yields the following:
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Lemma 5.7 Let γ ∈ N be a natural number and X1, . . . ,Xn nonnegative random
variables. Then

E
[(

X
1/γ

1 + · · · + X
1/γ
n

)γ ] ≤ (
E[X1]1/γ + · · · + E[Xn]1/γ

)γ
.

We are now ready to prove the theorem.

Proof of Theorem 5.5 Let b be the (by assumption unique) agent from Assump-
tion 5.4 and

αj = xjtW
−1
t

for all j ∈ N . Then, applying Lemma 5.7 to the random variables

Xj = δτ
j

(
Wt+τ

Wt

)−γj

α
γj

j

and using Proposition 4.1 and Lemma 4.2, we arrive at the inequality

Et [Mt+τ ]
Mt

≤
(

n∑
j=1

((
δjE

[
X

−γj

1

])τ
α

γj

j

)1/γ

)γ

(5.3)

for some γ > 1. Denote

κ := maxi �=b(δiE[X−γi

1 ])
δbE[X−γb

1 ] .

By Assumption 5.4, κ < 1. Applying Lemma 4.2 and using (5.3), we get

(
δbE

[
X

−γb

1

])τ
αb ≤ BF(t, t + τ) ≤ (

δbE
[
X

−γb

1

])τ
αb

(
1 + Kκτγ −1)γ

,

where

K =
∑
j �=b

(
α

γj

j α
−γb

b

)1/γ
.

Consequently,

BF(t, t + τ) = (
δbE

[
X

−γb

1

])τ
αb

(
1 + o(1)

)
,

and the forward rates satisfy

BF(t, t + τ)

BF(t, t + τ + 1)
= (

δbE
[
X

−γb

1

])−1(1 + o(1)
)
,

which gives the assertion. �
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6 The yield of a long maturity European call option

Recall that the Lucas tree equity is the asset whose dividend process coincides with
the aggregate endowment, and its price P W

t is given by

P W
t = Et

[ ∞∑
τ=1

Mt+τ

Mt

Wt+τ

]
.

Note that in a homogeneous economy with parameters (δ, γ ), the equity price is
proportional to the dividend and is given by

P W
t (δ, γ ) = Wt

δE[X1−γ

1 ]
1 − δE[X1−γ ] .

In general, Proposition 4.1 and Lemma 4.2 together yield the following:

Lemma 6.1

C1Wt ≤ P W
t ≤ C2Wt (6.1)

for some constants C2 > C1 > 0.

Proof It follows directly from Proposition 4.1 and Lemma 4.2 that the constants

C1 = δ1E[X1−γ1
1 ]

1 − δ1E[X1−γ1
1 ]

and

C2 = nγ−1
∑
j∈N

δjE[X1−γj

1 ]
1 − δ1j,E[X1−γj

1 ]
satisfy the required estimates. �

By absence of arbitrage, the price Callt (K, t + τ) at time t of a European call
option with strike K and maturity t + τ is given by

Callt (K, t + τ) = Et

[
Mt+τ

Mt

(
P W

t+τ − K
)+

]
.

The payoff of the option at maturity is, by definition, (P W
t+τ −K)+, and, therefore, the

log expected per-period return on holding the option up to maturity (i.e., the option
yield) is given by

τ−1 log
Et [(P W

t+τ − K)+]
Et

[Mt+τ

Mt
(P W

t+τ − K)+
] .

In this section, we study the asymptotic behavior of the option yield as its maturity
tends to infinity. We will need several definitions.
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Assumption 6.2 We assume that the jump X1 of the aggregate endowment satisfies
the Donsker–Varadhan condition

E
[
Xα

1

]
< ∞

for all α ∈ R. This condition guarantees that the Cramér large deviation result holds.
See, e.g., [7], p. 6.

Definition 6.3 For a random variable X ≥ 0, let

Z(β,X) = E
[
Xβ

]
and

S(x,X) = sup
β∈R

(
xβ − lnZ(β,X)

)
.

The function S(x , X) is the Legendre transform of the moment-generating func-
tion Z.

Lemma 6.4 S(x,X) is a strictly convex function of

x ∈ (essinf logX, esssup logX)

with

min
x

S(x,X) = S
(
E[logX],X) = 0.

Consequently, S(x,X) > 0 for all x �= E[logX].

Lemma 6.4 means that S(x,X) measures the deviation of x from the mean
E[logX].

If H = logX is a binomial variable taking values h1 < h2 with probabilities p1

and p2 = p, then

S(x,X) = −Iy(p), (6.2)

where

y = p + x − E[H ]
h2 − h1

,

and Iy(p) is the relative entropy function given by

Iy(p) = y log

(
p

y

)
+ (1 − y) log

(
1 − p

1 − y

)
. (6.3)

Cramér’s large deviations theorem states that S(x,X) is the exact rate at which
logX deviates from its mean. Namely, the following is true.
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Theorem 6.5 (Cramér’s large deviations theorem) As τ → ∞, we have

P
[
Wτ ≥ eτx

] = e−τ(S(x,X1)+o(1))

for any x satisfying esssupX1 > x ≥ E[logX1]. In particular, if E[logX1] < 0 <

esssupX1, then, for any positive constant K > 0,

P [Wτ ≥ K] = e−τ(S(0,X1)+o(1)) as τ → ∞.

See, e.g., [7], p. 6 for a proof. We will need modifications of the large deviations
theorem under an equivalent change of measure.

Definition 6.6 On each sigma-algebra Ft , define the equivalent probability measure

dP
γ
t = W

−γ
τ

E[W−γ
τ ] dP.

It is easy to see that the family of measures P
γ
t is consistent (because (Wt ) is a

geometric random walk), and therefore, by the Kolmogorov extension theorem, there
exists a measure P γ whose restriction on each finite horizon algebra Ft coincides
with P

γ
t . The mathematical expectation with respect to P γ is denoted by Eγ.

It is easy to see that W = (Wt ) is also a random walk under this modified probabil-
ity measure P γ , that the Donsker–Varadhan condition is also fulfilled, and therefore
the large deviations theorem also holds. We denote by

Zγ (β,X) = Eγ
[
Xβ

]
and

Sγ (x,X) = sup
β∈R

(
xβ − lnZγ (β,X)

)
the corresponding Cramér function. Then the large deviations theorem takes the form

P γ
[
Wτ ≥ eτx] = e−τ(Sγ (x,X1)+o(1)) as τ → ∞.

We will also make the following economically natural assumption.

Assumption 6.7 P [X1 > 1] · P [X1 < 1] > 0. That is,

0 ∈ (essinf logX1, esssup logX1).

Assumption 6.7 means that both booms (growth) and recessions happen with pos-
itive probability.

Lemma 6.8 The function f (γ ) = E[X−γ

1 ] is strictly convex in γ . Under Assump-
tion 6.7,

lim
γ→+∞f (γ ) = lim

γ→−∞f (γ ) = +∞,
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and f (γ ) has a unique global minimum G satisfying

E
[
X−G

1 logX1
] = 0.

Furthermore, G > 0 if and only if

E[logX1] > 0.

Proof All claims are immediate consequences of the definitions. The positivity of G

follows because f ′(0) = −E[logX1]. �

The “critical” risk aversion G plays a very important role in our analysis. The
following result will be crucial for our considerations.

Lemma 6.9 The function

g(γ ) = − ∂

∂γ
logf = Eγ [logX1] = E[X−γ

1 logX1]
E[X−γ

1 ]
is decreasing in γ and satisfies

g(G) = 0.

Consequently,

Sγ (0,X1) = − log
E[X−G

1 ]
E[X−γ

1 ] .

We will need the following well-known correlation inequality.

Lemma 6.10 If h1(x) and h2(x) are increasing, then

E
[
h1(X)h2(X)

] ≥ E
[
h1(X)

]
E

[
h2(X)

]
for any random variable X.

Proof of Lemma 6.9 Using Lemma 6.10, we get

Eγ1[logX1] = Eγ2[Xγ2−γ1
1 logX1]

Eγ2[Xγ2−γ1
1 ] ≥ Eγ2[logX1]

for any γ2 ≥ γ1, and the required monotonicity follows. Now,

Sγ (0,X1) = − log
E[Xβ−γ ]
E[X−γ ] ,

where β satisfies the first-order condition

E
[
X

β−γ

1 logX1
] = 0.

That is, β = γ − G, and the claim follows. �
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Theorem 6.11 Let

O(δ, γ ) =
{

log(δE[X1−γ

1 ]), G ≥ γ − 1,

log(δE[X−G
1 ]), G ≤ γ − 1.

Then

lim
τ→∞ τ−1 log

Et [(P W
τ − K)+]

Et [Mτ(P W
τ − K)+ ] = O(1,0) − max

i
O(δi, γi).

Proof We consider only the case t = 0. The case t > 0 is completely analogous. We
will first show that

lim
τ→∞ τ−1 logE

[
Mτ

(
P W

τ − K
)+] = max

i
O(δi, γi).

In fact, we will prove that

lim
τ→∞ τ−1 logE

[
Mτ(CWτ − K)+

] = max
i

O(δi, γi)

for any constant C > 0. Then the required assertion will follow from Lemma 6.1.
Proposition 4.1 and Lemma 4.2 together yield that

n−1
(

min
j

(xj0)
γj

)∑
i∈N

δτ
i W−γi

τ ≤ Mτ ≤ nγ−1
∑
i∈N

δτ
i W−γi

τ .

Consequently, it suffices to prove that

lim
τ→∞ τ−1 logE

[∑
i∈N

δτ
i W−γi

τ (Wτ − K)+
]

= max
i

O(δi, γi), (6.4)

since the limit is independent of C and K . Denote

π(K, τ, γ ) = P γ [Wτ > K] = (
E

[
X

−γ

1

])−τ
E

[
W−γ

τ ,Wτ > K
]
.

We have

E
[
δτ
i W−γi

τ (Wτ − K)+
] = E

[
δτ
i W 1−γi

τ − Kδτ
i W−γi

τ ,Wτ > K
]

= f (δi, γi − 1)τπ(K, τ, γi − 1) − Kf (δi, γi)
τ π(K, τ, γi)

≤ f (δi, γi − 1)τπ(K, τ, γi − 1) (6.5)

and

E
[
δτ
i W−γi

τ (Wτ − K)+
] = E

[
δτ
i W 1−γi

τ − Kδτ
i W−γi

τ ,Wτ > K
]

≥ E
[
δτ
i W 1−γi

τ − Kδτ
i W−γi

τ ,Wτ > 2K
]

≥ 1

2
E

[
δτ
i W 1−γi

τ ,Wτ > 2K
]

= 1

2
f (δi, γi − 1)τπ(2K,τ, γi − 1). (6.6)
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By Cramér’s large deviations theorem, the asymptotic behavior of π(K, τ, γ ) is in-
dependent of K , and therefore it suffices to understand the asymptotic behavior of
the right-hand side of (6.5). We will consider two cases.

(1) γi ≥ G + 1. In this case, Lemma 6.9 implies that

Eγi−1[logX1] ≤ 0.

Therefore, Cramér’s large deviations theorem and Lemma 6.9 together yield that

π(K, τ, γi − 1) = e−τ(Sγi−1(0,X1)+o(1)) =
(

E[X−G
1 ]

E[X1−γi

1 ]

)τ

e−τo(1)

and, consequently,

f (δi, γi − 1)τπ(K, τ, γi − 1) − Kf (δi, γi)
τ π(K, τ, γi) = f (δi,G)τ eτ o(1).

(2) γi < G + 1. Then

Eγi−1[logX1] > 0

and therefore

π(K, τ, γi) = 1 − e−τ(a+o(1))

for a positive constant a > 0.

Thus, we have proved that

E
[
δτ
i W−γi

τ (Wτ − K)+
] = O(δi, γi)

τ eτ o(1)

as τ → ∞, and (6.4) immediately follows. Finally, by the same arguments,

lim
τ→∞ τ−1 logE

[(
P W

τ − K
)+] = logO(1,0) =

{
logE[X1], G ≥ −1,

logE[X−G
1 ], G ≤ −1. �

Remark 6.12 Theorem 6.11 generates many theoretical predictions that should not
be difficult to test with real data.

The first amazing consequence of Theorem 6.11 is that the option yield is inde-
pendent of the risk aversions γi if γi ≥ G + 1.

The second, even more interesting consequence is that the option yield is always
greater than or equal to the corresponding equity return. Namely, in a homogeneous
economy with parameters (δ, γ ), the equity return is given by

rW
t+1 = P W

t+1(δ, γ ) + Wt+1

P W
t (δ, γ )

= Wt+1

Wt

1

f (δ, γ − 1)
,

and consequently, the expected cumulative return on constantly reinvesting all the
money in equity is given by

E
[
rW

1 rW
2 · · · rW

t

] =
(

E[X1]
f (δ, γ − 1)

)τ

.
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Thus, the per-period return on holding equity is given by

E[X1]
f (δ, γ − 1)

.

Now, if the dividends W are growing on average, i.e., E[logX1] > 0, then the per-
period return on holding a long maturity call option is by Theorem 6.11 given by

E[X1]
f (δ,min{γ − 1,G}) ≥ E[X1]

f (δ, γ − 1)
,

where the last inequality follows from Lemma 6.8. That is, in the long run, it is more
profitable to hold a long maturity option than the equity itself.

This is a very important theoretical prediction. It would be very interesting to
compare yields on long maturity call options with long run cumulative equity returns
and check the above theoretical prediction. In particular, it would allow us to get some
idea about the size of risk aversion γ and to find out whether γ ≥ (≤)G.

Appendix: A sketch of the proof for Theorem 3.2

To prove the existence, we introduce the excess utility map (see, e.g., [6]). We intro-
duce new parameters (social utility weights) λi := x

γi

i0 (note that we do not normalize
the λi to sum to 1). Let T = {1,2, . . .} and e: Rn++ → R

n be defined by

ei(λ1, . . . , λn) := λ−1
i

(
λ

bi

i

(∑
t∈T

δ
tbi

i E[G1−bi
t ]

)
−

∑
t∈T

E[witGt ]
)

, (7.1)

where Gt = Gt(λ1, . . . , λn, s) solves∑
i∈N

G
−bi
t δ

tbi

i λ
bi

i = Wt(s).

(We do not use here the normalization G0 = 1 (i.e., M0 = 1), but G0 fulfills the same
kind of equation as Gt for t ≥ 1.)

Proposition 7.1 The state price densities Mt , t ≥ 1, solve the equilibrium equations
if and only if

e(λ1, . . . , λn) = 0.

We prove that e has all the properties of an excess demand, and then the standard
existence result from [17], p. 585, implies the existence.

Lemma 7.2 The excess utility map e satisfies:

1. e is homogeneous of degree zero;
2.

∑
i∈N λiei = 0;
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3. e is continuous in R
n++;

4. ei is bounded from above for all i, and if λi → 0, then ei → −∞.

Properties 1 and 2 follow from the definition of e.
Property 3. We treat the two terms in (7.1) separately.
We now apply the trick of viewing a sequence of random variables as one vari-

able, but on a larger probability space. Let Ω∞ = Ω × T be the union of an infinite
number of identical copies of Ω , and let ν∞ be the infinite product measure on Ω∞
coinciding with μ (the original probability measure on Ω) on any copy of Ω. Let, for
Λ := (λ1, . . . , λn), G(Λ) be the random variable on Ω∞ equal to Gt on the t-th copy.
In just the same way, we define W = (Wt)t≥0 and wi = (wit ). Let also Di = (δt

i )t∈T.
Then we can rewrite (7.1) in the form

ei(Λ) = λ−1
i

(
λ

bi

i

∫
Ω∞

Dbi

i G1−bi dν∞ −
∫

Ω∞
wiGdν∞

)
. (7.2)

Lemma 4.2 yields that

G ≤ K
∑
j

λj Dj W−γj (7.3)

and therefore

wi · G ≤
∑
j

λj Dj wiW−γj ≤
∑
j∈N

λj Dj W1−γj . (7.4)

In terms of Ω∞, Assumption 3.2 means that the variable Dj W1−γj is ν∞-integrable
for any j ∈ N . From the definition of Gt it follows that Gt(Λ) is continuous in
Λ ∈ R

n++ for any t, s. Estimate (7.4) and the dominated convergence theorem im-
ply that we can pass to the limit under the integral

∫
Ω∞ wiGdν∞, and hence∫

Ω∞ wiGdν∞ is continuous in Λ. To control the first term in (7.2), we note that
for any compact set X ⊂ R

n++, there exists a constant K (depending on X) such that

δ
t bi

i G
1−bi
t (Λ, s) ≤ K

∑
j∈N

δt
jW

1−γj

t (s),

that is,

Dbi

i G1−bi ≤ K
∑
j∈N

Dj W1−γj . (7.5)

Now, the dominated convergence theorem yields the required continuity.
Properties 4 and 5. If bi ≥ 1, then

λ
bi

i

∑
t∈T

δ
tbi

i E
[
G

1−bi
t

] ≤ λi

∑
t∈T

δt
iE

[
W

1−γi
t

] = λiK1.

From Lemma 4.2 it follows that∑
t∈T

E[witGt ] ≥ K
∑
j∈N

λj

∑
t∈T

δt
jE

[
wjtW

−γj

t

] ≥ K1

∑
j∈N

λj (7.6)
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remains strictly positive. Thus we have

ei ≤ K1 − K2λ
−1
i

n∑
j=1

λj .

It follows that ei is uniformly bounded from above and tends to −∞ as soon as not
all λj tend to zero.

If bi < 1, then

λ
bi

i

∑
t∈T

δ
tbi

i E
[
G

1−bi
t

] ≤ Kλ
bi

i

∑
j∈N

λ
1−bi

j . (7.7)

If λi tends to zero and λj stay bounded for j �= i and not all of them tend to zero, we
have by (7.6) and (7.7) that

ei ≤ λ−1
i

(
K1λ

bi

i

∑
j∈N

λ
1−bi

j − K2

∑
j∈N

λj

)
. (7.8)

If λj stay in a bounded region, λi → 0, and λj �= 0 at least for one j , then (7.8)
implies

ei ≤ −K3λ
−1
i → −∞.

Finally, it is not difficult to see that

ei ≤ λ−1
i K1

(
λ

bi

i

∑
j∈N

λ
1−bi

j − (
K2K

−1
1

) ∑
j∈N

λj

)

≤ K1
L(K2K

−1
1 )λi

λi

= K1L
(
K2K

−1
1

)
. (7.9)
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