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Abstract Apoptosis, the most common form of cell

death, is a key mechanism in the build up and maintenance

of both innate and adaptive immunity. Central to the

apoptotic process is a family of intracellular cysteine pro-

teases with aspartate-specificity, called caspases. Caspases

are counter-regulated by multiple anti-apoptotic molecules,

and the expression of the latter in leukocytes is largely

dependent on survival factors. Therefore, the physiologic

rates of apoptosis change under pathologic conditions. For

instance, in inflammation, the expression of survival fac-

tors is usually elevated, resulting in increased cell survival

and consequently in the accumulation of the involved

immune cells. In many allergic diseases, eosinophil apop-

tosis is delayed contributing to both blood and tissue

eosinophilia. Besides eosinophils, apoptosis of other leu-

kocytes is also frequently prevented or delayed during

allergic inflammatory processes. In contrast to inflamma-

tory cells, accelerated cell death is often observed in

epithelial cells, a mechanism, which amplifies or at least

maintains allergic inflammation. In conclusion, deregulated

cell death is a common phenomenon of allergic diseases

that likely plays an important role in their pathogenesis.

Whether the apoptosis is too little or too much depends on

the cell type. In this review, we discuss the regulation of

the lifespan of the participating leukocytes in allergic

inflammatory responses.
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Introduction

Allergic diseases are the consequence of hyperreactivity

reactions of the immune systems towards exogeneous

antigens (allergens). Most allergic reactions are associated

with an increased T helper (Th) 2 activation, resulting in

elevated IgE levels and eosinophilia. Allergic diseases,

including asthma, rhinitis, conjunctivitiy, atopic eczema, as

well as food and drug allergies are major contributors to

morbidity in the civilized world, and sometimes even cause

mortality. With the expanding knowledge, the field of

allergy, along with the broader framework of immunology,

has dramatically changed concepts in recent years. How-

ever, in spite of the progress, the regulation of cell death in

allergic diseases is relatively little investigated and its

contribution to the pathogenesis of the different disorders

not well understood and reflected, respectively.

Similar to other types of inflammatory responses,

accumulation of subgroups of leukocytes occur during the

initiation and maintenance phases, whereas inflammatory

cell numbers decline in the resolution phase of allergic

inflammation. The changes in cell numbers during

inflammation are largely due to changes of rates of both

cell generation and cell death. Important leukocyte sub-

groups believed to play critical roles in the

pathophysiology of allergic inflammation involve dendritic

cells, T cells, mast cells, and eosinophils. The most com-

mon form of cell death of leukocytes is apoptosis.

That apoptosis is deregulated in allergic diseases is often

not reflected in reviews dealing with the pathophysiologic

relevance of apoptosis in diseases. However, since
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Friedbühlstrasse 49, CH-3010 Bern, Switzerland

e-mail: hus@pki.unibe.ch

123

Apoptosis (2009) 14:439–446

DOI 10.1007/s10495-008-0299-1



approximately one-third of the population within the

countries of the industrial world suffers from one or several

allergic diseases [1], it is important that apoptosis research

in these disorders is not neglected. Here, we review the

current knowledge on the regulation of cell death during

allergic inflammatory responses. Due to space limitations,

we will concentrate on summarizing important molecular

events that change apoptosis rates in allergic diseases and

will not cover basic knowledge on apoptosis pathways.

Cell death of mast cells

Mast cells are resident in all normal tissues, where they are

believed to play an important role in tissue homeostasis,

wound healing, and host defense. Mast cell activation is a

characteristic feature of allergic responses, leading to the

release of a large number of important mediators that can

cause chronic inflammation. Mast cells are also involved in

the mechanisms leading to bronchial hyperreactivity [2].

Therefore, how mast cell homeostasis is regulated may

have significant effects on normal physiology and con-

tributes to the genesis of allergic inflammatory diseases.

Mast cell numbers are increased in allergic inflamma-

tory responses [3], and preventing apoptosis might

contribute to this phenomenon. Stem cell factor (SCF),

interleukin (IL)-3, IL-4, IL-5, IL-6, and nerve growth

factor (NGF) have been described to promote mast cell

survival [4–6]. On the other hand, it has been reported that

exposure of murine bone-marrow-derived mast cells to

IL-3, IL-4, and IL-10 downregulate the SCF receptor kit as

well as the high-affinity IgE receptor, resulting in mast cell

apoptosis [7].

SCF is considered as being the most crucial survival

factor for mast cells. The crucial role of SCF for regulating

mast cell numbers is best reflected by experimental in vivo

models. Mice with deficient expression of SCF or kit have

almost complete lack of mast cells in their tissues [8, 9].

SCF is secreted from several cell types, such as stromal

cells, fibroblasts, endothelial cells, and mast cells them-

selves [10, 11]. Injection of SCF to the skin increases mast

cell numbers. Moreover, a gain of functional mutations of

kit causes systemic mastocytosis [12].

Following binding of SCF to kit, kit is dimerized and

autophosphorylated on tyrosine residues. This initiates

multiple intracellular signaling pathways, which involve

phosphatidylinositol-3-kinase (PI3K), mitogen activated

protein kinase (MAPK), phospholipase C c (PLCc), Src

kinase, and Janus kinase/Signal transducers and activators

of transcription (Jak/STAT), resulting in gene activation

[13]. It was found that Bim is both inactivated and reduced

due to SCF stimulation of mast cells [14]. Interestingly,

cross-linking of the high-affinity IgE receptor also leads

to apoptosis inhibition, which is mediated by increased

Bcl-xL and A1 expression [15, 16]. Increased survival

following mast cell activation may also be the consequence

of the release of survival factors, which then act in an

autocrine manner [17, 18].

Besides the anti-apoptotic mechanisms, mast cells

additionally carry functional death receptors. For instance,

mast cell apoptosis can be induced following ligation of

Fas and TNF-related apoptosis inducing ligand (TRAIL)

receptors [19, 20]. Interestingly, immunoglobulin E (IgE)-

mediated activation of mast cells increased their sensitivity

to undergo TRAIL-induced apoptosis, although the mech-

anism(s) responsible for these functional effects remain to

be investigated [20, 21]. In the resolution phase of allergic

inflammation, in which survival cytokine expression is

likely decreased, the induction of mast cell apoptosis crit-

ically involves the BH3-only protein Puma [22].

Cell death of eosinophils, neutrophils, and basophils

Eosinophils are prominent effector cells in many allergic

and parasitic inflammatory responses [23]. They are con-

stantly generated in the bone-marrow and short-lived [24].

Moreover, eosinophils are relatively rare and their contri-

bution to blood leukocyte numbers does not exceed 4%

under physiologic conditions. IL-5 represents a crucial

cytokine for eosinophil differentiation, activation, and

survival [25]. Therefore, in diseases with elevated levels of

IL-5, increased numbers of eosinophils are observed [26].

The importance of IL-5 for delayed eosinophil apoptosis in

tissues has been directly demonstrated in nasal polyp

explants [27]. Delayed eosinophil apoptosis has also been

demontrated in experimental in vivo models of allergic

disease [28]. Moreover, there was an inverse correlation

between numbers of apoptotic eosinophils in sputum from

asthmatic patients and levels of IL-5 and eotaxin, again

indicating that IL-5 (and perhaps eotaxin) acts as an

eosinophil survival factor in vivo [29]. Besides IL-5, other

eosinophil survival cytokines are IL-3 and granulocyte/

macrophage colony-stimulating factor (GM-CSF). Inter-

estingly, eotaxin-1 [30], leptin [31], and CD40 ligand [32]

are also able to prolong eosinophil survival in vitro.

The molecular mechanisms involved in cytokine-medi-

ated enhanced eosinophil survival include increased

expression of Bcl-xL [33], delayed Bid cleavage [34],

inhibition of Bax translocation to mitochondria [35], and

delayed Bax cleavage [31], resulting in delayed mito-

chondrial cytochrome c and second mitochondria-derived

activator of caspase (Smac) release and caspase activation

[31, 35]. IL-5 has also been shown to induce cIAP2 and

survivin, suggesting that delay of apoptosis can also be

achieved by blocking caspases [36]. The signal
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transduction mechanisms leading to gene expression of

anti-apoptotic proteins involve tyrosine kinases [37, 38],

MAPK [37], PI3K [39], Jak/STAT [40, 41], and NF-jB

pathways [42]. In contrast, the c-Jun N-terminal kinase

(JNK) pathway seems to mediate constitutive eosinophil

apoptosis [43].

Eosinophils also carry functional death receptors. For

instance, eosinophils express Fas receptors that initiate

apoptosis upon activation, even in the presence of survival

cytokines [44]. In contrast, nitric oxide, that is increasingly

generated during allergic inflammatory responses, coun-

terregulates Fas receptor-induced apoptosis [45]. TRAIL

and TNF receptors are also expressed on eosinophils, and

were reported to mediate eosinophil survival [46, 47]. In

contrast, recombinant surfactant protein-D (SP-D) has been

shown to induce apoptosis in eosinophils from allergic

patients, but not from healthy donors, although the mech-

anism remains unclear [48]. Eosinophil apoptosis can also

be induced as a consequence of sialic acid binding

immunoglobulin-like lectin (Siglec)-8 ligation [49].

Moreover, IL-5 increases Siglec-8 mediated death in a

partially caspase-independent manner (Fig. 1) [50].

Therefore, the eosinophil cell death under these condition

is unlikely apoptosis, but may represent an autophagic-like

cell death [51]. Recently, a natural ligand for Siglec-8 has

been identified [52]. Interestingly, Siglec-8 can also be

ligated by physiologic anti-Siglec-8 autoantibodies [53].

Moreover, ligation of mouse Siglec-F, the closest func-

tional paralog of human Siglec-8, selectively reduces blood

and tissue eosinophils in experimental mouse models [54].

Glucocorticoids that are often used as anti-inflammatory

drugs in allergic inflammatory responses directly induce

eosinophil apoptosis, although the molecular mechanism of

this drug’s action on cell survival remains unclear [55].

Nevertheless, this effect might be important since asth-

matic patients exhibit an increased proportion of apoptotic

eosinophils in their airway secretions following clinical

improvement with successful glucocorticoid therapy [56].

Theophylline has also been reported to induce eosinophil

apoptosis [57], but the clinical significance of this finding is

unclear. Agents that increase intracellular cAMP may also

modify eosinophil apoptosis, depending on the inflamma-

tory cytokine environment [58].

Although neutrophils can be present in bronchial asthma

[59], they are usually not dominant in chronic allergic

inflammatory responses. However, it is interesting to

compare the regulation of apoptosis between eosinophils

and neutrophils, since both cell types are granulocytes.

Neutrophils and eosinophils express surface molecules,

which initiate either survival or death signals. Both cell

types respond with enhanced survival when stimulated with

GM-CSF, and with enhanced apoptosis following ligation

of Fas receptors. Like in eosinophils, Fas stimulation

results in neutrophil apoptosis even in the presence of

survival factors [60]. On the other hand, there are also

surface receptors, which are expressed on either eosino-

phils or neutrophils. For instance, IL-5 is a specific survival

factor for eosinophils, whereas G-CSF specifically pro-

longs the lifespan of neutrophils. In addition, the

complement factor C5a enhances neutrophil [61], but not

eosinophil survival (unpublished observation). Siglec-8

transduces death signals in eosinophils, but not neutrophils.

In contrast, Siglec-9 is a death receptor on neutrophils that

is not expressed on eosinophils [62]. Moreover, the nico-

tinic acid receptor GPR109A was recently identified on the

surface of neutrophils, but not eosinophils [63]. There seem

to be also differences regarding the mechanism of cell

death regulation in association with DNA release between

neutrophils and eosinophils [64, 65]. Interestingly,

hypoxia, which induces apoptosis in most cell types, delays

apoptosis in neutrophils [66]. The effect of hypoxia on

eosinophil apoptosis is unknown.

Apoptosis in eosinophils and neutrophils is also regu-

lated by drugs and/or compounds. Glucocorticoids, which

induce eosinophil apoptosis (see above), delay the neu-

trophil apoptotic program [55]. On the other hand, nitric

oxide donors promote neutrophil apoptosis, but somehow

block eosinophil apoptosis [45]. Furthermore, the effect of

phenylarsine oxide on apoptosis is different in neutrophils

and eosinophils at a given concentration [67]. These data

suggest that differences exist in the expression of intra-

cellular components of cell death pathways between

eosinophils and neutrophils. Indeed, caspases, although

present, are somehow more difficult to activate in eosino-

phils compared with neutrophils [68]. In contrast, the

expression of Bcl-2 family members seems to be similar in

Siglec-8

IL-5

Caspase-independent 
cell death

Fas

ROS Caspases ROS Caspases

Apoptosis

IL-5

Fig. 1 Different forms of cell death in eosinophils following Fas and

Siglec-8 ligation in the presence of IL-5. Both Fas and Siglec-8

ligation induce caspase activation and ROS generation in the absence

of concurrent survival cytokine stimulation, leading to apoptosis. In

the presence of IL-5, however, death programs are different. In

contrast to Fas ligation, which blocks anti-apoptotic signaling, Siglec-

8 ligation does not prevent IL-5-mediated caspase inactivation.

Caspase inhibition is associated with a largely caspase-independent

cell death, which depends on ROS
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eosinophils and neutrophils. Interestingly, Bcl-2, although

present in immature precursors, is no longer present in both

granulocyte types upon full maturation [69]. This obser-

vation may, at least partially, explain the short lifespan of

these cells. Bim, a BH3-only protein, seems to play a major

role in the regulation of neutrophil apoptosis [70]. The

expression and function of Bim in eosinophils remains to

be investigated. Taken together, the regulation of apoptosis

in eosinophils and neutrophils is at least partially different,

providing the opportunity to selectively target one granu-

locyte type without affecting the other by pharmacological

means.

In contrast to eosinophils and neutrophils, little is known

about the regulation of apoptosis in basophils, which rep-

resent the least abundant granulocyte population. Basophils

are considered, besides mast cells and eosinophils, as key

effector cells in allergic inflammation. Proinflammatory

and immunomodulatory activities of basophils include

secretion of histamine and the lipid mediator leukotriene

C4 as well as rapid production of IL-4 and IL-13, Th2-type

cytokines crucial for the development of allergy. The

regulation of basophil apoptosis is likely to be important

for the length and strength of allergic inflammation, since

negative regulators on basophil activity have not been

identified. IL-3 appears to be the only ligand that protects

basophil apoptosis with high efficacy [71]. In contrast,

ligation of Fas results in basophil apoptosis [72]. A recent

study demonstrated that IL-3 mediates its anti-apoptotic

effect on basophils through a Pim1-dependent signaling

pathway [73].

Cell death of T cells

T cells, in particular T cells producing Th2 cytokines, play

an important role in allergic inflammatory responses. For

instance, IL-4 and IL-13 enhance IgE production, IL-4,

IL-9, and IL-10 enhance mast cell growth; and IL-5 pro-

motes eosinophil accumulation [74]. This Th2 response is

the result of clonal expansion of allergen-specific T cells

and involves both increased proliferation and inhibition of

apoptosis. Although some observations in allergic inflam-

matory responses suggest prolonged survival of Th2 cells

[75], most of our information on the role of T cell apoptosis

in immune responses comes from experimental models.

Bcl-2 expression is required for the survival of mature,

resting T cells [76]. IL-4, IL-6, or IL-7 are required to

maintain Bcl-2 and Bcl-xL levels in these cells [77, 78].

Interaction of the T cell receptor (TCR) with major histo-

compatibility complex (MHC) class II molecules is

required to keep memory T cells alive [79].

The antigen-mediated stimulation of T cells results in a

change in requirements for survival. Activated T cells

produce IL-2 and are dependent on IL-2, and related

cytokines, for their survival [77, 78, 80]. IL-2 and related

cytokines maintain Bcl-2 and Bcl-xL levels [77, 78], and

IL-2 withdrawal requires activation of Bim to induce death

[81]. Repeated TCR activation sensitizes T cells to apop-

tosis, a process known as activation-induced cell death.

Upon activation, Th1 cells are initially resistant to Fas

ligand-induced death, but they gain sensitivity after several

days [82]. This increased susceptibility towards Fas

receptor-mediated apoptosis has been attributed to lower

levels of FLICE-like inhibitory protein (FLIP) and is IL-2-

dependent [83]. In Th2 cells, however, FLIP levels may not

decrease, resulting in Fas resistance [84]. Therefore, Th2

predominance in allergic diseases may largely be due to

increased Th1 cell apoptosis [85, 86].

In the resolution phase of inflammatory responses, most

activated T cells are killed. T cell apoptosis may occur by

two mechanisms: (1) by repeated stimulation of the TCR

with antigen in conjunction with MHC class II molecules,

and (2) by reduction in cytokine levels due to decreased

inflammation. The first mechanism requires Fas in Th1

cells, and Fas-deficient patients develop a lymphoprolif-

erative disease [87, 88]. In Th2 cells, which are Fas

resistant [84], granzyme B is critical for activation-induced

cell death (Fig. 2) [89]. This second mechanism requires

Bim [81] and can be blocked by high levels of Bcl-2 [90].

Th2 cell apoptosis in allergic diseases may also be

achieved by drug treatment. For instance, calcineurin

TCR

Fas-mediated

apoptosis

IL-2

FLIP

TCR

Lysosomes

Granzyme B

Caspase-independent 

cell death

Fig. 2 Distinct T cell receptor (TCR)-mediated death pathways in

Th1 and Th2 cells. Whereas Th1 cells gain Fas sensitivity due to

IL-2-dependent downregulation of FLIP during an immune response,

Th2 cells stay Fas resistant following TCR activation. In Th2 cells,

granzyme B is released from lysosomes mediating a caspase-

independent cell death
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inhibitors have been described to induce T cell apoptosis in

atopic eczema [91].

Almost nothing is known about the regulation of apop-

tosis of regulatory T cells. It is tempting to speculate,

however, that dysregulated apoptosis in these cells con-

tributes to the pathogenesis of allergic inflammatory

responses. Interestingly, it has been suggested that T reg-

ulatory cells induce effector CD4? T cell apoptosis in an

experimental model of inflammatory bowel disease [92].

Therefore, it is possible that regulatory T cells also fulfill

their function, at least partially, by mediating effector T

cell apoptosis in allergic diseases. Clearly, such a potential

mechanism deserves further investigation.

Cell death of dendritic cells

The role of dendritic cells in driving Th2 allergic responses

has received considerable attention in recent years. Den-

dritic cells have direct contact to incoming antigens. In the

presence of a danger signal, dendritic cells mature to pro-

fessional antigen-presenting cells, and interact with naive T

cells in draining lymph nodes. Dendritic cells can influence

polarization of T cells by the release of cytokines [93] and

their expression of costimulatory molecules [94] that are

both influenced by the local environment [95]. Dendritic

cells have been shown to be essential in the pathogenesis of

allergic diseases [96, 97].

The lifespan of mature dendritic cells is thought to be

approximately three days [98]. This short time may limit

the availability of antigen for T cells, and apoptosis

induction in dendritic cells may serve to regulate immune

responses. The lifespan of dendritic cells is determined by

both antigen-mediated and T cell signals. For instance,

ligands for Toll-like receptors (TLRs), CD40 ligand, or

tumor necrosis factor-related activation-induced cytokine

(TRANCE) promote dendritic cell survival via NF-jB

pathways [99–101]. One of the NF-jB target genes is Bcl-

xL, which is induced by both TLR ligands and T cell

signals. In addition, TLR ligands, but not T cell signals,

reduce Bcl-2 and induce Bim, thus limiting the lifespan of

dendritic cells [102]. One might, therefore, speculate that

immature dendritic cells receive first TLR ligands, which

are likely to set the lifespan of dendritic cells, before they

even enter the lymph node. A function of T cells might

then be to prolong the survival of dendritic cells, possibly

leading to a temporary and local enrichment of dendritic

cells.

It is has been demonstrated that increasing the lifespan

of mature dendritic cells is an important factor to

strengthen the inflammatory response under in vivo con-

ditions [102]. Therefore, it is likely that increased dendritic

cell survival also plays a role in allergic inflammatory

responses. Indeed, it has recently been reported that

apoptosis-resistant dendritic cells promote Th2 responses,

including IgE production in an experimental mouse model

[103]. Therapeutic approaches promoting dendritic cell

apoptosis appear to be promising [104], further pointing to

the possibility that the lifespan of dendritic cells is a critical

element in the generation and/or maintenance of allergic

diseases.

Cell death of epithelial cells

Epithelial cell apoptosis is a common phenomenon of

allergic inflammation. For instance, bronchial epithelial

apoptosis leads to epithelial shedding in asthma. Apoptosis

is mediated by activated T cell and eosinophils [105].

Another example of epithelial cell apoptosis in association

with allergy is seen in atopic eczema. Apoptosis of kerat-

inocytes has been reported to be a major cause of

spongiosis, which represents one of the hallmarks of atopic

eczema [106]. IFN-c, even at very low concentrations,

increases Fas expression on keratinocytes and renders these

cells susceptible to apoptosis [106]. Taken together, aller-

gic diseases are often associated with epithelial cell

damage, which likely amplifies or at least maintains the

inflammatory process.

Conclusion

A look at the molecular basis of many allergic diseases

reveals a cell death component that either accounts for the

disease or contributes to disease progression. Therefore,

current and future anti-allergic therapies should also be

analyzed in respect to their effects on cell death pathways.
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