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Abstract In most cases, enantiomers of chiral com-
pounds behave differently in biochemical processes.
Therefore, the effects and the environmental fate of the
enantiomers of chiral pollutants need to be investigated
separately. In this review, the different fates of the
enantiomers of chiral phenoxyalkanoic acid herbicides,
acetamides, organochlorines, and linear alkylbenzenesul-
fonates are discussed. The focus lies on biological
degradation, which may be enantioselective, in contrast
to non-biotic conversions. The data show that it is difficult
to predict which enantiomer may be enriched and that
accumulation of an enantiomer is dependent on the
environmental system, the species, and the organ. Race-
mization and enantiomerization processes occur and make
interpretation of the data even more complex. Enantiose-
lective degradation implies that the enzymes involved in
the conversion of such compounds are able to differentiate
between the enantiomers. “Enzyme pairs” have evolved
which exhibit almost identical overall folding. Only subtle
differences in their active site determine their enantios-
electivities. At the other extreme, there are examples of
non-homologous “enzyme pairs” that have developed
through convergent evolution to enantioselectively turn
over the enantiomers of a chiral compound. For a better
understanding of enantioselective reactions, more detailed
studies of enzymes involved in enantioselective degrada-
tion need to be performed.

Introduction

A chiral (Greek cheir, hand) object or molecule is not
superimposable on its mirror-image, whereas an achiral

object can be superimposed on its mirror-image. An
alternative definition lies in the lack of symmetrical
elements: a chiral object lacks reflectional symmetry
(Sheldon 1993). Common known chiral objects are a
person’s right and left hands, snail shells, and clockwise-
or counterclockwise-threaded screws. For chiral mole-
cules, a tetrahedral C-atom bound to four different
substituents is most common. The carbon atom is the
stereogenic center and the two possible structures behave
like the image and mirror-image of each other and are not
superimposable. These structures are called enantiomers
(Greek enantios, opposite). Amazingly, chirality is more
the rule than the exception in our living world; and the
important building blocks of life, such as DNA, RNA, and
proteins, are all composed of chiral molecules. Moreover,
they are homochiral—proteins consist of L-amino acids
and DNA and RNA consist of the D-enantiomers of
deoxyribose and ribose, respectively.

The phenomenon of molecular chirality was first
observed in the middle of the nineteenth century. Pasteur
prepared sodium ammonium salts of the optically active
(+)-tartaric acid and the optically inactive racemic acid. He
observed that both crystals comprised hemihedral facets
and that the hemihedral facets of the crystals of the
optically active (+)-tartaric acid all lay in the same
direction, whereas some of the hemihedral facets of the
crystals of the optically inactive racemic acid inclined to
the left and some to the right. He separated the crystals and
found that the solution of crystals with hemihedral facets
to the right deviated the plane of polarized light to the right
and vice versa. He had discovered that the optical
inactivity of racemic tartaric acid is due to the fact that
it is a mixture of right- and left-handed tartaric acid. Later,
van’t Hoff and Le Bel introduced the model of the
tetrahedral carbon atom to explain enantiomerism.

Although pure enantiomers of chiral compounds have
identical physico-chemical properties—for a more thor-
ough discussion about racemates and their enantiomer
compounds, see Eliel and Wilen (1994)—their behavior in
biochemical processes might be strikingly different. The
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effects of differently acting stereoisomeric drugs can be
categorized basically as follows (Ariëns 1989).

A. The stereoisomers of a chiral drug may have similar
modes of action, but may differ in their affinity to a
receptor or an enzyme, resulting in different reaction
rates.

B. The inactive stereoisomer may act as a competitive
antagonist.

C. Enantiomers may have opposite or different effects, as
is the case for barbiturates, where the (–)-enantiomer is
a sedative and the (+)-enantiomer has convulsive
effects.

D. There are many chiral drugs for which one or both
enantiomers have the desired effect and only one
enantiomer causes unwanted side-effects. Well known
is the Contergan tragedy. Contergan was a sedative that
contained racemic thalidomide. Both enantiomers had
the desired therapeutic effects, whereas only the (S)-
enantiomer had teratogenic effects and caused severe
malformations of human babies (Bentley 1995).

E. Side-effects may be non-stereoselective and both
isomers may cause them, but only one isomer may
have the desired effect.

F. In contrast to this, the inactive enantiomer may
antagonize the side-effects of the active isomer. In
such cases, an enantiomerically pure compound is not
preferred.

As this list shows, the relationships between the effects
of active and inactive stereoisomers in a pharmacological
context can get quite complicated and certainly cannot be
easily predicted, but need to be empirically established.
Therefore, stereoisomers should be treated as separate
drugs and developed accordingly (FDA 1992).

It is important to note that the dispositions mentioned
above not only hold for pharmacologically active
compounds but equally apply to all bioactive compounds
that are chiral. Chiral pesticides, for instance, are
introduced into the environment in large amounts as
racemic mixtures. In many cases, the effects of the
enantiomers of herbicides on plants have been investi-
gated, but not the fate of the enantiomers after application.
Furthermore, not much is known about the degradation

potential of the enantiomers. The application of racemic
mixtures leads often to “isomeric ballast”, thereby
unnecessarily polluting the environment (Ariëns 1983;
Williams 1996).

In the environment, abiotic transformations of chiral
compounds are mostly non-enantioselective. This is in
contrast to biological processes, which usually proceed
with high stereo- or enantioselectivity. Therefore, changes
in enantiomeric ratio (ER) and enantiomeric fraction (EF)
are good indicators of biological degradation. The ER is
defined as the ratio of the concentration of one of the
enantiomers of a chiral compound divided by the concen-
tration of the other enantiomer; and the EF is defined as
the ratio of ER divided by ER+1 (Zipper et al. 1998a;
Harner et al. 1999; Kohler 1999; Hegeman and Laane
2002; Williams et al. 2003).

Here, we review the literature on the metabolism and
environmental fate of chiral pollutants (Table 1). We focus
on differences in the environmental fate of the enantio-
mers, i.e. on enantioselective biotic conversions. We
intend to show how important it is to differentiate between
enantiomers and stereoisomers and to treat enantiomers as
distinct compounds with respect to their degradation
potential. Furthermore, we describe enzymes involved in
enantioselective processes. We discuss stereoselectivity
and the similarities and differences between such enzyme
pairs that act on the enantiomers of chiral substrates.

Chiral pollutants and their fate in the environment

Phenoxypropanoic acid herbicides

Representatives of phenoxyalkanoic acid herbicides are
2,4-dichlorophenoxyacetic acid (2,4-D), 2-methyl-4-chlor-
ophenoxyacetic acid (MCPA), 2,4,5-trichlorophenoxyace-
tic acid, and the chiral compounds mecoprop (2-(R,S)-2-
methyl-4-chlorophenoxypropanoic acid) and dichlorprop
(2-(R,S)-2,4-dichlorophenoxypropanoic acid; Fig. 1). They
are systemic and post-emergence herbicides and act as
synthetic auxins (Åberg 1973; Loos 1975; Ahrens 1994).
They were introduced in the 1940s and 1950s to control
broadleaf weeds in agriculture, lawn pastures, and

Table 1 Chiral environmental pollutants discussed in this review

Class Representatives Main use Environmental systems
discussed in this review

Phenoxypropionic acids Mecoprop, dichlorprop Herbicide Soil, aquatic systems, wastewater
treatment plants, sewage sludge,
landfill leachates, plants

Acetamide pesticides Acetochlor, metalaxyl,
metolachlor,
dimethenamide

Pesticide Soil, aquatic systems,
sewage sludge, plants

Organochlorines α-Hexachlorocyclohexane,
chlordane

Contaminant of
technical lindane
(insecticide)

Soil, sediment, aquatic systems,
sewage sludge, methanogenic
conditions, biota

Linear alkylbenzencesulfonates,
linear alkylbenzenes

Detergent Soil
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industry. Racemic mecoprop is also used to control the
growth of weeds in building materials such as bituminous
seals, insulators for flat roofs, and rubber seals (Bucheli et
al. 1998a, 1998b). Phenoxyalkanoic acid herbicides, often
applied in formulation with other herbicides, are among
the most widely used herbicides in the world (Worthing
and Hance 1991). In 1999, 12.7–15.0×106 kg active
ingredient (a.i.) of 2,4-D were used to control broadleaf
weeds in agriculture, 7.7–9.0×106 kg a.i. in the industrial/
commercial/government market and 3.2–4.1×106 kg a.i. in
the home and garden sector in the United States
(Donaldson et al. 2002). Mecoprop was applied in a
range of 1.4–2.3×106 kg a.i. in the United States
(Donaldson et al. 2002).

The chiral herbicides mecoprop and dichlorprop each
have one stereogenic center and, therefore, two enantio-
mers exist (Fig. 1). Since 1953, it has been known that
only the (R)-enantiomers show herbicidal activity (Matell
1953). Nevertheless, the racemic mixtures were and still
are applied, thereby introducing large amounts of isomeric
ballast into the environment. In many countries, mecoprop
and dichlorprop are nowadays also sold as enantiomeri-
cally pure compounds (named mecoprop-P and dichlor-
prop-P, respectively; Williams 1996).

As outlined above, the enantiomers of chiral com-
pounds behave differently in biochemical processes.
Therefore, to study the fate of chiral herbicides, it is

important to differentiate between the enantiomers and to
monitor the different degradation patterns. Today, GC,
GC-MS, and HPLC methods are available to separate and
quantitate enantiomers and to selectively investigate the
environmental fate of the enantiomers of chiral pollutants
(Müller and Buser 1997).

The environmental fate of phenoxyalkanoic acid
herbicides is determined by their physico-chemical proper-
ties and by their biodegradability. They are water soluble
(up to 620 mg/l) and are strong acids (Worthing and Hance
1991). Since they are mostly present in the dissociated
(anionic) form in the environment, they do not adsorb onto
soil and have a low tendency to accumulate in organic
matter (Felding 1995; Zipper et al. 1998b). The half-life in
soil after application is from one to several weeks
(Table 2) and, due to their mobility, there is a risk of
contaminating aquatic systems (Heron and Christensen
1992). Indeed, phenoxyalkanoic acid herbicides are often
found in subsurface and groundwater samples (Gintautas
et al. 1992; Felding 1995). Concentrations in surface soils
were in the range of milligrams per kilogram of soil,
whereas concentrations were lower in groundwater
samples, i.e., 10–250 µg/l downstream of landfills
(Lyngkilde and Christensen 1992; Zipper et al. 1998b)
and less than 1 µg/l in groundwater aquifers polluted due
to agricultural use (Scheidleder et al. 1999).

Fig. 1 Chemical structure of
the phenoxyalkanoic acid her-
bicides 2,4-dichlorophenoxy-
acetic acid (2,4-D; A), which is
achiral, and the two enantiomers
of dichlorprop (B), which is
chiral. C Proposed degradation
pathway of (R)- and (S)-meco-
prop by Alcaligenes denitrifi-
cans and Sphingomonas herbi-
cidovorans MH. Note that A.
denitrificans exclusively de-
grades (R)-mecoprop, whereas
S. herbicidovorans MH de-
grades both enantiomers (mod-
ified from Nickel et al. 1997;
Tett et al. 1997; Müller et al. in
preparation)
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The effect of environmental conditions on the photo-
decomposition of dichlorprop and mecoprop in soil
surfaces was investigated by Romero et al. (1998). They
found that, on dry soil surfaces, photolysis may dominate
other transformation pathways. However, in moist soils,
photodecomposition played an important role only during
the first 2 days of exposure. Afterwards, when microbial
degradation became dominant, photodecomposition was
much less important. In a study using different types of
calcareous soils, mecoprop and dichlorprop dissipation
was investigated (Romero et al. 2001). Generally, degra-
dation was slower in clay loam soils than in silt and sandy
loam soils (Table 2). Dissipation was enantioselective,
indicating biological degradation, and was dependent on
the soil type. The (S)-enantiomer persisted for a longer
time in silt and sandy loam soils than in clay loam soils.
The addition of peat had intriguing effects, as the
persistence of mecoprop and dichlorprop increased in silt
and sandy loam soils, but decreased in clay loam soils.
Lewis et al. (1999) studied the effect of environmental
changes on the enantioselective degradation of mecoprop
and dichlorprop in Brazilian forest and pasture soils. The
pasture samples preferentially degraded (S)-dichlorprop,
whereas both enantiomers were equally transformed in
forest samples. Enrichments in organic nutrients shifted
the enantioselectivity for methyl-dichlorprop towards the
preferential degradation of the (S)-enantiomer. Other
studies showed that the (S)-enantiomer was degraded
significantly faster in soil than the herbicidally active (R)-
enantiomer (Garrison et al. 1996; Müller and Buser 1997).
Only two studies reported enantiomerization and/or race-
mization (Buser and Müller 1997; Müller and Buser
1997). Both studies showed that enantiomerization was
biologically mediated. The authors drew the important
conclusion that, due to enantiomerization, the measured
enantiomeric composition of residues does not reflect that
of the applied products. Additionally, two-phase degrada-
tion kinetics with initially slower rates was observed in
one of these studies (Müller and Buser 1997). The authors
suggested that two or more different enzyme systems are
involved in the degradation.

In marine systems polluted with racemic dichlorprop,
(R)-dichlorprop is preferentially degraded by microorgan-
isms (Ludwig et al. 1992a, 1992b). In aerobic aquifer
samples incubated with different concentrations of meco-
prop in laboratory experiments, mecoprop was degraded
within 200 days (Heron and Christensen 1992). (R)- and
(S)-mecoprop was found in equal concentrations in the
landfill leachate of Kölliken (Switzerland), indicating a
racemic mixture of mecoprop in the landfill itself. But in
groundwater samples downstream of the landfill, the
enantiomeric ratio of mecoprop increased, i.e., (R)-
mecoprop was in excess. As sorption to organic material
was of minor importance and should be non-enantiose-
lective, this finding indicates in situ biodegradation
(Zipper et al. 1998b). Williams et al. (2003) showed in a
recent study that degradation of mecoprop in a limestone
aquifer downstream of a landfill depended on the redox
conditions. Under methanogenic, sulfate-reducing, or iron-

reducing conditions, mecoprop was not degraded. In
nitrate-reducing microcosms, (R)-mecoprop was degraded,
whereas the (S)-enantiomer was stable. In contrast, (S)-
mecoprop degraded faster than (R)-mecoprop under aer-
obic conditions. In a field experiment in Denmark,
mecoprop and dichlorprop were degraded in an aerobic
aquifer within a distance of 1 m from the source within a
period of 120 days. But in contrast to the reports
mentioned beforehand, no enantioselective degradation
was observed (Rügge et al. 2002).

Experiments with activated and digested sludge showed
that phenoxypropanoic acid herbicides are degraded
aerobically but not anaerobically. Mecoprop and dichlor-
prop (10–40 mg/l) were degraded aerobically within
7 days, the (S)-enantiomers being preferentially degraded,
while degradation was not observed during 49 days of
incubation under anaerobic conditions (Zipper et al. 1999).
An experiment with 1 mM mecoprop in a simulated
wastewater treatment plant showed 100% removal after
40 days (Nitschke et al. 1999).

All these studies showed that biological degradation is
the most important process by which these herbicides are
eliminated from the environment. Furthermore, biological
degradation was enantioselective in most cases, emphasiz-
ing the importance of investigating the environmental fate
of each enantiomer separately. In these cases, the observed
changes in enantiomeric fractions or ratios gave con-
clusive evidence for natural attenuation of the herbicides
(Zipper et al. 1998b; Williams et al. 2003). However,
racemization may occur and therefore, careful experiments
and measurements are needed for solid interpretations.

In most cases, microorganisms enantioselectively de-
grade mecoprop and dichlorprop. A particular strain might
degrade only one enantiomer or it might sequentially
degrade the two enantiomers. Degradation was well
investigated for the achiral phenoxyalkanoic acid herbi-
cide 2,4-D in Ralstonia eutropha JMP134(pJP4). 2,4-D is
degraded by an α-ketoglutarate-dependent dioxygenase
(TfdA) by ether-bond cleavage to 2,4-dichlorophenol
(Streber et al. 1987; Fukumori and Hausinger 1993a,
1993b). Then, 2,4-dichlorophenol is hydroxylated to 3,5-
dichlorocatechol by a phenol-hydroxylase (TfdB; Liu and
Chapman 1984; Perkins et al. 1990; Farhana and New
1997). The catechol undergoes ortho-ring fission cata-
lyzed by a chlorocatechol 1,2-dioxygenase (TfdC) yield-
ing 2,4-dichloro-cis,cis-muconate (Perkins et al. 1990;
Bhat et al. 1993), which is then metabolized to cis-2-
chlorodienelactone and further to 2-chloromaleylacetate
by a muconate cycloisomerase and a dienelactone hydro-
lase (TfdD and TfdE, respectively; Kuhm et al. 1990;
Perkins et al. 1990). It was suggested that the chiral
phenoxyalkanoic acid herbicides are degraded accord-
ingly. Table 3 lists all known bacterial strains in pure
culture that are able to grow with mecoprop and
dichlorprop as the sole carbon and energy source. The
earliest reported investigations were made with Alcali-
genes denitrificans (Table 3), which was isolated from a
consortium and exclusively degrades the (R)-enantiomer,
using it as sole carbon and energy source (Tett et al. 1994,
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1997). (R)-Mecoprop degradation was shown to proceed
in a manner analogous to 2,4-D degradation, i.e., degra-
dation to the achiral 4-chloro-2-methylphenol and then to
5-chloro-3-methylcatechol (Fig. 1C). Subsequently, 5-
chloro-3-methylcatechol is degraded through the modified
ortho-cleavage pathway, yielding 2-methyllactone, 2-
methylmaleylacetate, and finally 5-methyl-3-oxoadipate.
In a further study, the question was addressed whether the
genes encoding the enzymes involved in mecoprop
degradation were similar to those encoding the enzymes
for 2,4-D degradation. A fragment of a tfdA-like gene was
amplified by PCR from A. denitrificans and sequenced. It
was 86% identical to the corresponding region of tfdA
from R. eutropha JMP134(pJP4) (Saari et al. 1999).
However, the α-ketoglutarate-dependent dioxygenase and
the other enzymes involved in degradation have not been
further characterized in this strain.

In 1990, Sphingomonas herbicidovorans MH (formerly
Flavobacterium sp.) was isolated from soil samples
polluted with dichlorprop (Horvath et al. 1990; Zipper et
al. 1996). In contrast to A. denitrificans, S. herbicidovor-
ans MH is able to degrade both enantiomers of
dichlorprop and mecoprop to completion (Zipper et al.
1996). Growth experiments with either the racemate or
single isomers showed that S. herbicidovorans MH
degraded the substrates enantioselectively. The (S)-enan-
tiomer was degraded before the (R)-enantiomer in all
growth experiments performed so far. When S. herbicido-
vorans MH was incubated with the single enantiomer, a
lag phase of about 3 days for (S)- and one of about 7 days
for (R)-mecoprop was observed. However, when grown on
the racemate, degradation was sequential, the (S)-enanti-
omer being used first (Zipper et al. 1996). Enantioselec-
tivity was also found for substrate uptake. When S.
herbicidovorans MH grew on the single enantiomers, only
the enantiomer that served as the substrate was taken up.
These data and further experiments indicated that S.
herbicidovorans MH harbors two inducible transport
systems involved in enantioselective uptake (Nickel et
al. 1997; Zipper et al. 1998a).

Two strains, Alcaligenes sp. CS1 and Ralstonia sp. CS2,
were isolated from agricultural soils. They are able to
degrade racemic mecoprop and dichlorprop in addition to
the achiral herbicides 2,4-D and MCPA (Smejkal et al.
2001). The genomes of both isolates were screened under
low-stringency conditions with tfd-gene probes in hybrid-
ization experiments. The experiments demonstrated that
both strains harbored tfdABC-like genes on plasmids.
Rhodoferax strain P230, another strain that is able to
degrade chiral phenoxyalkanoic acid herbicides, was
isolated from contaminated building material. According
to preliminary PCR experiments, this strain also harbors
tfdA-like genes (Ehrig et al. 1997). Delftia acidovorans
MC1 (formerly Comamonas acidovorans MC1) was
isolated from a herbicide-contaminated building site
(Müller et al. 1999, 2001). The strain was able to degrade
racemic dichlorprop but, unfortunately, enantiospecific
degradation was not investigated. To isolate the genes
coding for the enzymes, PCR experiments were carried out T
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with primers for tfdA, tfdB, and tfdC (Vallaeys et al. 1996;
Kleinsteuber et al. 1998), revealing the presence of tfdBC
genes. In contrast to these genes, a tfdA-like gene could
not be amplified with the applied primers, although
enzyme activities dependent on ferrous ions and α-
ketoglutarate could be detected in cell-free extracts.

Acetamide pesticides

The group of acetamide pesticides comprises a large
number of herbicides and fungicides (Fig. 2). The activity
is dependent on the acyl moiety. In the case of herbicides,
the substituent is often –CH2Cl, whereas in the case of
fungicides the substituent is often –CH2OCH3. Acetamide
pesticides are used to control annual grasses and certain
broadleaf weeds in corn, soybeans, and peanuts. They are
also used to control phytopathogenic fungi, such as
Peronosporales in potatoes, sugar beets, and other crops
(LeBaron et al. 1988; Sharp 1988; Worthing and Hance
1991). Acetamide pesticides act as protein synthesis
inhibitors (Chesters et al. 1989) and RNA-polymerase I
inhibitors (Buchenauer 1990). The compounds metola-
chlor [2-chloro-N-(2-ethyl-6-methylphenyl)-N-(2-me-
thoxy-1-methylethyl)acetamide], metolachlor-s, and ala-
chlor [2-chloro-N-(2,6-diethylphenyl)-N-(methoxymethyl)
acetamide] are among the most commonly used pesticides
in the world and, in 1999, 11.8–13.6×106 kg, 7.3–
8.6×106 kg , and 3.2–4.5×106 kg a.i., respectively, were
applied in the United States (Donaldson et al. 2002). Other
commonly applied acetamide pesticides are acetochlor [2-
chloro-N-(2-ethyl-6-methylphenyl)-N-(ethoxymethyl)acet-
amide], metalaxyl [N-(2,6-dimethylphenyl)-N-(methoxya-
cetyl)alanine methyl ester], and dimethenamid [2-chloro-
N-(2,4-dimethylthien-3-yl)-N-(2-methoxyl-1-methylethyl)
acetamide]. Alachlor is achiral, acetochlor is axial-chiral,
and metalaxyl is C-chiral, giving two enantiomers.
Dimethenamid and metolachlor are axial and C-chiral
and, therefore, four stereoisomers exist. For metolachlor,
herbicidal activity is exclusively associated with the 1′(S)-
isomers. In the case of metalaxyl, the (R)-enantiomer is
about 3–10 times more fungicidally active than the (S)-
enantiomer (Fisher and Hayes 1985).

Degradation of different acetamides in soil and sewage
sludge proceeds in the order alachlor >acetochlor
>dimethenamid >metolachlor >metalaxyl, with half-lives
ranging over 4–32 days in soil and 10–86 h in sewage
sludge (Buser and Müller 1995a; Müller and Buser 1995).
Dimethenamid and metolachlor degradation showed low
to moderate enantio- and/or stereoselectivity, whereas
metalaxyl was degraded highly enantioselectively. En-
antioselectivity was dependent on the environmental
system: in soil, 1′(R)-(–)-metalaxyl was degraded faster
than the (S)-enantiomer, whereas reversed enantioselec-
tivity was found in sewage sludge (Buser and Müller
1995a; Müller and Buser 1995). Different rates and
opposite enantioselectivity were also found in a study in
which degradation in soil was compared to that in plants.
The (R)-enantiomer was degraded faster in soil, the (S)-

enantiomer faster in plants (Marucchini and Zadra 2002).
In a recent study (Buser et al. 2002), the faster degradation
of the herbicidally active (R)-enantiomer in soil was
confirmed. It was also found, that only 40–50% of
metalaxyl was degraded to the chiral intermediate
metalaxyl carboxylic acid {MX-acid; 2-[(2,6-dimethyl-
phenyl)methoxy-acetylamino]propanoic acid}. In this
step, the configuration of the chiral C-atom was retained.
Further degradation of MX-acid is also enantioselective,
the (S)-enantiomer being converted more rapidly. The
remaining metalaxyl is metabolized through other path-
ways. Both enantiomers of metalaxyl and MX-acid are
configurationally stable and no indications of biological
mediated racemization or enantiomerization have been
found (Buser et al. 2002; Marucchini and Zadra 2002).
Monkiedje and coworkers (2003) investigated the degra-
dation and persistence of racemic and enantiopure forms
of metalaxyl in temperate and tropical soils. All forms of
metalaxyl had lower degradation rates in Cameroonian
soils than in German soils. Interestingly, an opposite
enantioselectivity was observed in the two regions. The
(R)-enantiomer was degraded faster than the (S)-enanti-
omer in German soils, but slower than the (S)-enantiomer
in Cameroonian soils. This finding suggests that different
microbial populations are involved in the degradation
process. In another recent study, the enantioselectivity
correlated with the soil pH (Buerge et al. 2003). In aerobic
soils with pH >5, the (R)-enantiomer was degraded faster
than the (S)-enantiomer. In aerobic soils with pH 4–5, both
enantiomers were degraded similarly, whereas in aerobic
soils with pH <4 and in anaerobic soils, the enantioselec-
tivity was reversed. The authors reevaluated published
kinetic data from dichlorprop and mecoprop studies and
found indications of similar correlations. However, no
correlation between enantioselectivity and soil pH was
observed for MX-acid, the chiral intermediate.

In the case of metolachlor, there is currently a chiral
switch from racemic metolachlor to (S)-metolachlor,
which is highly enriched in the herbicidally active
enantiomer. Most likely, this results in lower overall
concentrations and a changed enantiomeric ratio in

Fig. 2A–F Chemical structures of acetamide pesticides. A General
structure. R and R′ represent CH3- and/or C2H5-. B–F Structures of
the five acetamide pesticide alachlor (achiral), metolachlor, aceto-
chlor, metalaxyl, and dimethenamid. The chiral centers and the
axial-chiral elements are indicated by asterisks. Note that, in
dimethenamid, phenyl is replaced by 2,4-dimethylthien-3-yl
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environmental samples. Indeed, in Switzerland, a rapid
response in terms of the enantiomeric composition was
observed in surface waters after the replacement of the
racemic metolachlor by the highly enriched enantiomer
(Buser et al. 2000).

Organochlorines: hexachlorocyclohexane and
chlordane

Hexachlorocyclohexane (HCH) belongs to the organo-
chlorine compounds and used to be one of the most widely
applied broad-spectrum insecticides. It was introduced
during world war II (Müller et al. 1992) and was used
mainly in forestry, agriculture, and as a wood preservative.
HCH comprises eight isomers, the chiral α-, and the
achiral β-, γ-, δ-, ε-, η-, υ-, and ι-isomers, of which only
the γ-HCH has insecticidal properties. Technical grade
lindane (Fig. 3A) consists typically of 60–70% α-HCH, 5–
12% β-HCH, 10–15% γ-HCH, and 6–10% δ-HCH (Iwata
et al. 1993; Buser and Müller 1995b), whereas the
commercial insecticide marketed today comprises 99%
of the γ-isomer. In Europe, the use of technical grade
lindane was banned in the 1970s and, in 2000, lindane was
completely banned for all agricultural and gardening
applications. Although the total amount of applied HCH
was reduced globally, it is still a contaminant of great
concern in many countries (e.g., in India). HCH is
semivolatile and has a low tendency to accumulate in
soils. It is transported by water and air and, today, HCH
has accumulated in regions where HCH was never used,
such as the Arctic and the Baltic Sea (e.g., see Harner et al.
1999; Meharg et al. 1999; Wiberg et al. 2001). Chlordane
is another representative of the organochlorine pesticides
and was widely applied in the United States from 1945
until it was banned in 1988 (Dearth and Hites 1991; Hayes
and Laws 1991). Technical chlordane comprises 140 com-
pounds and was used to control pests in lawn, garden, and
crops and as a termiticide (Hayes and Laws 1991). The
organochlorine representatives cis- and trans-chlordane
(Fig. 3B) and heptachlor epoxide, a metabolite of
heptachlor, are chiral and each enantiomer has different
biological properties and environmental fate (Pfaffenber-
ger et al. 1994; for a review, see Hegeman and Laane
2002).

Today, the Arctic Ocean is a source of HCH. HCH is
eliminated from the Arctic Ocean by water outflow,
volatilization, and degradation (LeBaron et al. 1988). A
study of the removal of α- and γ-HCH in the eastern
Arctic Ocean found that the rate constants for microbial
degradation were about 3–10 times higher than those for
hydrolysis (Harner et al. 1999). Enantioselective degrada-
tion was observed, the (+)-α-HCH being converted
preferentially. The calculated half-lives for (+)-α-HCH,
(–)-α-HCH, and γ-HCH were 5.9, 23.1, and 18.8 years,
respectively. However, reversed enantioselectivity was
found in other marine environments, such as the Bering
Sea and the Chukchi Sea (Jantunen and Bidleman 1998).
Enantioselective degradation was also investigated in

other aquatic environments. It was found that enantiose-
lective degradation was greatest in small Arctic lakes with
enantiomeric ratios between 0.3 and 0.7, although the
nutrient availability in such lakes is very low (Falconer et
al. 1995; Law et al. 2001). Law et al (2001) suggested this
was due to biofilm formation and environmental condi-
tions in which the contact between α-HCH and the
microbial population was maximized by either the path
length, as in streams, or the long water-residence time, as
in lakes. In the food web, no preference for the enrichment
of one enantiomer in higher trophic levels could be
observed. Cetaceans, dolphin species, showed preferential
accumulation of (+)-α-HCH (Hummert et al. 1995). (+)-α-
HCH was also more abundant than the (–)-enantiomer in
the blubber of harbor seals, grey seals, and harp seals and
in the liver, kidney, and muscle tissues of ducks (Hummert
et al. 1995). In contrast to this, an ER of <1 was found in
hooded seals (Hummert et al. 1995). In invertebrates,
mussels, and fishes, the ratio reflected that of the
surrounding water, indicating no preferential accumulation
(Hühnerfuss et al. 1993; Moisey et al. 2001). Also, for
chlordane compounds, no uniform trend for ER changes
and increasing trophic levels could be found (Wiberg et al.
2000). These findings suggest that it will be difficult to
predict which enantiomer may be enriched and that
accumulation is dependent on both the organ and the
species.

Fig. 3A, B Chemical structures of pesticides. A Chemical
structures of five hexachlorocyclohexane (HCH) stereoisomers in
technical lindane. Note that only α-HCH is chiral and that only γ-
HCH has insecticidal properties. B Chemical structures of the
organochlorine pesticides cis- and trans-chlordane
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In soils, organochlorines are also enantioselectively
degraded. In soils from the United States corn belt, (+)-
trans-chlordane was preferentially degraded, whereas for
cis-chlordane, the (−)-enantiomer was converted faster
except in four soils, in which non-enantioselective degra-
dation was found (Aigner et al. 1998). α-HCH was
enantioselectively degraded in three muck soils, but not in
silt loam soils from British Columbia (Falconer et al.
1997). In soils from near a former HCH factory, only low
enantioselectivity was found (ER=1.099; Müller et al.
1992). In archived UK soils, statistically significant
enantioselective degradation was not observed for cis- or
trans-chlordane, nor for α-HCH (Meijer et al. 2001). The
reported half-lives for α-HCH and other organochlorines
in soils were from ~7 years (α-HCH) to 25 years (dieldrin;
Meijer et al. 2001).

In anaerobic sewage sludge, HCH is degraded with half-
lives of 20–178 h, in the order γ-HCH >(+)-α-HCH >
(–)-α-HCH >δ-HCH >β-HCH. Indications are given that
degradation is 80–95% biologically mediated, although
abiotic degradation in sterilized sewage sludge is much
higher than hydrolysis in water (Ngabe et al. 1993; Buser
and Müller 1995b). α-HCH is degraded enantioselectively,
whereby the (+)-enantiomer is degraded faster. This leads
to enrichment of (−)-α-HCH in sewage sludge (Buser and
Müller 1995b). Middeldorp et al. (1996) described a
bacterial consortium which was able to degrade both β-,
α-, γ-, and δ-HCH under methanogenic conditions.

A microbial community able to degrade HCH was
isolated from marine environments (Hühnerfuss et al.
1992). It degrades (+)-α-HCH and the corresponding β-
pentachlorocyclohexene (β-PCCH) faster than the respec-
tive enantiomers. Another consortium comprising eight
bacterial strains and a fungus was isolated from soil and
sewage. It preferentially degrades α-HCH, but nothing is
reported about enantioselectivity (Manonmani et al. 2000).
Two Bacillus strains, B. circulans and B. brevis, isolated
from contaminated soil, are able to degrade α-, β-, γ-, and
δ-HCH at high rates (Gupta et al. 2001); and two
Pseudomonas strains isolated from agricultural soils are
able to degrade γ-HCH (Nawab et al. 2003). S.
paucimobilis UT26 is able to grow on γ-HCH as sole
carbon and energy source (Imai et al. 1991; Nagasawa et
al. 1993; Nagata et al. 1999). The lin genes were
sequenced and shown to code for the enzymes involved
in HCH metabolism (Nagata et al. 1993a, 1993b, 1999).

Linear alkylbenzenesulfonates and linear
alkylbenzenes

Linear alkylbenzenesulfonates (LAS) and linear alkylben-
zenes (LAB) and their degradation products are envir-
onmentally relevant chiral substances (Fig. 4). LAS are
used as detergents and LAB are the precursors in LAS
synthesis and are found in low amounts in commercial
LAS (Holt and Bernstein 1992; De Almeida et al. 1994).
LAS and LAB are biodegradable under aerobic conditions
(Swisher 1987). It was suggested that degradation starts

with ω-oxidation of the alkyl side-chain (Painter 1992)
and chain-shortening proceeds with β-oxidation, which is
hindered when the side-chain is cut back to four or five
carbon atoms from the point of attachment to the benzene
ring (Huddleston and Allred 1963; Douros and Franken-
feld 1968; White and Russell 1994). Rhodococcus
rhodochrous PB1 enantioselectively metabolizes the
LAB intermediate 3-phenylbutyric acid. R. rhodochrous
is able to grow on (R)-3-phenylbutyric acid, whereas the
(S)-enantiomer is only cometabolically transformed to
presumably (S)-3-(2,3-dihydroxyphenyl)butyric acid (Si-
moni et al. 1996). This compound is then abiotically
transformed to reactive and potentially toxic quinones
(Simoni et al. 1996; Kohler et al. 1997). Recently, D.
acidovorans SPB1 was isolated from an enrichment
culture (Schulz et al. 2000) which degrades 2-(4-
sulfophenyl)butyrate (SPB) sequentially (Fig. 4B). The
(R)-enantiomer is degraded first and only when it is
exhausted does the (S)-enantiomer start degrading. Me-
tabolism converges at the achiral 4-sulfocatechol. 4-
Sulfocatechol undergoes ortho-cleavage via 3-sulfo-cis,
cis-muconate.

Enantioselective enzymes

Enantioselective degradation of chiral pollutants by
microorganisms is rather the rule than the exception. For
enantioselective metabolism, one or more enzyme reac-

Fig. 4A, B Linear alkyl benzenes (LAB) and derivatives. A
Chemical structure of a LAB isomer and the metabolite 3-
phenylbutyric acid. Chain-shortening is supposed to be non-
enantioselective, as the stereogenic center is far away from the
reaction point. B Chemical structure of 2-(4-sulfophenyl)butyrate
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tions involved in the uptake or in different degradation
steps must be enantioselective. The three-point model
(Easson and Stedman 1933; Ogston 1948) is often used to
explain the phenomenon of stereoselectivity in enzymatic
reactions. As shown in Fig. 5, the model postulates that the
active enantiomer binds more tightly to the active site of
the enzyme because the sequence of the three groups
around the asymmetric carbon atom, ABC, forms the
triangular face of a tetrahedron that matches the comple-
mentary triad on the chiral binding site, A′B′C′, of the
active site. The less active enantiomer binds ineffectively,
since it has a mirror-image sequence of the three groups,
CBA, which leads to a mismatch with the active site
(Kohler et al. 2000). In some cases, this model needs to be
expanded to a so-called four-location model (Mesecar and
Koshland Jr. 2000; Fig. 5, III). When isocitrate dehydro-
genase is provided with the substrate racemate, L-isocitrate
is exclusively bound to the protein crystals in the absence
of Mg+ but, in the presence of Mg+, the D-isomer binds.
The crystal structure revealed that three of the four groups
of the C2-atom of isocitrate bind to the same three
residues, but not the fourth group. In other words, the
protein needs not three but four locations in the active site
to differentiate between the two enantiomers. In general,
the three-point model works as long as it is assumed that
the binding site can be approached only from one
direction. But if the active site is in a cleft or on
protruding residues, only binding or direction to the fourth
group enables the protein to distinguish between the
enantiomers.

Degradation of the enantiomers of chiral pollutants may
proceed along different avenues:

A. Two enantioselective enzymes exist, each converting
only one substrate enantiomer.

B. Both enantiomers are simultaneously converted by one
enzyme, but at different rates.

C. Sequential conversion of the substrate enantiomers by
one enzyme, i.e., the enzyme preferentially degrades
one enantiomer. The other enantiomer is eventually
also degraded, but only when the former one has been
(completely) degraded.

D. Enantioselective conversion of one enantiomer by one
enzyme and isomerization of the other enantiomer by
an isomerase.

Not many of the enzymes involved in the degradation of
chiral pollutants are well studied in terms of their
stereoselectivity. Recently, two genes, rdpA and sdpa,
were isolated and sequenced from S. herbicidovorans MH
(Müller et al. 2003). The genes encode two distinct α-
ketoglutarate-dependent dioxygenases, are involved in the
enantioselective degradation of dichlorprop and mecoprop
in this strain and cleave the ether bond to the correspond-
ing phenol, with the concomitant release of pyruvate and
succinate. α-Ketoglutarate and oxygen are required as
cosubstrates, iron(II) as a cofactor, and ascorbate as a
reducing agent. It was shown that SdpA is constitutively
expressed whereas RdpA is induced during growth on the
(R)-enantiomer or the racemate. Interestingly, SdpA was
repressed when S. herbicidovoransMH was grown on (R)-
mecoprop (Nickel et al. 1997). rdpA and sdpA genes were
also isolated and sequenced from the dichlorprop degrader
D. acidovorans MC1. RdpA and SdpA were partially
purified and it was found that RdpA converts (R)-
dichlorprop, (R)- and (S)-mecoprop, but not (S)-dichlor-
prop (Westendorf et al. 2002, 2003). SdpA from this strain
is enantioselective and converts only the (S)-enantiomer of
the two phenoxypropanoic acid herbicides. The amino
acid residues, which are involved in substrate- and
cofactor-binding, have not yet been determined. However,
from alignments with other α-ketoglutarate-dependent
dioxygenase and inhibitor studies, it is likely that there
are two histidines and one aspartate involved in Fe(II)-
binding (the 2-His-1-carboxy-facial triad; Hegg and Que
1997). At the moment, nothing is known about the
stereospecificity of the substrate-binding sites and whether
the substrate-binding sites of the two enzymes are similar
or not. α-Ketoglutarate-dependent dioxygenases involved
in 2,4-D degradation were also able to utilize phenox-
ypropanoic acids as substrates. Interestingly, they are
highly enantioselective and convert only one enantiomer.
TfdA from R. eutropha JMP134(JP4) and Burkholderia
cepacia RASC oxidize only (S)-dichlorprop, whereas
TfdA from A. denitrificans exclusively converts the (R)-
enantiomer (Saari et al. 1999). This indicates that closely
related enzymes may exhibit different enantioselectivities.

Another example of an enzyme that enantioselectively
catalyzes a key reaction in the degradation of a recalcitrant
pollutant is γ-HCH dehydrochlorinase (LinA) from S.

Fig. 5 Three-point attachment model modified from Easson and
Stedman and Ogston (1933; Ogston 1948; diagrams I, II) and the
four-location model by Mesecar and Koshland Jr. (2000; diagram
III). A′, B′, C′ Binding sites in the active site of the enzyme. For one
enantiomer of the chiral substrate, the three ligands (A, B, C) are
oriented counterclockwise and coincide with the binding sites of the
enzyme. It can be seen that the ligands of the other enantiomer
(diagram II) bind ineffectively to the enzyme. If the active site can
be approached from both sides (diagram III), both enantiomer can
bind. In such a case, an additional binding site—a fourth location
(D′ , respectively)—is necessary for the selective recognition of an
enantiomer
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paucimobilis UT26 (Nagata et al. 1993a, 1993b). LinA
catalyzes two reactions. The first reaction is the dechlo-
rination of γ-HCH to γ-PCCH and the second reaction is
the dechlorination of γ-PCCH to 1,3(R),4,6-(R)-tetrachlor-
ocyclo-hexa-1,4-diene, a compound that is presumed to
spontaneously rearrange to 1,2,4-trichlorobenzene (TCB).
For these reactions, no cofactors are needed. Beside γ-
HCH, LinA also converts α- and δ-HCH, but not β-HCH,
which indicates that the enzyme requires a biaxial HCl pair
on the substrate molecule. δ-HCH is only converted to δ-
PCCH. Interestingly, LinA differentiates between 1,3(S),4
(R),5(R),6(S)-PCCH and 1,3(R),4(S),5(S),6(R)-PCCH,
whereby only the former enantiomer is a metabolite in
the degradation of γ-HCH. When provided with the
racemate obtained by chemical alkaline dehydrochlorina-
tion, LinA converts the former enantiomer to 1,2,4-TCB
and the latter to 1,2,3-TCB. Therefore, the first step in the
degradation of γ-HCH is highly enantioselective and gives
rise to only one product enantiomer. Site-directed muta-
genesis experiments allowed a closer look at the active site
and it was found that the catalytic dyad, His-73 and Asp-
25, is involved in stereoselectivity. It was suggested that
the topological differentiation is caused by this catalytic
dyad, whereas the enantiomeric differentiation is due to
noncovalent interaction of the double-bond substituents
with noncatalytic residues in the active site (Trantírek et al.
2001).

Ring-hydroxylating dioxygenases are important en-
zymes in the degradation of many aromatic pollutants.
In most cases, they convert their achiral substrate to chiral
products (cis-dihydrodiols), a process which is regio- and
enantioselective; and many conversions lead to enantio-
merically pure products (Hudlicky et al. 1999). Naphtha-
lene dioxygenase (NDO) belongs to this class of enzymes.
Because the structure of NDO was solved (Kauppi et al.
1998; Karlsson et al. 2003), it is the model enzyme for
studying molecular aspects of enantioselectivity in such
reactions. NDO is a multicomponent enzyme and
catalyzes a wide range of reactions, such as cis-
hydroxylations, monooxygenations, and desaturations. It
consists of three components: an iron-sulfur-flavoprotein
reductase, an iron-sulfur-ferredoxin, and the oxygenase
itself, which is built of a small α- and a large β-subunit
with the overall structure α3β3 (Ensley and Gibson 1983;
Kauppi et al. 1998). NDO is NAD(P)H dependent and the
reductase and ferredoxin component transfer the electron
from NAD(P)H to the oxygenase (Ensley et al. 1982;
Ensley and Gibson 1983; Haigler and Gibson 1990). Each
subunit of the oxygenase component contains a Rieske-
type [2Fe-2S] center and a mononuclear nonheme iron.
Electrons are transferred from the Rieske center to the
mononuclear iron of an adjacent α-subunit, which is the
site of oxygen activation and catalysis. Phenylalanine
residue 253 (F253) has been shown to play an important
role in controlling regio- and enantioselectivity in phen-
anthrene, biphenyl, and naphthalene oxidation. By site-
directed mutagenesis, F352 was altered into different
amino acids. NDO variant F352W, in which phenylalanine
was replaced by tryptophan, exhibited the most pro-

nounced changes in stereochemistry (Parales et al. 2000a,
2000b). Other variants of F352 also showed altered
regioselectivity with biphenyl and phenanthrene. The
combination of a F352V variant of NDO and the
enantioselective toluene cis-dihydrodiol dehydrogenase
from P. putida F1 was used to produce the enantiomeri-
cally pure (−)-biphenyl cis-(3S,4R)-dihydrodiol and
(−)-phenanthrene cis-(1S,2R)-dihydrodiol from biphenyl
and phenanthrene, respectively (Parales et al. 2000b). The
enantioselective oxidation of dihydrodiols was also
investigated for chlorobenzene cis-dihydrodiol dehydro-
genase (TcbB) from Pseudomonas sp. strain P51 and it
was found that the enantioselectivity of the conversion is
highly dependent on the substrate (Raschke et al. 1999).
TcbB exclusively oxidizes (+)-cis-(1R,2S)-indandiol,
whereas both enantiomers of cis-1,2-dihydroxy-1,2,3,4-
tetrahydronaphthalene are converted.

Racemases (isomerases) catalyze racemization of their
substrates and are thereby involved in enantioselective
degradation pathways. One well studied example is
mandelic acid racemase (MR). MR converts D- to L-
mandelic acid and vice versa. P. putida biotype A degrades
both enantiomers of mandelic acid by means of a
racemase. L-Mandelic acid is the substrate of a
L-(+)-mandelic acid dehydrogenase, which is highly
enantioselective. Further metabolism proceeds through
the so-called mandelate pathway to benzoic acid (Kenyon
and Hegeman 1979), which is further metabolized via
catechol and through the ortho-cleavage pathway. D-
Mandelic acid is metabolized by the same enzymes, except
that it is initially converted to the L-enantiomer by MR.
Interestingly, MR itself is non-enantioselective, i.e., D-
mandelic acid is converted to the L-enantiomer at the same
rate as the L-enantiomer is converted to the D-enantiomer
(Whitman et al. 1985). The racemization proceeds by a
two-base mechanism (Powers et al. 1991). This means that
two basic amino acid residues, which are juxtaposed on
either side of the chiral substrate carbon, are involved. One
base abstracts the proton of the substrate whereas the
conjugate acid of the other base protonates the interme-
diate from the other side. For the opposite reaction, the
roles are reversed. For MR from P. putida F1, the two
basic residues were identified as lysine residue 166 (K166)
and histidine residue 297 (H297; Landro et al. 1991, 1994;
Neidhart et al. 1991; Kallarakal et al. 1995). K166
abstracts the α-proton from the (S)-enantiomer, whereas
H297 deprotonates the (R)-enantiomer.

An interesting example of an enzyme pair which
metabolizes the enantiomers of a chiral compound is the
paired tropinone reductases (TR-I, TR-II) from Datura
stramonium. Many plants produce tropane alkaloids and,
in this synthesis, the TRs reduce a carbonyl group of an
alkaloid intermediate, tropinone, to hydroxyl groups with
different diastereometric configurations: tropine (3α-
hydroxytropane) and P-tropine (3β-hydroxytropane).
The crystal structures of both TRs were determined
(Nakajima et al. 1998). The two enzymes share 64%
amino acid identity and the overall folding is almost
identical. The binding sites for the cofactor NADH and the
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positions of the active site residues are well conserved.
The active sites are composed mainly of hydrophobic
amino acids, but differently charged amino acids cause
different electrostatic environments. In TR-I, there is a
positively charged histidine (H112), whereas in TR-II a
polar tyrosine (Y100) occupies this position. In TR-II, the
hydrophobic valine residue 168 of TR-I is replaced by the
negatively charged glutamate residue 156. These differ-
ences are of importance for the positioning of tropinone.
The nitrogen atom of tropinone is negatively charged
under physiological pH conditions and, thereby, tropinone
is oriented in different ways in the active site by the
different electrostatic environments.

These examples demonstrate how single amino acid
residues are responsible for highly enantioselective
reactions and enable the enzymes to differentiate between
enantiomers. Just by changing a few amino acid residues
involved in regio- and enantioselective substrate recogni-
tion, the stereoselectivity of an enzymatic reaction can be
changed or even reversed.

Convergent evolution is another approach nature has
chosen to metabolize enantiomers of chiral compounds.
Many enzyme pairs, each turning over one enantiomer of a
chiral compound, have evolved independently and are not
related to each other. Examples are the D- and L-lactate
dehydrogenases (D-LDH, L-LDH), which belong to the D-
and L-ketoacid dehydrogenase families, respectively. Se-
quence comparisons show that these two enzyme families
are not related to each other evolutionarily. L- and D-LDH
catalyze the reduction of pyruvate to lactate, with the
concomitant consumption of NADH, producing enantio-
merically pure products. By crystal structure analysis, it
was found that the overall folding of the D-LDH is
completely different from that of L-LDH. It was
hypothesized that, despite the different folding, the active
sites are mirror-images of each other (Goldberg et al.
1994; Lamzin et al. 1994). This is true insofar as the same
amino acid residues are involved in substrate-binding and
catalysis and they are in structurally equivalent positions.
However, their exact roles in binding and catalysis may
not be the same (Stoll et al. 1996). Convergent evolution
was also found for the D-amino acid transferases (D-AAT)
and L-aspartate aminotransferases (L-Asp-AT). D-AAT and
L-Asp-AT do not share any identity at the sequence level
and their overall folding is different, but the enzymatic
mechanism is similar. Both enzymes contain a pyridoxal
phosphate (PLP) and catalyze a transamination of the
respective amino acid enantiomer. Sugio et al. (1995)
showed that there are striking similarities between the
active sites of the two enzymes, especially concerning the
binding of PLP and its intermediates. The α-amino- and
α-carboxyl groups of the substrate amino acid are bound
in the same orientation in relation to the pyridoxal
phosphate ring and the protein. The side-chain is therefore,
due to the inverse chirality, oriented in the opposite
direction.

Other interesting enzymes in terms of their enantios-
electivity are the 2-haloacid dehalogenases (DEXs) which
convert chiral 2-haloacids into 2-hydroxyacids. DEXs are

involved in the degradation of halogenated organic
compounds and are classified into four groups based on
their substrate and stereochemical specificities (Soda et al.
1996). L-DEXs convert L-haloacids into D-hydroxyacids
with inversion of the configuration at the C2-carbon atom
of the substrate. D-DEX acts specifically on the D-
enantiomer to produce L-hydroxyacids. DL-DEXi dehalo-
genates both enantiomers with inversion of the configu-
ration at the C2-carbon atom; and DL-2–DEXr converts
both enantiomers to the corresponding hydroxyacids, with
retention of the configuration at the C2-carbon atom. L-
DEXs are well studied, both in terms of reaction
mechanisms and in terms of substrate- and stereospecifi-
city (Smith et al. 1990; Kurihara et al. 1995; Liu et al.
1995; Li et al. 1998). Additionally, the crystal structures of
two representative enzymes, L-DEX from Pseudomonas
sp. YL and L-DEX from Xanthobacter autotrophicus GJ10
have been solved (Hisano et al. 1996; Ridder et al. 1997;
Li et al. 1998). The normal reaction mechanism proceeds
via an ester intermediate. First, Asp-10 acts as a nucle-
ophile and attacks the C2-carbon atom of the substrate,
forming an ester-intermediate and a halide ion. A water
molecule is activated and hydrolyzes the intermediate
from the back, giving the D-hydroxyacid. From mutagen-
esis studies and the crystal structure of L-DEX YL, several
amino acid residues (Tyr-12, Leu-45, Phe-60, Trp-179,
Gln-44, Lys-151, Asn-177) were identified which built a
hydrophobic pocket. While the carboxylic moiety of the
substrate is bound to Asp-10, the alkyl group is located in
the hydrophobic pocket. This hydrophobic pocket is
responsible for the stereo- and substrate-specificity of the
enzyme. It is not possible to accommodate an alkyl group
within the place for a hydrogen atom, due to steric
hindrance by the main chain and the side-chain atoms of
Leu-11, Tyr-12, and their neighbors in this pocket. This
determines the enantioselectivity (and substrate specific-
ity) of the enzyme. In contrast to L-DEX, DL-DEXr

converts both enantiomers. DL-DEX from Pseudomonas
sp. strain 113 (DL-DEX 113) has a significant sequence
homology with D-DEXs, e.g., 23% with D-DEX from P.
putida AJ1, but little with L-DEXs (Nardi-Dei et al. 1997).
To study the reactive site, several polar and charged amino
acid residues conserved among DL- and D-DEX were
mutated. When the enzymatic activity was lower than in
the wild type, the effect was always equal for both
enantiomers. The results suggest that DL-DEX 113 has one
single active site for D- and L-2-haloacids. In other words,
DL-DEX 113 does not—in contrast to L-DEX—discrimi-
nate between the alkyl group and the hydrogen atom at the
C2-atom of 2-haloacids (Nardi-Dei et al. 1997).

L-DEXs are examples of enzymes that discriminate
between enantiomers by the spatial arrangement of the
active site rather than by specific interactions of single
amino acid residues with the substrate. It would be
interesting to know how substrates are bound to the active
sites in D- and DL-DEX in order to compare the
mechanisms, but crystallographic data are not yet avail-
able.
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We have described enzymes with overall conserved
folding, where just a few amino acid residues determine
stereospecificity, together with examples of enzymes that
express opposite stereospecificity and have completely
different folds and surprisingly similar active sites that are
mirror-images. Theoretically, two enzymes with identical
sequences but built from enantiomeric amino acid
monomers, i.e., one built from L-amino acids and the
other from D-amino acids, should have opposite stereo-
specificities for chiral substances. Such an enzyme pair
was studied by Milton et al. (1992). They synthesized the
HIV-1 protease completely with D-amino acids. The D-
HIV-1 protease indeed showed the opposite substrate
specificity. Inverse specificity was also observed with
enantiomeric inhibitors. These data imply that the L- and
the D-forms of the enzyme are the exact image and mirror-
image of each other, resulting in opposite substrate
specificity.

Conclusion

The environmental fate of the enantiomers of chiral
compounds differs not only with regard to unwanted side-
effects but also with regard to degradation. As the
examples show, there is no rule to decide which enanti-
omer is preferably degraded. It depends on the specific
compounds, the environmental compartment, the environ-
mental conditions, and the microbial community. As other
authors have emphasized, it is important to consider both
stereochemistry and chirality when studying the effects
and degradation potential of chiral compounds (e.g.
(Ariëns 1989, 1993; Kohler et al. 1997, 2000). This is
also true when enantiomerically pure compounds are used
and therefore only one enantiomer is introduced into the
environment. As was pointed out, enantiomers may
undergo racemization or enantiomerization processes and
therefore the environmental fate of each enantiomer
always needs to be investigated.

Studies on enantioselective enzymes have helped and
will help to broaden our understanding of the effects of
chirality on the living world. It will be important to study
such enzymes more intensively to learn how nature deals
with chiral objects. The following questions need to be
addressed. Does an enzyme change its stereospecificity
easily? How do enzymes which are evolutionarily not
related to each other adapt to convert enantiomers of a
chiral compound? Evolution has not preferred one
particular mechanism, as far as we know, but further
studies need to be carried out to answer such questions in
more detail.
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